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Abstract: γ-valerolactone can be a game-changer in the chemical industry because it could substitute
fossil feedstocks in different fields. Its production is from the hydrogenation of levulinic acid or alkyl
levulinates and can present some risk of thermal runaway. To the best of our knowledge, no studies
evaluate the thermal stability of this production in a continuous reactor. We simulated the thermal
behavior of the hydrogenation of butyl levulinate over Ru/C in a continuous stirred-tank reactor and
performed a sensitivity analysis. The kinetic and thermodynamic constants from Wang et al.’s articles
were used. We found that the risk of thermal stability is low for this chemical system.
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1. Introduction

The shift from fossil raw materials to renewable raw materials in the chemical industry
is mandatory to make this industry sustainable and decrease its negative environmental
impact. Among renewable raw materials, lignocellulosic biomass (LCB), that is not in
competition with the food sector, is an excellent candidate because it could avoid the
dilemma of food versus fuel that led to the alimentary crisis in the late 2000s. Even if there
is divergence on the role of biofuel production in explaining the food shortage [1,2], non-
food-use raw materials for chemical, biofuel, or material production should be favored [3].

LCB is available worldwide and can be obtained from agricultural wastes, such as
maize stover, straw, wheat straw, sugarcane bagasse, rice husk, etc.; forestry residues
including remaining wood harvestings, such as roots, branches, and leaves; dedicated
crops on marginal land that is not suitable for food growth (e.g., miscanthus, switchgrass,
eucalyptus, etc.); and the paper industry [4,5].

LCB consists of three main elements: cellulose and hemicellulose, which are polymers
of sugars, and lignin, a polymer of aromatic compounds. The percentage of these three
elements varies with species, location, and seasons, making it challenging to develop the
same pretreatment or valorization process for all LCB raw materials. Nevertheless, these
raw materials can lead to the production of fuels, materials, and chemicals.

The sugar fraction valorization can produce valuable platform molecules or building
blocks such as levulinic acid/levulinate, furfural, GVL, HMF, etc. [3,6,7]. The potential
use of GVL in fuels, materials, and chemicals is enormous [8–13]. GVL was found to be a
suitable solvent for the dissolution of lignin, hemicellulose, cellulose, or fructose [14–19].
GVL can reduce CO exhaust, unburned fuel, and smoke [20]. GVL updated to hydrocarbons
can be a temporary solution for jet fuels [21]. The valorization of GVL into alpha methylene
can lead to an excellent substitute for acrylate [22,23].

GVL is produced from the hydrogenation of levulinic acid or alkyl levulinates. There
are three main approaches: molecular hydrogen, catalytic transfer hydrogenation via the
use of alcohol, or the in situ decomposition of formic acid [24–26]. The most common
approach is using molecular hydrogen over Ru on activated carbon.
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There are two types of catalytic systems in GVL production: homogeneous and
heterogeneous. The advantage of homogeneous systems is their high catalytic perfor-
mance [27,28]. However, separation processes need to be implemented to separate the
catalyst from the final products, while heterogeneous catalysts are easy to remove and can
be recycled [29,30].

In heterogeneous systems, the most common catalysts for GVL production from
levulinic acid and alkyl levulinates are ruthenium (Ru), rhodium (Rh), palladium (Pd),
platinum (Pt), gold (Au), and rhenium (Re) in which the noble metal Ru exhibits a high
selectivity [8]. Manzer studied the hydrogenation of levulinic acid over a series of metal cat-
alysts (Ir, Rh, Pd, Ru, Pt, Re, and Ni) supported on carbon (metal loading was equal to 5%)
wherein a 5 wt.% Ru/C catalyst had the highest performance in terms of conversion and
selectivity [23]. The catalytic activity of Ru/C and some other solid catalysts show promising
results for the hydrogenation of butyl levulinate [31–34].

We have demonstrated that the hydrogenation of levulinic acid or alkyl levulinates
presents some risk of thermal runaway when the thermal mode is adiabatic and in batch
conditions [35,36]. One way to decrease the thermal risk is to work in continuous mode
in a steady-state regime [37]. Nevertheless, one needs to assess the thermal stability of
such continuous reactor [38,39]. In the literature we can find studies about thermal stability,
dynamic stability, and sensitivity assessments in continuous reactors for reactions such as
the hydrolysis of acetic anhydride, polystyrene production in CSTRs, and light-cycle oil
hydrotreatment [40–43]. To the best of our knowledge, such a study has not been conducted
for the continuous production of GVL.

In this paper, we focused on evaluating the thermal stability of GVL production from
butyl levulinate over Ru/C and included a sensitivity approach. We modeled the thermal
behavior of an ideal continuous stirred-tank reactor (CSTR) and used the kinetic and
thermodynamic constants from Wang et al. [35,44]. A CSTR was chosen because its mixing
is more efficient than other continuous reactors, which is vital for a gas–liquid–solid system.

2. Materials and Methods
2.1. Kinetics

Wang et al. showed that the hydrogenation of BL over Ru/C is a two-step reaction
(Figure 1). BHP stands for butyl 4-hydroxypentanoate, and it is an intermediate. They
performed this study by using GVL as a solvent.
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Figure 1. Reaction scheme for BL hydrogenation.

The rate expression for the hydrogenation step is derived as follows:

R1 = k1·[BL]Liq·[H2]Liq·ωRu/C (1)

The rate expression for the cyclization is:

R2 = k2·[BHP]Liq (2)

where ωRu/C is the catalyst loading in kg/L.
The kinetic and thermodynamic constants from the articles of Wang et al. [35,44] were

used (Table 1).
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Table 1. Kinetic and thermodynamic constants.

Values Units

k1 (T = 403.15 K) 3.09·10−6 m6·mol−1·kg−1·s−1

Ea1 9.68 kJ·mol−1

∆HR1 −38.66 kJ·mol−1

k2 (T = 403.15 K) 1.88·10−4 s−1

Ea2 10.25 kJ·mol−1

∆HR2 6.50 kJ·mol−1

2.2. Mass and Energy Balances

In this study, the flow distribution was assumed to be ideal. Thus, the material balance
for a compound j can be written:

dCj

dt
=

Cjin − Cjout

τ
+ ∑i υj,iRi (3)

where i represents the reaction index, τ is the space-time, υj,i represents the stoichiometry
coefficient of compound j in reaction i, and Ri is the reaction rate.

In a previous study by our group [44], we showed that the kinetics of hydrogen
mass transfer from the gas to the liquid phase can be considered fast when GVL is the
solvent. Thus, the hydrogen concentration in the liquid phase (reaction mixture) can be
assumed to be constant. The solubility of hydrogen in GVL solvent was calculated from
the following relationships:

CH2 = PH2 ·He
(

TRe f = 373.15K
)
·exp

(
−∆HSol.

R
·
(

1
TR
− 1

373.15

))
(4)

where PH2 is the hydrogen pressure in the reactor, He
(

TRe f = 373.15K
)
= 1.86 mol·m−3·bar−1

is Henry’s constant at 373.15 K, and ∆HSol. = 5936.8 J·mol−1 is the enthalpy of solubiliza-
tion [44].

For an ideal CSTR, the energy balance of the reactionary phase can be written as:

[(
ρĈP

)
liq +

(
ρĈP

)
ins

]dTr

dt
=

∑ Cjin CPj

τ
(Tin − Tr) + Ua(Tc − Tr)−∑i Ri∆Hi (5)

where ρ is the volumic mass, ĈP is the specific heat capacity, Tr is the reactionary media
temperature, TC is the temperature of the heat carrier in the jacket, Ua is the global heat
transfer coefficient, ins represents the reactor insert, and ∆Hi is the enthalpy of reaction i.
Data for heat capacities and volumetric mass were found in the literature [45,46].

The flow distribution of the heat carrier fluid is ideal; thus, the energy balance is:

ρcĈPc

dTc

dt
=

ρcĈPc

τc
(Tc0 − Tc) + Ua(Tr − Tc) (6)

where ρc and ĈPc are the volumic mass and heat capacity of the heat carrier, and Tc0 is the
heat carrier temperature at the inlet.

Figure 2 is a schematic representation of the reactor setup.
In this study, we will consider the steady-state regime; thus, Equations (3), (5),

and (6) become:
dTc

dt
=

dTR
dt

= 0 K·s−1and
dCj

dt
= 0 mol·L−1·s−1 (7)
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2.3. Operating Conditions

The simulation was performed under isobaric conditions within a reaction temperature
range of 300–600 K. Table 2 shows the operating conditions used during the simulation.
The inlet concentrations, catalyst loading, and temperature were in the same ranges as the
ones from Wang et al. [44].

Table 2. Operating conditions used in this study.

Inlet Parameters Values Units

CBL0 4840 mol·m−3

CBHP0 0 mol·m−3

CGVL0 2080 mol·m−3

CBuOH0 0 mol·m−3

ωCat 10 kg·m−3

Tr 300 to 600 K
Tin 333.15 K
PH2 25 bar
τ 2000 s

Ua 17,000 W·m−3·K−1

2.4. Thermal Stability Criterion

To assess the stationary thermal stability, the van Heerden criterion was calculated
during the course of the reaction. The van Heerden criterion is a stability-based criterion
defined as [47–49]:

dQRemoval
dt

>
dQGenerated

dt
(8)

where QRemoval is the amount of energy exchange between the reactionary media and the
heat carrier fluid, and QGenerated is the amount of energy released during the reaction.

The van Heerden criterion is necessary to satisfy stationary stability and states that
the energy removed from a reactionary system must be higher than the energy generated
by the system.

dQRemoval
dt and dQGenerated

dt were calculated from the material and energy balances.
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2.5. Simulation and Parametric Sensitivity

MATLAB R2021b software was used to make the simulation and to solve the math-
ematical equations presented during thermal analysis. The ODE15s routine was used to
solve stiff differential equations. The FSOLVE routine was used to solve the system of
nonlinear equations and the energy and mass balance in the steady-state regime. The EIG
routine was used to calculate the eigenvalues and eigenvectors of the Jacobian matrix.

Parametric sensitivity analysis studies the relationship between the system behavior
according to changes in the inlet parameters. As mentioned by Varma et al. [50], if a slight
variation in the input parameter values can lead to a significant change, then the chemical
system is qualified as sensitive.

The parametric sensitivity is defined as follows:

S
(→

y , φ
)
=

d
→
y

dφ
(9)

For a dynamic system, we have that:

dS
(→

y , φ
)

dt
= J·S

(→
y , φ

)
+

d
→
f

dφ
(10)

Solving the expression above for S
(→

y , φ
)

in the steady state, we obtain:

dS
(→

y , φ
)

dt
= 0 (11)

S
(→

y , φ
)
= −J−1·d

→
f

dφ
with

d
→
f

dφ
=


d f1
dφ
...

d fn
dφ

 (12)

To compare the sensitivity of one output variable according to different parameters,
we can define the normalized parametric sensitivity as follows:

Sn
(
y, φj

)
=

φj

y
dy
dφj

(13)

3. Results and Discussion
3.1. Effect of Space-Time on Conversion

Figure 3 shows the effect of temperature on BL conversion at different space-times. As
the reaction temperature and space-time increase, the BL conversion increases. A space-
time value of 2000 s was found to be a good compromise between time and conversion
since the space-time increase does not significantly improve the conversion. We can realize
from Figure 3, comparing the space-times equal to 2000 s and 10,000 s, that the difference
in the BL conversion is less than 15%, while space-time is multiplied by a factor of 5.

3.2. Comparison of Heat Flow Rate Exchange Due to Chemical Reactions

By solving the energy balance in the reactionary medium, one obtains:

Tc = Tr +
1

Ua ∑i Ri∆Hi −
∑ Cjin CPj

τ·Ua
(Tin − Tr) (14)

Figure 4 shows the heat flow rates due to chemical reactions in the temperature range
of 300–600 K. We plotted the heat flow rate generated in watts per cubic meters for different
space-times from 100 s to 10,000 s. Based on the results presented in Figure 4, we can
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conclude that the energy release per unit of time per unit of volume decreases if we increase
the space-time. Such results are expected for an ideal CSTR.
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Figure 5 represents the application of the van Heerden criterion to determine if the
reactionary system is stable from the thermal point of view operating at a steady-state
regime. This criterion solves the energy balance and determines if Tr is related to Tc by a
one-to-one function (injective function). When the one-to-one function relates Tr and Tc,
there is no multiplicity of steady states; consequently, the system is stable.
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From Figure 5, we can realize that Tr and Tc are related by a one-to-one function in the
range 300 K < Tr < 600 K. Thus, we can conclude that there is no multiplicity of steady-states
and also that the reactionary system can stably operate in a steady-state regime.

3.3. Parametric Sensitivity

In this part, we evaluate the parametric sensitivity of the BL concentration in the outlet
flow, the GVL concentration in the outlet flow, and the reactor temperature. We decided to
focus on these three variables since they represent the main reagent, the main product, and
the variable linked to thermal stability.

The parameters considered for this evaluation were CBL0 , khyd, kcyc, Ua, τ, ωCat, and Tin.
Figure 6 shows the normalized parametric sensitivity of the BL concentration in the

outlet flow as a function of the reaction temperature. From Figure 6, we can notice that
the final BL concentration is more sensitive to the inlet BL concentration, space-time, and
catalyst loading. This means that variations in these parameters significantly change the
final BL concentration.
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Figure 7 represents the normalized parametric sensitivity of the GVL concentration in
the outlet flow as a function of the reaction temperature. Based on the results, we found
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that the GVL concentration is more sensitive to variations in the inlet BL concentration, the
space-time, and the cyclization rate constant. If any of these parameters increase, then the
GVL production also increases. From Figure 7, we can also realize that GVL’s sensitivity to
these parameters gains importance as we increase the reaction temperature.
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Figure 8 represents the normalized parametric sensitivity of the reaction temperature
in the range of temperatures from 300 K to 600 K. Figure 8 shows how sensitive the reaction
temperature is to the operating parameters. We found that reaction temperature is more
sensitive to variations in the inlet temperature, the inlet BL concentration, space-time, and
the heat transfer coefficient. Based on these results, we can conclude that the inlet BL
concentration, the hydrogenation and cyclization rate constants, the heat transfer Ua, the
space-time τ, the catalyst loading ωRu/C, and the inlet temperature Tin have a low impact
on the reaction temperature within the temperature range of 300–600 K. This low influence
explains the low risk of thermal instability for this reaction in a CSTR.
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3.4. Dynamic Thermal Stability

In this part, we seek to evaluate the dynamic response of the system to perturba-
tions near stationary conditions. For this purpose, we applied the linear dynamic model
of perturbation.

Considering our dynamical model:

dyi
dt

= fi(y1, y2, . . . , yn, φ, t) (15)

where yi represents the variables of the system, and φ represents the other parameters.

yi = CBL, CBHP, CGVL, CBuOH , Tr, Tc (16)

Let us define a small perturbation (xi) on the whole set of variables as follows:

xi = yi − yi,s (17)

Therefore:
yi = yi,s + xi (18)

Now we can define the perturbed dynamical model as follows:

d(yi,s + xi)

dt
= fi(y1,s + x1, y2,s + x2, . . . , yn,s + xn, φ, t) (19)

As we have an interest in making a linear analysis, we used the 1st-order Taylor
expansion of the perturbed dynamical model to obtain:

d(yi,s + xi)

dt
= fi(y1,s, y2,s, . . . , yn,s + xn, φ, t) +

(
∂ fi
∂y1

)
·x1 +

(
∂ fi
∂y2

)
·x2 + · · ·+

(
∂ fi
∂yn

)
·xn (20)

Under stationary conditions:

d(yi,s + xi)

dt
= 0 (21)

fi(y1,s, y2,s, . . . , yn,s + xn, φ, t) = 0 (22)

Therefore, the linear model of perturbation under stationary conditions is:

dxi
dt

=

(
∂ fi
∂y1

)
s
·x1 +

(
∂ fi
∂y2

)
s
·x2 + · · ·+

(
∂ fi
∂yn

)
s
·xn (23)

Developing the linear model of perturbation under stationary conditions for a system
with n variables, we have:

dx1
dt =

(
∂ f1
∂y1

)
s
·x1 +

(
∂ f1
∂y2

)
s
·x2 + · · ·+

(
∂ f1
∂yn

)
s
·xn

...
dxi
dt =

(
∂ fi
∂y1

)
s
·x1 +

(
∂ fi
∂y2

)
s
·x2 + · · ·+

(
∂ fi
∂yn

)
s
·xn

...
dxn
dt =

(
∂ fn
∂y1

)
s
·x1 +

(
∂ fn
∂y2

)
s
·x2 + · · ·+

(
∂ fn
∂yn

)
s
·xn

(24)

In a matrix formalism, we can define the linear dynamical model of perturbation
as follows: .

X = J · X
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where

X =

x1
...

xn

;
.

X =


dx1
dt
...

dxn
dt

; J =


d f1
dy1

· · · d f1
dyn

...
. . .

...
d fn
dy1

· · · d fn
dyn

 (25)

Solving the linear system leads to these solutions for all the perturbations around the
stationary point: 

x1 =
n
∑

m=1
am·U1,m·eλmt

...

xi =
n
∑

m=1
am·Ui,m·eλmt

...

xn =
n
∑

m=1
am·Un,m·eλmt

(26)

where Ui is the ith eigenvector of J associated to the eigenvalue λi. The condition of
asymptotic stability is:

∀ k lim
t→∞

xk = 0 (27)

This leads to the following:

λi ∈ C · <e(λi) < 0 (28)

To evaluate the dynamic thermal stability, we defined the Jacobian matrix of the
dynamic model in the range of temperature of 300 K to 600 K and calculated the eigenvalues
of the Jacobian matrix for each temperature value. The eigenvalues are plotted in Figure 9.
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Figure 9. Dynamic Stability—Eigenvalues.

Figure 9 shows the eigenvalues obtained from the Jacobian matrix of the reactionary
system in the range of temperature from 300 K to 600 K. This Jacobian matrix was generated
from the material and energy balances. It is considered that there are dynamic thermal in-
stabilities in the system when there are eigenvalues whose real parts are positive (Re(λ) > 0).
From Figure 9, we can conclude that the CSTR reactor is dynamically stable in the tempera-
ture range of 300 K to 600 K since the real parts of all eigenvalues are negative. Visualizing
the eigenvalues also helps to identify which variable is responsible for instabilities when
the system is not dynamically stable.
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4. Conclusions

This article deals with the safety production of GVL from the hydrogenation of butyl
levulinate over Ru/C in a continuous stirred-tank reactor (CSTR) in a steady-state regime.
The kinetic and thermodynamic constants determined from Wang et al.’s articles were used
to simulate the thermal behavior in a CSTR. The van Heerden criterion showed that the
risk of thermal instability is low for this reaction system with the operating conditions used
in this study.

The sensitivity analysis demonstrated that the kinetic constants, global heat transfer,
inlet concentrations, space-time, inlet temperature, and catalyst loading have a low impact
on the reaction temperature. Nevertheless, the inlet concentration of BL, space-time, and
cyclization rate constant have a non-negligible impact on the outlet concentration of GVL.

A continuation of this study could be the study of thermal stability during the transient
phase and for non-ideal flow in continuous reactors.
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sis, W.N.V.S.; investigation, W.N.V.S.; writing—original draft preparation, W.N.V.S., B.R. and S.L.;
writing—review and editing, W.N.V.S., B.R. and S.L.; supervision, B.R. and S.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was conducted in the framework of the PROMETEE project, funded by Rouen
Metropole. The authors thank the Ministry of High Education, Science and Technology of Dominican
Republic (MESCyT).
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