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Abstract: Transfer learning is a machine learning technique that takes a pre-trained model that has
already been trained on a related task, and adapts it for use on a new, related task. This is particularly
useful in the context of model predictive control (MPC), where deep transfer learning is used to
improve the training of the MPC by leveraging the knowledge gained from related controllers. One
way in which transfer learning is applied in the context of MPC is by using a pre-trained deep learning
model of the MPC, and then fine-tuning the controller training for a new process automation task.
This is similar to how an equipment operator quickly learns to manually control a new processing
unit because of related skills learned from controlling the prior unit. This reduces the amount of
data required to train the approximate MPC controller, and also improves the performance on the
target system. Additionally, learning the MPC actions alleviates the computational burden of online
optimization calculations, although this approach is limited to learning from systems where an
MPC has already been developed. The paper reviews approximate MPC formulations with a case
study that illustrates the use of neural networks and transfer learning to create a multiple-input
multiple-output (MIMO) approximate MPC. The performance of the resulting controller is similar to
that of a controller trained on an existing MPC, but it requires less than a quarter of the target system
data for training. The main contributions of this paper are a summary survey of approximate MPC
formulations and a motivating case study that includes a discussion of future development work
in this area. The case study presents an example of using neural networks and transfer learning to
create a MIMO approximate MPC and discusses the potential for further research and development
in this area. Overall, the goal of this paper is to provide an overview of the current state of research
in approximate MPC, as well as to inspire and guide future work in transfer learning.

Keywords: deep learning; transfer learning; model predictive control; approximate model
predictive control

1. Introduction

Model predictive control (MPC) requires the development of a dynamical mathemati-
cal model and the solution of optimization subroutines in real time. These requirements
represent a challenge because industrial processes are often too complex to be modeled from
first principles, and first-principles models, when available, can be computationally too
expensive to be solved in real time. System identification through statistical methods and
historical data can expedite the development of a dynamic model when a first-principles
formulation is not available [1]. While a linear model can often be solved in real time, many
industrial processes exhibit nonlinear dynamics, and linear MPC becomes insufficient. This
has motivated the use of deep neural networks as a non-linear method for process control.

Deep-learning architectures designed to handle sequential data, such as recurrent
neural networks (RNNs), long short-term memory (LSTM) networks, and transformers, are
responsible for remarkable results in the tasks of natural language processing [2], speech
recognition [3], and, more recently, protein folding [4]. These networks are also being
used for system identification and model predictive control of evaporation processes [5],
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pharmaceutical manufacturing [6] and reactor control [7]. Although deep neural networks
are capable of capturing complex dynamics, they represent a challenge when they are used
to calculate optimal control actions. As noted by Schweidtmann et al. [8], the considera-
tion of complex data-driven models has long been limited to local or stochastic solution
approaches [9–11], or fit-for-purpose solutions limited to low-dimensional problems and
state-of-the art solvers [12,13]. While these approaches focus on using the deep neural
network model as part of the optimization routine, other researchers have focused on using
the deep learning models to generate explicit, or approximate MPC formulations [14–17].
These architectures, however, depend on the development of an MPC in the first place so
that enough training data are generated.

This study contributes to the development of improved approximate MPC formu-
lations by using deep learning models and transfer learning, a research area in the field
of machine learning that aims to transfer the knowledge learned from one problem to a
similar problem.

The contributions of this paper are as follows:

• A non-comprehensive survey of the work done on approximate MPC formulations.
• A case study on a multiple-input multiple-output (MIMO) system to show how deep

learning and transfer learning can be used to develop an approximate MPC controller.

1.1. Previous Work on Approximate MPC Formulations

Table 1 summarizes a non-comprehensive survey on approximate MPC formulations.
A large portion of the research done in this area has focused on decreasing the computational
cost of MPC formulations, applied to equivalent systems. Alessio and Bemporad [18],
for example, summarize different approaches to solving the MPC optimization problem
offline for a given range of operating conditions applied on a system of interest, focusing
mostly on piecewise affine functions. Alessio and Bemporad [18] also provide a novel
algorithm that reduces the complexity of explicit MPC. In their approach, extensive off-line
simulations of closed-loop MPC collect the most recurrent combinations of active constraints
and generate critical regions. These critical regions are used to calculate or extrapolate a
suboptimal input move in real time.

Table 1. A non-comprehensive survey on explicit MPC, MPC emulators and approximate MPC.

Articles MPC Informed for
Equivalent Systems

Equivalent System
with Neural Network

Transfer Learning
for Similar Systems

Transfer Learning
for Unique Systems

Explicit MPC: 329 Articles, 22 with Neural Networks or Deep Learning

Tøndel et al. [19] x
Alessio and Bemporad [18] x
Csekő et al. [20] x x
Grosso et al. [21] x x
Katz et al. [22] x x
Chen et al. [23] x x

MPC Emulation: 357 Articles, 10 with Neural Networks or Deep Learning

Zheng et al. [24] x
Moness and Moustafa [25] x
Wang et al. [26] x x
Yan and Wang [27] x x
Novak and Dragicevic [28] x x
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Table 1. Cont.

Articles MPC Informed for
Equivalent Systems

Equivalent System
with Neural Network

Transfer Learning
for Similar Systems

Transfer Learning
for Unique Systems

Approximate MPC: 24 Articles, 12 with Transfer Learning

Hofer et al. [29] x
Pin et al. [30] x x
Yang et al. [16] x x
Gan et al. [31] x x
Wang et al. [32] x x
Wang and Hong [33] x x x
Chen et al. [34] x x x
Han et al. [35] x x x
Chen et al. [36] x x x
This study x x x x

Grosso et al. [21] explore the use of neural networks to analyze complex drinking
water networks (DWNs). In their approach, the authors provide a novel quasi-explicit
MPC formulation, where heavy computational tasks are replaced by non-linear modules
using neural networks, and the prediction horizon and weight matrices of the MPC are
continuously adjusted based on a trade-off between risk and economic cost. This allows
for the effective scaling of MPC to large, multi-objective applications. In the work of
Tøndel et al. [19], polyhedral partitions of the state space are used as a novel approach to
improve the efficiency of explicit solutions, avoiding unnecessary partitioning and QP
problem solving. Similarly, Csekő et al. [20] propose the use of radial basis function (RBF)-
based neural networks as an approximation of the MPC controller and compare that to a
Kalman filter applied to an explicit MPC, showing that the neural network approximation
can provide fast control but at the expense of deteriorated performance. Additionally,
Katz et al. [22] show a novel approach where deep neural networks approximate the non-
linear parts of a multiparametric mixed integer linear programming (mpMILP), making the
formulation tractable while maintaining the linear aspects components of the optimization
problem, such as box constraints.

Other examples include the work of Moness and Moustafa [25], where a switched
model predictive controller (SMPC) is used in a physical wind turbine emulator, and the
work of Zhu et al. [37], where an improved finite-set MPC is proposed to achieve simplified
control structure and faster dynamic response in an islanded alternating current microgrid.
In both cases, the novel use of simplified MPC architectures that rely on switching between
control strategies from a pool of prediction models result in faster controller response.
Similarly, Novak and Dragicevic [28] use a finite-set MPC formulation for power electronics,
but with the introduction of a supervised learning approach to imitate the controller. This
contribution further alleviates the computational burden of finite-set MPC formulations
by introducing an approximate MPC that is independent of the non-linearity of the system.

Examples of deep learning-based approximations of MPC include the work
of Wang et al. [26], where a machine learning (ML)-based emulation of an MPC is used
for modular multilevel converters, and the work of Yan and Wang [27], where recurrent
neural networks (RNNs) and a collective neurodynamic optimization approach are used
to create non-linear model predictive control (NMPC) without linearization. The novel
neurodynamic approach presented by [27] further augments the use of deep learning-based
MPC formulations by improving the starting points of each RNN using the information
of global and local best known solutions and a particle swarm optimization approach.
This approach effectively combines global search and precise local search capabilities, and
converges to global optimal solutions in simulation studies.Other examples include the
work of Pin et al. [30], where a NN is used to capture the non-linearities of a discrete-time
NMPC model with hard constraints for similar performance in offline control. Similarly,
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Hofer et al. [29] manipulate an approximate MPC to mirror performance of a full MPC
while lowering the computational cost of the onboard control of unmanned aerial vehicles.
Their novel method uses a continuous time parametrization of the state and input trajectory
to derive a compact description of the optimal control problem, which outperforms a linear
quadratic regulation approach in simulation studies.

Regarding the use of transfer learning for approximate control formulations, an offline
approximate MPC from Gan et al. [31] controls a hybrid energy ship using a random forest
model, performing nearly as well as the MPC policy used to train the model. Han et al. [35]
build a knowledge-data-driven MPC using fuzzy NN for waste-water treatment with
transfer learning mechanisms to adapt to similar systems. Their novel transfer learning
mechanism improves the control performance by integrating state information of the
current model with historical model data to offset the data shortage in the learning process.
This transfer of knowledge of model parameters has the potential to benefit other water-
related applications where deep learning has shown promising results but collecting data
is difficult, such as intermittent streamflow predictions in arid regions [38–40].

Similarly, Wang and Hong [33] offer a comprehensive review of building control using
reinforcement learning and transfer learning to imitate the performance of MPC. This
contributions are valuable in applications where MPC has proven very useful but the
expertise required for each application limits its scalability [41]. In a successful example,
Chen et al. [34] inform control of a room in Shanghai with limited data using layers from
a NN model trained intensively on a room in Beijing. In their approach, a deep neural
network with more than 40,000 trainable parameters was pre-trained with multi-year
data from the room in Beijing and re-trained with only 15 days of data from the room in
Shanghai, resulting in high-quality predictions of the air temperature and relative humidity
of the room in Shangai. In other publications, Yang et al. [16] train a RNN with a nonlinear
autoregressive exogenous model structure on data from test rooms controlled with MPC,
reporting significant improvement from original control, Chen et al. [36] captures MPC
behavior for building control in a RL model which then informs models for other buildings.
The performance of their learning application improves during operation, reinforced with
additional data.

As described in this survey, the research performed on approximate MPC formulations
has focused primarily on reducing the computational time of solving the optimization
problem. An important aspect of this study is that it presents an approximate MPC that
not only reduces the computational time of a traditional MPC formulation, but that it
is also designed to learn from different representations of knowledge. This is similar
to how an operator can quickly learn to manually control a new processing unit due to
their prior experience and skills gained from controlling a similar unit. In other words,
the operator’s previous experience with a related task enables them to more easily adapt
to and perform the new task. This concept is similar to how transfer learning in machine
learning allows a model that has been trained on a related task to be adapted and fine-tuned
for use on a new, related task, thereby reducing the amount of training data and improving
performance. For example, deep learning facilitates learning from complex systems, such
as the decision criteria followed by an operator that is manually controlling a process.
Additionally, transfer learning facilitates learning from systems with similar dynamics,
similar to how an operator can learn to control a new process by using prior knowledge.

1.2. Transfer Learning

Transfer learning is a research area in the field of machine learning that aims to transfer
the knowledge learned from one problem to a similar problem. As noted by Yang et al. [42],
transfer learning is rooted in AI, psychology, educational theory and cognitive science,
and it has been addressed through frameworks, such as analogical problem solving [43,44]
and high-level structural similarity in analogical reasoning [45]. Foundational work by
Thrun and Pratt [46] introduces the term learning to learn, and proposes methods that can
change the way machine learning algorithms generalize. These methods are compared
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to how humans learn to generalize from exposure to a continual stream of learning tasks.
According to Thrun and Pratt [46], a machine learning algorithm is capable of learning to
learn (i.e., generalize) if its performance at each task improves with experience and with the
number of tasks, given a family of tasks, training experience for each of these tasks and a
family of performance measures.

Transfer learning can be formally defined with the notations introduced by Pan and
Yang [47]. A domain D, consists of a feature spaceX and marginal probability distribution PX,
where each input instance x ∈ X . Given a specific domain, D = {X ,PX}, a task T has two
components: a label space Y and a function f (·) (denoted by T = {Y , f (·)}). The function
f (·) is a function that can make predictions on unseen instances x∗s.

In a two-domain scenario, there is one source domain Ds and one target domain Dt,
where the source domain labeled data are denoted byDs = {(xsi , ysi}

ns
i=1, where xsi ∈ Xs is the

data instance and ysi ∈ Ys is the corresponding class label. Similarly, Dt = {(xsi , ysi}
ns
i=1 is

denoted as the target domain labeled data, where the input xti ∈ Xt is the input, and yti ∈ Yt.
Transfer learning has shown success in various fields of study. In the work of [48]

a pre-trained network was found to best evaluate body posture as an indicator of sleep
quality. Utilizing a transfer learning approach, researchers successfully identified four
predefined sleep poses during 12 participants’ overnight sleep episodes. When assessed
against manually evaluated sleep positions, the pre-trained network using transfer learn-
ing outperformed other pre-trained networks. While the standard position sensor was
estimated to have 88.2% accuracy, their deep learning video scoring stood at 95.1% accuracy.

Transfer learning has also been used to improve swimming pool safety by using
computer vision to produce automated surveillance systems that might identify drowning
objects, as applied to a motion detection sensor. Alotaibi [49] utilizes a specialized neural
network based on a ResNet-50 model. Researchers successfully enhanced the performance
of the proposed system, overcoming the limitations of a small available data size. While a
DCNN learning model achieved 95% accuracy upon evaluation, the specialized model was
found to have 99% accuracy.

In the field of process control, transfer learning has been used as an approximation of
a system with complex dynamics where data are scarce. In the work of Chen et al. [34] for
example, a neural network model with 42,902 parameters is used to learn the dynamics of
natural ventilation in a building, based on multi-year data from a source system. The model
is then retrained with only 200 trainable parameters and only 15 days of data from the
target system, which has different floor area, building material, and window size. The re-
sulting model shows a reduced mean squared error, almost one order of magnitude smaller
than the models that are only trained on source data or target data. A similar approach is
presented by Wang et al. [32], where a growing deep belief network (GDBN) network is
used to identify the dynamics of a continuous stirred-tank reactor (CSTR). In their work,
transfer learning is used to dynamically optimize the structure of a GDP, by using the pre-
trained layers of an initialized deep belief network (DBN) to help the GDBN automatically
determine its optimal size and achieve high performance in system identification.

Although both examples show promising results on the use of transfer learning for
system identification, they still depend on an efficient MPC to control the system. This
article shows a case study in which a deep neural network is used to identify the control
policy of a source system, similar to the work discussed on deep learning-based explicit
MPC, and deep learning-based MPC emulators, and deploy on a target system. Transfer
learning, in this case, is used to enhance the performance of the approximate MPC on the
target system, without the need for additional steps to identify the dynamics of the new
system or solving an optimization subroutine to calculate the controller outputs.

As noted by Tan et al. [50], deep learning models are data-dependent, and they require
large amounts of data for training and testing. Ideally, the training and test data must be
independent and identically distributed (i.i.d) to accurately assess the predictive capabilities
of the model. However, in many situations, it is difficult to collect large amounts of high
quality data for deep learning. In these situations, transfer learning is attractive because it
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relaxes the assumption of i.i.d. training and data sets, suggesting that a model can be pre-
trained on a training set and fine tuned on a target test set belonging to a different domain.

Tan et al. [50] further categorize transfer learning into the following:

• Instances-based;
• Mapping-based;
• Adversarial-based;
• Network-based.

An instances-based transfer learning approach takes instances from a source domain
that can be used in a target domain by adjusting the associated weights. This approach has
been successful in text classification applications [51].

In a mapping-based approach, the two domains are combined in a new data set and fed
to a union network. Matasci et al. [52] use this approach to improve image classification in
a remote sensing application.

An adversarial-based approach finds patterns that are applicable to the source and target
domain, while discriminating between the source and target tasks. Li et al. [53] use this
approach in a fault diagnosis application, where plant data are scarce but simulation data
are easy to generate.

Finally, a network-based approach reuses parts of a network that has been pre-trained
with source domain data and learns from the target domain data. As an example, Chen
et al. [34] use this approach to train an MPC for smart-building control where training data
are scarce but a model pre-trained on a similar building is available. This study presents
a network-based approach, pre-training a neural network with data from a source system,
and fine-tuning with data from a target system, as shown in Figure 1.

Source System

CV Error Setpoint

Controller Output 

(MV)

Deep Neural Network

Target System

CV Error Setpoint

Controller Output 

(MV)

Partial Retraining

Pre-trained weights

Figure 1. A network-based transfer-learning approach to develop an approximate MPC for a target
system using data from a source system.

2. Materials and Methods

The source system in this study is a dual tank arrangement [54] (See Figure 2).
The gravity-drained dual tank system uses pump speed and valve position to regulate the
liquid level in an upper tank and a lower tank. The upper tank drains to the lower tank,
and the lower tank drains to a reservoir. The control system adjusts the pump speed to
return the liquid to the tanks and uses a valve to split the flow of liquid between the top
and bottom tanks. The valve is adjusted by an MPC that regulates the liquid level in the
tanks, ensuring that the tanks remain at a predetermined level. The liquid that flows into
the upper tank cascades down to the lower tank. This creates a second-order response
between the pump action and lower liquid tank level because of the dynamics of the first
tank. The pump speed and valve position are adjusted to maintain the desired liquid levels
in both the upper and lower tanks. This system uses the force of gravity and a combination
of valve and pump to regulate the liquid level in the upper and lower tanks, ensuring
that the tanks remain at their desired levels and that any excess liquid is properly drained
to the reservoir. The system benefits from MPC regulation, similar to an application of
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model predictive control for improved water recovery and throughput stability for tailings
reprocessing [55] that adjusts the inlet flow to maintain density and surge tank level.

Tank 1

Tank 2

Reservoir

LT

LC

Tank 1

Tank 2

Reservoir

LT

LC

Figure 2. MIMO level control on a dual tank system. Adapted from [54].

The liquid level system is simulated using a first-principles model with
Equations (1) and (2), where H1 and H2 are the levels (0–100%) of tank 1 and 2 respectively,
c1 and c2 are inlet valve coefficient and tank outlet coefficient respectively, v corresponds
to the valve output, and p corresponds to the pump output, both scaled from 0% to 100%.
The same equations are used to generate the predictions used for MPC. Note that this
MPC is intentionally formulated as an idealization. While this is not representative of an
MPC in practice, it highlights the main goal of this transfer learning exercise, which is to
obtain accurate control in the target system. Therefore, the design of the source system is
considered part of a feature engineering exercise to gather fit-for-purpose data:

dH1

dt
= c1(1− v)p− c2

√
H1 (1)

dH2

dt
= c1vp + c2

√
H1 − c2

√
H2 (2)

The simulation and MPC were developed using GEKKO [56,57], a dynamic simulation
and optimization suite for Python. The MPC developed used a squared error objective
function and the level on both tanks are controlled by adjusting the speed of the pump (%)
and the valve opening (%).

The target system in this study consists of a small scale temperature control unit [58],
where the power input is regulated to heat up a small transistor to a desired temperature,
as shown in Figure 3. The temperature control lab implements MPC with an Arduino,
two heaters, and two temperature sensors to maintain desired temperature setpoints.
The heaters transfer thermal energy to the temperature sensors through conduction and
convection while also losing heat to the surroundings with radiative and convective heat
transfer. This pocket-sized lab is a hardware benchmark [59] for model identification and
controller development for testing new methods [60–62] and reinforcing existing methods
in control theory through educational studies [58,63,64].

The dynamics of this system are described by Equations (3) and (4), where m, Cp and
T are the mass, heat capacity and temperature of the transistor, U is an overall heat transfer
coefficient, A is the surface area of the transistor, and T∞ is the ambient temperature,
with Q1 being the power input to the transistor:

mCp
dT1

dt
= UA(T∞ − T1) + Q1 (3)
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mCp
dT2

dt
= UA(T∞ − T2) + Q2 (4)

Figure 3. Small-scale temperature control unit [65].

An LSTM network developed in TensorFlow [66] is used to learn the control actions
of the source and target systems by taking as inputs the measured quantities (Y1 and
Y2), the setpoints (Y1sp and Y2sp) and the controller error (Y1 − Y1sp and Y2 − Y2sp).
The outputs of the network (Û1 and Û2) are approximate control actions for the actuators.
The architecture of the LSTM network is shown in Table 2.

Table 2. LSTM model summary.

Layer Output Dimension Number of Parameters

LSTM Batch× 5× 100 42,800
Droput Batch× 5× 100 0
LSTM Batch× 5× 100 80,400

Droput Batch× 5× 100 0
LSTM Batch× 100 80,400

Droput Batch× 100 0
Dense Batch× 2 202

Total trainable parameters 203,802

Three scenarios are analyzed in this study: In the first scenario, the LSTM network
learns the control policy from a target system with a linear MPC (2500 points). This serves
as a reference to evaluate the performance of an approximate MPC model derived from
source system data. In this case, the inputs to the network are the measured temperature of
each sensor (T1 and T2), the setpoints (T1sp and T2sp) and the controller error (T1− T1sp
and T2− T2sp). The outputs of the network correspond to approximate power inputs to
each transistor (U1 and U2). The linear MPC uses an autoregressive model with exogenous
inputs (ARX), and both the development of the model and the solution of the optimization
subroutines are handled with GEKKO [56]. The temperature setpoints (◦C) and time
between setpoint changes (seconds) are selected at random from U(40, 60) and U(120, 360),
respectively.

In the second scenario, 50,000 points of data are gathered from the source system,
where the setpoints (%) are selected at random from U(20, 80) for each tank level, and
the time between set point changes (seconds) are selected at random from U(120, 360).
An LSTM network is then used to learn the control policy from 50,000 points of data
from the source system, taking as inputs the measured level from each tank (H1 and H2),
the setpoints (H1sp and H2sp) and the controller error (H1− H1sp and H2− H2sp). The
resulting model is then deployed as an approximate MPC to the target system.
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In the third scenario, the same model developed in the second scenario is used as
a starting point to be re-trained using 600 points of data from the target system. This
is achieved by saving the weights of the model developed in the second scenario and
retraining all weights for 300 epochs. The resulting model is then deployed as approximate
controller to the target system in an online test.

In all scenarios, the deployed models are tested on the same set of setpoint changes.
The temperature setpoints (◦C) and time between setpoint changes (seconds) are initially
selected at random from U(30, 70) and U(120, 360) respectively. The mean squared error
(MSE) between the measured temperature and the temperature setpoint is used as a metric
to compare the performance of each controller. An overview of the transfer learning process
is shown in Figure 4.

Figure 4. Overview of the transfer learning between liquid level MPC and temperature MPC.

3. Results and Discussion

Table 3 shows the MSE for the three scenarios described in Section 2. The MSE for a
linear MPC is also included as reference. All training data are generated with simulated
temperature response, while final tests are performed with the Arduino hardware in
closed-loop MPC mode.

Table 3. Mean squared error (measured temperature vs. temperature setpoint).

Model Linear MPC LSTM Emulator LSTM Transfer LSTM Transfer Re-Train

MSE 27.75 102.52 131.82 102.43

In the first scenario, an LSTM network learns the control policy from the target system,
which is controlled by a linear MPC. Figure 5 shows the fit of the model in a training and
a validation set after 300 epochs. The model is then deployed as an approximate MPC to
the target system in an online test. Figure 6 shows the performance of the approximate
MPC, which follows the general behavior of the original linear MPC but has an MSE that
is more than three times higher. This example of deep learning-based approximate MPC
is the least complex of the three scenarios presented; it requires large amounts of training
data, and fine tuning of the parameters of the neural network (e.g., learning rate, batch size,
number of layers and nodes), but these can be adjusted by monitoring the learning metrics
during training.

In the second scenario, an LSTM is trained with 50,000 points of data from the source
system and deployed to the target system. Figure 7 shows the resulting performance of
the approximate controller. Although the MSE is larger than that of the first scenario,
the controller is able to maintain the general behavior from the MPC that was controlling
the source system.
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Figure 5. Training and validation fit from training an LSTM to learn the control actions of the target
system. The model is trained on 2600 points of data for 300 epochs.

This is the first example of transfer learning in this study, and it shows that it is possible
to develop an approximate MPC for a target system by using data from a source system,
even if the dynamics and gains are not the same. In this test, the LSTM network is capable
of extracting high-level features that are transferable from one system to another, but it is
important to note that the selection of inputs to the approximate MPC (Y, Sp, Error) is also a
key abstraction that helps the LSTM network generalize to other scenarios. The complexity
of this technique increases due to the introduction of source data. In this case, the training
metrics are affected not only by the parameters of the neural network, but also by the
amount and quality of the source data.

In the third scenario, an LSTM is trained with 50,000 points of data from the source
system, and partially retrained with 600 points of data from the target system under linear
MPC. Figure 8 shows the model fit after training for 300 epochs. The model is then deployed
to the target system in an online test as shown in Figure 9. This approximate MPC has an
MSE of 99.45, which is similar to the performance in scenario 1, except this is using only a
quarter of the data for training.

This is the second example of transfer learning in this study. It presents a framework
for developing an approximate MPC by pre-training an LSTM network with source data
and fine tuning with target data as shown in Algorithm 1.

Note that for transfer learning to offer improved control of the target system, the con-
troller on the source system must exhibit improved performance over the initial control
of the target system, as measured by the MSE. Additionally, this framework takes into
account the number of points from the target data as the only tuning parameter to control
the learning. In this case, 600 points was found by trial and error to be a satisfactory
quantity. The effect of additional parameters such as learning rate, or batch size, along with
optimization algorithms to find the optimal tuning parameters that minimize the MSE on
the deployed controller should be explored in future publications.
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Figure 6. Scenario 1. Temperature and heater output of an approximate MPC control deployed online
to a small scale temperature control (target system). The approximate MPC control is trained using
only target data.
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Figure 7. Scenario 2. Temperature and heater output of an approximate MPC control deployed online
to a small-scale temperature control (target system). The approximate MPC control is trained using
only source data.
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Figure 8. Validation fit after an LSTM network trained on source domain data is re-trained with
600 points of target domain data for 300 epochs.

Algorithm 1 A framework for approximate MPC using LSTM networks and transfer
learning.

1: CV, SP and Error data are collected from a target system.
2: The control performance is measured by MSEInitial
3: CV, SP and Error data are collected from a source system.
4: An LSTM network is pre-trained with data points from the source system.
5: The LSTM network is fine tuned with data points from the target system.
6: The performance of the fine tuned LSTM network is measured by the MSEApprox.MPC

after being deployed.
7: while MSEApprox.MPC > MSEInitial do
8: Fine tune the controller with additional points from the target system.
9: end while

Scenario 3 shows an improvement of 28% compared to deploying to the target system
without retraining (scenario 2). It is important to note that the training data used to
develop the approximate MPC from source data used random changes in the setpoint,
with U(20, 80), while the training data from the target system that were used to partially
retrain the approximate MPC used random changes in the setpoint, with U(40, 60). Figure 9
shows that at around 1500 seconds, the approximate MPC extrapolates to meet a setpoint
past the range of the target domain data. This is also observed in Figure 7, except the
MSE is larger in that case. The complexity of this technique increases even further, and the
performance of the learning metrics is now affected by the amount of quality of both
the source data and the target data.

Additional future work is needed to remove the persistent offset through the use of
state estimation or control variable bias in the approximate MPC and transfer learning
framework [67]. The state estimation removes the persistent offset between the setpoint
and process variable and would further improve the MSE results. It is purposefully left out
of this study to isolate the benefit of transfer learning of only the controller.
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Figure 9. Scenario 3. Temperature and heater output of an approximate MPC control deployed online
to a small scale temperature control (target system). The approximate MPC control is trained using
50,000 points of source data and fine tuned with 600 points of target data.

4. Conclusions

This study explored the use of LSTM networks to create an approximate MPC that can
control a MIMO system. A deep learning-based control trained with data from a linear MPC
maintains the behavior of the source MPC, but the MSE is 102.52 compared to 22.75 from linear
MPC. Additionally, a framework for approximate MPC using LSTM networks and transfer
learning was demonstrated by training an approximate MPC control on closed-loop data from
a MIMO level control system and deploying to a small-scale MIMO temperature control unit.
An approximate MPC trained on source domain data alone can control the temperature unit
within 23% error (MSE is 131.82) compared to the approximate MPC trained on target domain
data (MSE is 102.52). However, when the approximate MPC trained on source domain data is
partially retrained on a small portion of the target domain data (600 points), the performance
improves, and it is within 1% error (MSE is 102.43) compared to the approximate MPC trained
on target domain data (MSE is 102.52). Furthermore, the transfer-learning based controller
developed in this study can help extrapolate in some instances to setpoint changes outside the
domain of the target data. While this study shows promising results using an LSTM network,
future work should explore the use of other network architectures, such as Transformers,
which have been successfully used for similar transfer learning tasks in the field of natural
language processing [68] and process automation [69]. More work is needed on transfer
learning for state estimation and methods to remove the potential offset from approximate
MPC and other persistent errors from incomplete learning. Additionally, methods to quantify,
generalize, and optimize the transfer of learning for approximate MPC formulations should
be developed.
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20. Csekő, L.H.; Kvasnica, M.; Lantos, B. Explicit MPC-based RBF neural network controller design with discrete-time actual Kalman

filter for semiactive suspension. IEEE Trans. Control Syst. Technol. 2015, 23, 1736–1753. [CrossRef]
21. Grosso, J.M.; Ocampo-Martínez, C.; Puig, V. Learning-based tuning of supervisory model predictive control for drinking water

networks. Eng. Appl. Artif. Intell. 2013, 26, 1741–1750. [CrossRef]
22. Katz, J.; Pappas, I.; Avraamidou, S.; Pistikopoulos, E.N. Integrating deep learning models and multiparametric programming.

Comput. Chem. Eng. 2020, 136, 106801. [CrossRef]
23. Chen, J.; Chen, Y.; Tong, L.; Peng, L.; Kang, Y. A backpropagation neural network-based explicit model predictive control for

DC–DC converters with high switching frequency. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 2124–2142. [CrossRef]
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