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Abstract: Natural products are increasingly becoming part of our daily lives through their use in
industry, food, as therapeutic agents, etc. To evaluate their possible applications, it is essential
to characterize them chemically to explore their potential. Different techniques may be used to
characterize natural products, including microextraction techniques. These techniques have been
gaining popularity due to the advantages associated with their low use of organic solvents and
the small amount of sample used relative to more classical sample preparation techniques. Their
application in the extraction of compounds from natural products is still scarce. This manuscript
intends to review the most used solid-based miniaturized sample preparation techniques applied
to determining compounds in natural products. The main applications of these methodologies will
be discussed, with a particular focus on natural product analysis, as well as their advantages and
disadvantages over traditionally used sample preparation techniques.

Keywords: miniaturised solid phase extraction; natural products; trends

1. Introduction

There is a growing interest in the development of new analytical methods. This trend
is partly due to concerns related to the environmental impact of chemicals used in human
activities; for instance, industry and clinical and analytical laboratories. Developing greener
methods usually implies techniques involving reduced amounts of samples and solvents,
consequently producing fewer residues [1]. The implementation of green methods has also
contributed to developing more sensible and selective analytical instruments, presenting
higher energetic efficiencies; these instruments are compatible with ecological solvents
and preparation methods dedicated to analysing microsamples [2]. Concerning sample
preparation techniques, methods involving microextraction have definitely contributed to
these principles of green chemistry. Those microextraction procedures can be categorized
into two main branches: solid-phase microextraction and liquid-phase microextraction [3].
Several variations of solid-phase approaches exist, all involving the adsorption or absorp-
tion of the analytes onto a solid sorbent or film. Liquid-phase microextraction is also
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divided into several categories, all of them involving analyte partitioning between the
sample and a liquid. Multiple applications of these microextraction techniques have been
published involving different areas; for instance, in extracting natural compounds.

This review will deal with the most used miniaturized sample preparation techniques
based on solid-phase microextraction applied to the determination of compounds in natural
products. The main developments that these methodologies present and their advantages
and disadvantages will be presented, with a particular focus on natural product analysis.
Furthermore, extraction conditions and linearity data for each of the sample preparation
technique will be critically discussed and future challenges will be highlighted. To date,
research has yet to be published that is entirely dedicated to solid-phase microextraction
procedures applied to natural products. From our perspective, once we factor in a labora-
tory routine with these products, we have carried out a critical and valuable review for all
scientists working in the field of natural products.

Three electronic databases were used for the systematic literature search: Medline, ISI
Web of Knowledge, and Google Scholar. Search strings were “solid-phase microextraction”,
“microextraction by packed sorbent”, “stir bar sorptive extraction”, “micro solid phase
extraction”, “matrix solid-phase extraction”, “dispersive micro solid phase extraction”,
“MSPD”, “molecularly imprinted polymers”, “MIP”, “MISPE” and “natural products”, all
fields), and only papers from 2015 to present were selected. However, concerning matrix
solid-phase extraction and molecularly imprinted polymers, only the last five years were
included due to the high number of papers available. A similar situation occurred with
solid-phase microextraction; only results from the past three years were included. In the
case of microextraction by packed sorbent, the criteria for the search were extended to 2011
due to the low number of publications. Three authors independently selected the articles
for each class of microextraction technique to determine their relevance in the current
review; only articles selected by at least two authors were included.

Information in books was also important, especially concerning general aspects.

2. Classification

Solid-phase microextraction techniques can be divided into static batch equilibria
microextraction and dynamic flow through equilibrium microextraction methods. There is
no doubt that the most widely used solid-phase microextraction technique is conventional
solid-phase microextraction (SPME) or fiber SPME. Still, other approaches can be efficiently
used, namely in-tube SPME (or capillary microextraction), micro-solid phase extraction,
microextraction in a packed syringe, matrix solid-phase dispersion, molecularly imprinted
polymers, and stir sorptive bar extraction. All of those approaches have been used for
natural product analysis. In the following section, a brief introduction to these techniques,
advantages and drawbacks, as well as their applications in determining the composition of
natural products, will be pointed out.

2.1. Solid-Phase Microextraction

Developed by Arthur and Pawliszyn [4], SPME is an innovative solvent-free extraction
method that combines sampling, extraction, and sample injection into an analytical instrument
in just one step. Due to its popularity, this technique has been used in different applications,
such as pharmaceutical, food, flavour, forensic, and environmental applications [5,6].

There are different methods of SPME implementation, such as in-tube, agitation
mechanism disks, and coated fibres or vessels. The classical approach uses fused silica fibres
coated with a stationary phase immobilized in a syringe that is exposed to a sample matrix
for a certain period. During that time, the distribution equilibrium is established between
the sample matrix and the coated fibre, and the analytes are retained. When combined with
analytical instrumentation (e.g., gas chromatography (GC), capillary electrophoresis (CE),
and liquid chromatography (LC)), the analytes are desorbed and analysed [6,7].
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Due to the higher impact of these types of extraction on the laboratories, a large variety
of coating fibres are being designed for the different applications of this technique [8,9].
However, the fibre dimensions should be lower than 300 µm for a good column injection [4].

SPME is applicable in gaseous, liquid, and solid matrices. The complexity of sample
matrices and the nature of the analytes can compromise the success of the SPME extraction.
Three different approaches can be performed with coated fibre: direct extraction, membrane
protection, and headspace extraction (Figure 1) [8].
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Figure 1. SPME extraction modes: (A) Direct immersion; (B) headspace mode; (C) membrane protection.

This technique is based on principles of thermodynamics and mass transfer, and, in
opposition to other extraction methods, the whole of the extracted analyte is introduced in
the chromatographic system [10,11]. It consists of a fused-silica capillary fibre of approxi-
mately 1 cm long, coated by a stationary phase, which can be liquid (usually a polymer) or
solid (adsorbent substance). The fibre is connected to a stainless steel needle, which allows
it to move freely and offers protection throughout the extraction and desorption processes
as well.

In direct extraction, the coated fibre is immersed into the sample, transporting the
analytes directly from the sample matrix to the stationary phase (Figure 1A). Depending
on the nature of the sample matrices, the agitation could facilitate the diffusion of analytes
to the coated fibre [8].

In the headspace mode, the analytes are extracted from the gas phase of the sample
(Figure 1B). This approach permits the adjustment of matrix conditions without affecting
the coating fibre. The headspace also protects the fibre from possible damages caused by
high molecular weight and non-volatile substances present in the sample. The sensitivity of
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this extraction mode will depend on the volume ratio between the sample and the gaseous
headspace, temperature, pressure, and agitation [8,12].

In the membrane protection approach, the fibre and the sample are separated by a
selective membrane (Figure 1C). The analytes diffuse through the selective membrane and
reach the coated fibre while the interferences stay on the sample matrix. That way, the
chemical nature of the membrane could increase the selectivity of this type of extraction.
As an advantage, this extraction reduces fibre damage caused by dirty samples. The
membrane protection is slower than the direct extraction, but the use of thin membranes
and the increase in temperature may reduce the extraction time [8].

As a solvent-free extraction method, SPME is a sensitive method that reduces sol-
vent consumption and time extraction, simplifying the sample preparation either in the
laboratory or on-site. SPME is also a non-exhaustive method, i.e., only a small portion of
analytes is extracted from the sample matrix. As a non-exhaustive method, SPME permits
better characterization and accurate information about the system in the study. This also
allows a better parameter monitorization (e.g., chemical changes, distribution equilibrium,
speciation) of the investigated system, minimizing system perturbations [3,6,8].

Depending on the complexity of the sample matrices, a good knowledge of the sample
properties is required for an appropriate selection of the coated fibre. SPME has, as a
limitation, the chemical nature of the stationary phase on the market that could compromise
the selectivity and efficiency of the extraction [3,6]. However, its popularity promotes the
creation of a large variety of coated fibres [6]. The method’s precision may vary depending
on the number of conditions implemented. As fibres are fragile material, some issues, such
as fibre breakage and coating stripping, can occur, limiting its lifetime [6,8].

Table 1 shows that the most commonly used fibre is a divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/PDMS) fibre with 50/30 µm. The fabricant recommends
that the DVB/CAR/PDMS fibres be applied to extract flavours (volatiles and semivolatile,
C3-20) with a molecular weight (MW) between 40 and 275. DVB/CAR/PDMS coating
reveals a better extraction performance for medium and high MW analytes [13–16]. Al-
though not reported for volatile compounds in natural products, CAR/PDMS coating
appears to be the most suitable for low MW analytes [13–16]. Lindsay et al. [17] screened
volatile profiles from food-grade agro-industrial by-products, such as apple, orange, carrot
pomace, onion pulp, and kiwifruit peels. All extractions were carried out using HS-SPME
with a 1 cm 50/30 µm DVB/CAR/PDMS (Supelco) fibre coupled with GC-MS. Samples
were incubated for extraction for 10 min at 60 ◦C. Afterwards, desorption in the GC was
performed under splitless mode (1 min at 250 ◦C). Yuan et al. [18] developed a feasible
method of fabricating a meat replacement and to create high-added-value products using
edible mushroom and soybean protein isolate through thermoextrusion. An extruded
mushroom-based meat analogue (MMSA) was developed with different formulations in
fabricating sausage analogues. HS-SPME coupled with GC-MS was used to characterize
and compare the flavour profile of post-processing MMSA, with 64 volatile compounds
being identified. Xiaofen Du et al. [19] used solid-phase microextraction coupled with gas
chromatography−mass spectrometry (SPME-GC-MS) to analyse Cucumber Fruit volatiles.
With this method, they identified 155 volatiles across eight samples, aldehydes and alcohols
being the most dominant. Only 86 out of the 155 volatiles occurred in all eight samples.

Table 1 contains all the results mentioned above and others found in our research
regarding SPME techniques for natural products.
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Table 1. Application of SPME techniques for the extraction of several compounds in natural products.

Compounds Sample Amount Mode Type of Fiber Limit of
Detection Conditions Instrumentation

Relative
Recovery

(%)
Ref.

Volatile organic
compounds

Citrus-based fruits
(C. reticulata,

C. sinensis, and
C. limon)

1.0 g HS-SPME PDMS (100 µm) n.s.

Equilibration: 30 min
at room temperature;

Extraction: 5 s to 5 min (n.s.);
Desorption: time n.s., 220 ◦C.

GC-MS n.s. [20]

Volatile
compounds Phaeodactylum sp. n.s. HS-SPME DVB/CWR/PDMS

(1.1 mm) n.s.
Equilibration: 15 min at 60 ◦C;

Extraction: 15 min at 60 ◦C;
Desorption: 2 min at 250 ◦C.

GC-MS n.s. [21]

Volatile
compounds

Fruit (Passiflora
alata Ait) 5.0 g HS-SPME DVB (n.s.) n.s.

Equilibration: n.s.
Extraction: 30 min at 50 ◦C;
Desorption: 5 min at 250 ◦C

GC-MS n.s. [22]

Volatile
compounds Brewing malt 5.0 mL HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: 20 min at 60 ◦C;

Extraction: 40 min at 60 ◦C;
Desorption: 5 min at 250 ◦C.

GC-MS n.s. [23]

Volatile
compounds

Microalgal/
cyanobacterial

biomass
0.3 g HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: 15 min (T n.s.)
Extraction: 30 min at 30 ◦C;

Desorption: 15 min at 240 ◦C
GC-MS n.s. [24]

Volatile
compounds

Prunus avium L.
stems, leaves, and

flowers
0.1 g HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: 5 min (T n.s.)
Extraction: 10 min at 45 ◦C;

Desorption: 20 min at 250 ◦C
GC-MS n.s. [25]

Volatile
compounds

Wheat protein
and rice protein

hydrolysates
2.0 g HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: 15 min (T n.s.)
Extraction: 30 min at 60 ◦C;
Desorption: 5 min at 240 ◦C

GC-MS 100% [26]

Volatile
compounds

Chrysanthemum
genus Leaves n.s. HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: (n.s.)

Extraction: 30 min at 40 ◦C;
Desorption: 5 min at 250 ◦C

GC-MS n.s. [27]

Volatile
compounds Orange Juice 5.0 mL HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Equilibration: 20 min at 40 ◦C;

Extraction: 30 min at 40 ◦C;
Desorption: 5 min at 250 ◦C.

GC-MS n.s. [28]
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Table 1. Cont.

Compounds Sample Amount Mode Type of Fiber Limit of
Detection Conditions Instrumentation

Relative
Recovery

(%)
Ref.

Volatile
compounds

Black rice
(Oryza sativa L.) 2.0 g HS-SPME DVB/CAR/PDMS

(n.s.) n.s. Extraction time: 18 min;
Extraction temperature: 80 ◦C. GC-MS n.s. [29]

Volatile
compounds

Leaves of
Solidago altíssima n.s. SPME PDMS-DVB

(65 µm) n.s.
Stir rate: 400 rpm; Desorption

time: 3–5 min; Desorption
temperature: 200–230 ◦C

GC-FID 56.3–98.3 [30]

Volatile
compounds

Fruits of
Eugenia stipitata n.s. HS-SPME DVB/CAR/PDMS

(n.s) n.s.

Extraction time: 15 min;
Extraction temperature: 50 ◦C;

Sampling rate: 1.0 mL/min;
Desorption solvent: mixture of

ethanol–water; Desorption time:
5 min; Desorption

temperature: 270 ◦C

GC-MS n.s. [31]

Volatile
compounds Mango fruit 2 g HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.

Extraction time: 30 min;
Extraction temperature: 60 ◦C;

Desorption time: 5 min;
Desorption temperature: 260 ◦C

GC-MS n.s. [32]

Volatiles
compounds Sesame oils 5 g HS-SPME DVB/CAR/PDMS

(50/30 µm) n.s.
Stir rate: 100 rpm; Desorption

time: 3 min; Desorption
temperature: 250 ◦C

GC-MS 16–89 [33]

Essential oils Cowpea bean 5 g HS-SPME DVB/CAR/PDMS
(50/30 µm) 0.0057 µg/kg

Extraction time: 3–10 min;
Extraction temperature: 30/60
◦C; Desorption time: 3 min

GC-FID 99.26–104.85 [34]

Volatile
compounds

Leaf samples from
C. aromaticum,
C. nankingense,

and hybrids

n.s. HS-SPME DVD/CAR/PDMS
(50/30 µm) n.s.

Extraction time: 30 min;
Extraction temperature: 40 ◦C;

Desorption time: 5 min;
desorption temperature: 250 ◦C

GC-MS n.s. [27]

Volatile
compounds

Leaves and
flowers

Rosmarinus
officinalis L.
and bread

1 g HS-SPME DVD/CAR/PDMS
(50/30 µm) n.s.

Extraction time: 30 min;
Extraction temperature: 50 ◦C;

Desorption time: 0.50 min;
Desorption temperature: 270 ◦C

GC-MS n.s. [35]
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Table 1. Cont.

Compounds Sample Amount Mode Type of Fiber Limit of
Detection Conditions Instrumentation

Relative
Recovery

(%)
Ref.

Volatile
compounds Kiwi peels 2 g HS-SPME DVD/CAR/PDMS

(50/30 µm) n.s.
Extraction time: 30 min;

Extraction temperature: 40 ◦C;
Desorption temperature: 250 ◦C

GC-MS n.s. [36]

Volatile
compounds

Fruit and
vegetables
fermented

2 g HS-SPME DVD/CAR/PDMS
(50/30 µm) n.s.

Extraction time: 10 min;
Extraction temperature: 60 ◦C;

Desorption time: 1 min;
Desorption temperature: 250 ◦C

GC-MS n.s. [17]

Volatile
compounds Strawberry 2 g HS-SPME DVD/CAR/PDMS

(50/30 µm) n.s.

Extraction time: 15 min;
Extraction temperature: 50 ◦C;

Desorption time: 2 min;
Desorption temperature: 220 ◦C

GC-MS n.s. [37]

Volatile
compounds Soybean Oil 3 g HS-SPME DVD/CAR/PDMS

(50/30 µm) n.s.

Extraction time: 40 min;
Extraction temperature: 100 ◦C;

Desorption time: 5 min;
Desorption temperature: 240 ◦C

GC-MS n.s. [38]

Volatile
compounds

Sausage Analogue
Elaborated
with Edible

Mushrooms and
Soy Protein Isolate

6 g HS-SPME DVB/CAR/PDMS
(50/30 mm) ns

Extraction time: 20 min;
Extraction temperature: 60 ◦C;

Desorption time: 30 min
GC-MS n.s. [18]

Linalool Essential Oils 1 g HS-SPME DVB/CAR/PDMS
(n.s) ns

Extraction time: 5 min;
Desorption time: 30 min

Desorption temperature: 270 ◦C
GC-MS n.s. [39]

Volatile
Compounds

Fermented
Tetragonula pagdeni

Schwarz honey
n.s. HS-SPME n.s. n.s. n.s. CG-MS n.s. [40]

Volatile aroma
substances

Gracilaria
lemaneiformis 6 mL HS-SPME n.s. n.s.

Sodium chloride (3.0 g);
Preincubation Time: 10 min;
Preincubation Temperature:

60 ◦C; Extraction time:
35 min with stirring

CG-MS n.s. [41]
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Table 1. Cont.

Compounds Sample Amount Mode Type of Fiber Limit of
Detection Conditions Instrumentation

Relative
Recovery

(%)
Ref.

Volatile
Metabolites

Brettanomyces
bruxellensis

fermentation of
apple pomace,
carrot pomace,

and orange
pomace

2 mL HS-SPME DVB/CAR/PDMS
(50/30 µm) n.s.

Preincubation Time: 10 min;
Preincubation Temperature: 60
◦C; Extraction time: 10 min;

Desorption time: 1 min;
Desorption Temperature: 250 ◦C.

CG-MS n.s. [42]

Volatile
components Soybean paste 4.0 g HS-SPME n.s. n.s. water bath at 50 ◦C for 60 min CG-MS n.s. [43]

Volatile
compounds Pét-Nat ciders 5 mL SPME-ARROW

DVB/CWR/PDMS
(120 µm/20

mm)
n.s.

NaCl (2.0 g); Preincubation Time:
20 min; Preincubation

Temperature: Extraction time:
49 min; Desorption time: 10 min;
Desorption Temperature: 250 ◦C

CG-MS n.s. [44]

Volatile Aroma Cucumber 3.0 g SPME DVB/CAR/PDMS,
(50/30 µm) n.s.

Preincubation Time: 3 min;
Preincubation Temperature:
200 ◦C; NaCl (1 g); sample

incubated to reach equilibrium at
40 ◦C for 15 min; Extraction time:

20 min; Agitation: 250 rpm;
Desorption time: 3 min;

Desorption temperature: 250 ◦C

CG-MS n.s. [19]

Volatile
constituents

Clinopodium
Candidissimum

(Munby) Kuntze
(Lamiaceae)

n.s. HS-SPME PDMS
(100 µm) n.s.

Preincubation time: 1 h;
Preincubation Temperature:

25 ◦C; Extraction time: 30 min
CG-MS n.s. [45]

Legend: DVB/CWR/PDMS: Divinylbenzene/carboxen/polydimethylsiloxane; DVB: Divinylbenzene; DVD/CAR/PDMS: Divinylbenzene/carboxen/polydimethylsiloxane; GC-MS:
Gas chromatography–mass spectrometry; HS: Headspace; n.s.: Not specified; PDMS: Polydimethylsiloxane; SPME: Solid-phase microextraction; Ref.: Reference.
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2.2. Microextraction by Packed Sorbent

Microextraction by packed sorbent, more commonly known as MEPS, is a miniatur-
ized version of the solid-phase extraction technique (SPE) that is simpler, faster, greener,
and user-friendly [46]. This method combines sample extraction, pre-concentration, and
clean-up in a single device. It was developed in order to create a high-throughput tech-
nique that would be able to reduce handling time, lower sample and solvent volumes,
and, at the same time, can allow direct injection of the eluate into chromatographic de-
vices (GC/LC) without compromising the extraction efficiency [47–49]. In MEPS, a small
amount of solid sorbent (around 1–4 mg) is either inserted into the barrel of a gas-tight
syringe (BIN—barrel insert and needle) or between the needle and the barrel as a car-
tridge [47,48]. Once the BIN is exhausted, or another sorbent is required, it can easily
be exchanged by simply unscrewing the locking nut and replacing the BIN, making the
process extremely simple [49]. Many sorbents are used in MEPS, each bearing different
particle sizes and adsorptive qualities. These sorbents can be traditional silica matrices (un-
modified silica, C2, C8 and C18), strong and weak cation/anion exchange C18 (SCX, SAX),
mixed sorbents (C8/SCX), carbon, polystyrene–divinylbenzene copolymers (PV-DVB),
restricted access material (RAM), molecularly imprinted polymers, and organic monolithic
sorbents [47,48]. The MEPS procedure usually follows a four-step protocol (Figure 2) con-
sisting of conditioning of the sorbent, sample loading, washing, and elution. All these
steps consist of an up-and-down motion of the solutions through the sorbent and are
optimized for each extraction, providing the best efficiency and recoveries possible. Due to
this extract/discard technique, the washing step is critical because it removes most of the in-
terfering compounds in our sample while minimizing the loss of any of our target analytes
in the process. Other conditions such as sorbent selection, pH, ionic strength and elution
solvent must also be optimized to reduce matrix effects, interferents and carry-over [47,48].
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MEPS has several advantages in comparison to other extraction techniques. For
starters, it is one of the simplest and broadest techniques, working with several ranges
of analytes and matrixes while improving their analytical performance [49]. Due to the
miniaturization of the sorbent amount and solvent volume, MEPS is much more envi-
ronmentally friendly. Because it uses small sample volumes, it is instrumental in cases
where said samples are precious, rare or of hard collection. Since MEPS sorbents can
be re-used several times (up to 100 or more), the cost per analysis is much lower than
other extraction techniques such as SPE [49,50]. Although this technique retains several
advantages compared with others, it is not perfect; therefore, it carries some disadvantages
too. Clogging of the sorbent is a real problem and can easily happen when highly viscous or
highly concentrated samples are used. Once a sorbent has been clogged, it cannot be used
or re-used, so sample dilutions and deproteinizations are imperative when working with
complex matrixes to reduce the risk of clogging. In addition, MEPS cannot process large
sample volumes, making the procedure too long and laborious to use with volumes above
500 µL. Carry-over is also a problem in MEPS; it can be minimized through the realization
of carry-over studies and effects, with consequent addition/alteration of washing steps
before the sorbent is re-used [49,50].

A wide variety of new and specific sorbents have appeared recently in MEPS pro-
tocols, presenting excellent efficiency and recoveries when applied to natural products.
Mercolini et al. [51] tested classic C2, C8, C18, and M1 (C8+SCX mixed mode) sorbents to
extract phenolic compounds from a sample of Argania spinosa leaves. The M1 sorbent was
later chosen for having the best extraction results and presenting relative recoveries above
95%. Protti et al. [52] developed and optimized a MEPS protocol to analyse the artemisinin
content in different plant extracts. Artemisinin is the main antimalarial compound of
Artemisia annua L., and it has become popular due to its antiproliferative properties. Differ-
ent commercially available sorbents, such as C2, C8, C18, and M1, were tested for extraction
efficiency, the C8 sorbent being the best in terms of extraction yields and clean-up. The
relative recoveries were in the 88–93% range, while extraction yields were over 85%. Their
results revealed that the molecularly imprinted polymer sorbent was highly selective for
estrogen-like structures and presented relative recoveries in the 81–103% range. The C18
sorbent was best suited for a multicomponent extraction and could attain relative recoveries
broader than molecularly imprinted polymers in the 75–109% range. All these results are
some of the standouts in our research that utilize newly synthesized and commercially
available sorbents.

Perestrelo et al. [53] developed an analytical strategy based on MEPS and UHPLC-
PDA to analyse major furanic derivates in fortified wines successfully. Furanic derivates
are formed during the ageing procedures that the wines are submitted to and are of deep
concern to humans due to their potential toxic effects. C2, C8, C18, SIL (unmodified silica),
M1, R-AX (polystyrene divinylbenzene partially functionalized with sulfonic acid groups),
R-CX (polystyrene-divinylbenzene partially functionalized with quaternary amine groups),
and PGC (porous graphitic carbon) sorbents were tested. C8 presented the best analytical
results, with relative recoveries ranging from 74–99%. Rahimi et al. [54] synthesized a
carbon-based nanoporous material (CMK-3) as a MEPS sorbent to extract rosmarinic acid
in rosemary samples. The CMK-3 sorbent was tested alongside ordinary activated carbon
sorbents. Due to its high porosity, it was considered a much better sorbent, presenting a
superior adsorption efficiency for rosmarinic acid than ordinary activated carbon sorbents
(about 17 times). Relative recoveries for this MEPS protocol ranged between 94–105%.

Table 2 contains all the results mentioned above and some more found in our research
regarding MEPS techniques for natural products.
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Table 2. Application of MEPS techniques for extraction of several compounds in natural products.

Compounds Sample Amount Life-Time Type of
Sorbent

Limit of
Detection Conditions Instrumentation Relative

Recovery (%) Ref.

Artemisinin Artemisia annua L. 5 g up to 200 C8 1500 ng/L

Extraction cycles: 10 draw/discharge;
Sampling rate: 2 µL/s; Washing: 100 µL
ultrapure water, 100 µL methanol/water

95:5; Washing rate: 10 µL/s; Elution
cycles: 5 × 100 µL; Elution solvent:

methanol; Elution rate: 2 µL/s.

LC-DAD-
MS/MS 88–93 [52]

Phenolic
compounds

Argania spinosa
leaves 25 g up to 200 M1 100 ng/L

Extraction cycles: 10 draw/discharge;
Sampling rate: 5 µL/s; Washing: 100 µL

of ultrapure water, 100 µL
methanol/water 90:10 (v/v); Washing

rate: 10 µL/s; Elution Cycles:
2 × 250 µL; Elution solvent: methanol;

Elution rate: 5 µL/s.

LC-DAD-
MS/MS >95 [51]

Major furanic
derivatives

dry/medium dry
fortified wine

0.2 mL 100 C8

4.5–129.3 ng/L Extraction cycles: 3 × 200 µL draw–eject;
Washing: 100 µL water containing 0.1%

formic acid; Elution solvent: 200 µL
methanol: water (95:5, v/v).

UHPLC–PDA
74 to 97

[53]
sweet/medium

sweet, fortified wine 6.9–285.2 ng/L 83 to 99

Polyphenols Wine 250 µL 100 C8 0.01–0.2 µg/mL

Extraction time: 1 min; Sampling rate:
17.4–22.6 µL/s; Extraction cycles: 5;
Ionic strength: 20% strong cationic
exchange; Elution solvent: 50 µL

methanol:water (95:5 v/v)

UHPLC- PDA 77-100 [55]

Prenylflavors Beer 500 µL >100 C18 0.4–0.9 ng/mL

Extraction time: 5 min; Sampling rate:
20 µL/s; pH: 5; Ionic strength: 20%
strong cationic exchange; Elution

solvent: 250 µL acetonitrile

UHPLC-PDA 67.1–99.9 [56]

Polyphenols Rosemary 50 mg 80
CMK-3

nanoporous
carbon

0.059 µg/mL Sapling rate: 1.0 mL/s; Extraction cycles:
14; pH: 2; Elution time: 20 min HPLC-UV/VIS 94–105 [54]

(E)–Reveratrol Wine 250 µL n.s. C8 0.21 µg/mL

Extraction time: 3 min; Sampling rate:
20 µL/s; Extraction cycles: 1; pH: 2.7;
Elution solvent: 0.1% formic acid and

methanol; Elution time: 10 min

UHPLC-PDA 89.2–100.8 [57]

Legend: HPLC: High-performance liquid chromatography; LC-DAD-MS/MS: Liquid chromatography with diode array detection and tandem mass spectrometry; n.s.: Not specified;
UHPLC–PDA: Ultrahigh-performance liquid chromatographic–photodiode array; UV/VIS: Ultraviolet-visible detector; Ref.: Reference.
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2.3. Stir Bar Sorptive Extraction

Baltussen et al. [58] originally introduced stir bar sorptive extraction (SBSE) in 1999.
This sample pre-treatment technology relies on the equilibrium distribution of target
analytes between the sample and stir bar coating, representing the extraction phase [59].
SBSE is based on the same principles as SPME, but stir bars are coated instead of polymer-
coated fibre [60]. The SBSE device is usually introduced into an aqueous sample for
sampling. However, the SBSE rod can also be exposed to the HS of a vial containing
a gaseous, liquid, or solid sample, even though this method is less popular. The bar
adsorbs the analytes to be extracted while stirring (Figure 3). After being removed from
the sample, the bar is dried and rinsed with deionized water. The analytes are then
desorbed from the enrichment sorbent phase by thermal desorption (TD) in the GC or LC
injection port. The analytes are desorbed when disintegrated at low temperatures by liquid
desorption (LD) [60].
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SBSE has several advantages: it has a simple operation; it presents a high sorption
capacity, increased robustness, excellent extraction efficiency, high selectivity (coating
adapted for each particular type of target compound), and low limits of detection, down to
sub-nanogram per litre concentrations [59–62]. Other benefits of this technique rely on the
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possibility of automation and compatibility with different systems of analyte separation
and detection [60]. As a result, all analytical domains, including environmental, clinical,
and food analysis, as well as a wide range of matrices, including soils, environmental
water and wastewater, solid and liquid foods, gaseous samples, and biological fluids, have
efficiently resorted to this extraction technique [59,60,62,63].

The extraction time is higher than other miniaturized techniques (Table 3). However,
SBSE compensates with an improved extraction efficiency and low carry-over [60,64].
Sample volume and stirring speed greatly influence extraction efficiency [3].

Table 3. Comparing with other miniaturized techniques, adapted from [60,64].

SBSE SPME MEPS

Type of matrices Liquid Gaseous, liquid, and solid Liquid

Sorbent amount Coated 0.5–1 mm Thickness 150 µm 1–4 mg

Sample volume (mL) 1–100 0.5–20 0.01–0.1

Handling time (min) 10–240 5–120 1–4

Cartridge re-use
(extractions)

6–80, depending on the
material used for coating 50–100 100

Recovery Good Low Good

Sensitivity Good Low Good

Carry-over Low High Low

Main Advantages
Sample volume and stirring

speed greatly influence
extraction efficiency

No organic solvents are required;
all the extracted material can be

directly analysed; extracting
device is portable and allows

field sampling

Reduced sample preparation time,
organic solvent consumption and

cost of analysis

Main Drawbacks It requires a particular
desorption unit

Competition between drug and
endogenous compounds for the

fibre; the extraction is
not exhaustive

Sorbent clogging

Nonetheless, manual stir-bar removal from the sample, rinsing, drying, and, in some
cases, the additional back extraction step in proper solvent, are also drawbacks to be consid-
ered [60,62]. Because a single apolar polymer covers the stir bar, it can only be utilized with
semivolatile and thermo-stable substances when TD is employed as a back-extraction mode.
However, this restriction can be overcome, and the use of SBSE expanded, to include polar
and thermally labile molecules by combining SBSE with a derivatization procedure [60].
The main disadvantage of this technique is the limited range of commercial coatings,
consequently limiting the spectrum of analyte polarities (highly polar or hydrophilic so-
lutes) [61–63]. Upton that, this technique is well-known for analytical methods with a high
enrichment factor for a wide range of non-polar species (the most common) [62].

The most common coatings commercially available are polydimethylsiloxane (PDMS),
polyethylene (PEG), and polyacrylate (PA) [62]. Conventional SBSE involves using PDMS
polymer to coat the glass stir bar, which provides hydrophobic interactions with the target
compounds. However, due to the hydrophobic nature of the polymer, it fails to achieve
good performance for the extraction of polar and slightly polar compounds [65]. For this
reason, developing new coating materials has become an important issue in improving
SBSE versatility and expanding the applications of this technique [65]. Stable coatings
can be prepared using: (1) adhesion; (2) molecularly imprinted polymers; (3) sol-gel; and
(4) monolith. The development of new coatings for stir bars affects the selectivity, dynamics,
and recovery of the SBSE-based method [59]. These new coatings have higher selectivity,
including nanocarbon materials, functional monomers, metal–organic frameworks (MOFs),
template-imprinted polymers, and inorganic particles [62].
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The most commonly used conventional coating in SBSE is PDMS, widely reported in
the literature for detecting analytes in natural products. Leite et al. [66] employed a PDMS
twister (10 mm) to extract volatile compounds as phenolic compounds and flavonoids
from soursop pulp. In contrast, the extracted compounds were desorbed on a thermal
desorption unit and identified by GC-MS. It is also the target coating for comparison with
novel coatings [66]. Liu et al. [67] developed an electrochemical polymerization of luminol
molecularly imprinted polymers on carboxyl graphene (MIP/CG) to identify estrogens
in milk. When compared to a commercial coating PDSMS/PA using the SBSE-HPLC-UV
method, the authors concluded that the molecularly imprinted polymer coating increased
selectivity, allowing recoveries that ranged from 83–96% [67]. However, Cheng et al. [68]
used linear graphene nanocomposites (aLGN) as a novel coating in SBSE, combining with
GC-MS to detect seventeen kinds of amino acids of Camellia nitidissima Chi seeds. The
new coating produced higher TD performance and improved amino acid discrimination
compared to traditional PDMS coating, resulting in a practical and highly distinct approach
for amino acid analysis [68].

Furthermore, this miniaturized technique is carried out to analyse different ana-
lytes, and it is conducted by chromatography instruments, including high-performance
liquid chromatography (HPLC), GC, CE, and mass spectrometry (MS). Ghani [69] used
reversed-phase high-performance liquid chromatography–diode array detection (HPLC-
DAD) to quantify phenolic acids (gallic acid, 3,4-dihydroxy benzoic acid, p-hydroxy ben-
zoic acid), obtaining limits of detection between 0.06 and 0.26 µg/L. For this method,
the author used in situ preparation and application of layered double-hydroxide-coated
anodized aluminium (Zn-Al) stir bar [69]. Through MOFs (ZIF-67) and HPLC-UV, Ghani
et al. [70] determined caffeine in beverages, such as tea and soda, among others. The
relative recoveries obtained varied between 91–97%, whereas the spiking recovery varied
between 91–102% [70].

Considering the alternative coatings mentioned above, there are a variety of analytical
approaches for detecting and quantifying various substances employing SBSE and analysis
systems. Table 4 summarises the published research on detecting and quantifying analytes
under investigation in natural products with extraction by SBSE techniques.
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Table 4. Application of SBSE techniques for extraction of several compounds in natural products.

Compounds Sample Amount Type of Sorbent Limit of
Quantitation Conditions of Extraction Instrumentation Recovery

(%) Ref.

Volatile
compounds

Soursop pulp
and rehydrated
dried powder

10 g PDMS (10 mm) n.s.

Salts: 3 g of NaCl; Extraction time: 30 min;
Extraction temperature: room temperature;
Desorption temperature: 40 ◦C to 230 ◦C at a
rate of 60 ◦C/min; Desorption time: 10 min

GC-MS n.s. [66]

Estrogens Milk 2 g
MIP/GC

and
PDMS/PA

1.2–3.5 ng/mL
Stir rate: 500 rpm; Extraction time: 20 min;
Desorption solvent: 5 mL methanol: Hac

(99:1, v/v); Desorption time: 20 min
HPLC-UV 83–96 [67]

Amino acids Camellia nitidissima
Chi seeds 6 g

aLGN (100 nm ×
100–300 µm) and

PDMS (10 mm × 3.2 mm)
n.s.

Stir time: 120 min; Desorption solvent: 8 mL
DMF; Desorption temperature: 150–300 ◦C

during 10 min
GC-MS n.s. [68]

Phenolic acids Grape juice 10 mL Magnetic Zn-Al LDH 0.18–0.92 ng/mL Stirred rate: 200 rpm; Stir time: 20 min
(25 ◦C); Desorption time: 2 min HPLC-UV 90–105 [69]

Caffeine

Coca-Cola, 7up,
Pepsi, ZamZam,
Diet Coca-Cola,

black tea

10 mL ZIF-67 0.16 ng/mL
Stirred rate: 700 rpm; Stir time: 20 min at
room temperature; Desorption solvent:

100 µL of methanol; Desorption time: 4 min
HPLC-UV 91–104 [70]

Phytohormones Apple and pears 10 mL ZIF-8/poly
(MMA-EGDMA) n.s.

Stir rate: 800 rpm; Stir time: 50 min;
Desorption solvent: 120 µL of 30 mM NaOH

(methanol); Desorption time: 15 min
HPLC-UV 12–46 [71]

Estrogens Chicken and pork 10 mL PANi- PDMS n.s.

Stir rate: 400 rpm; Extraction time: 40 min;
Extraction temperature: 25 ◦C;

Desorption solvent: 50 µL methanol;
Desorption time: 15 min

HPLC-UV 82–106 [72]

Aroma
compounds Six different sake 10 mL

PDMS (10 mm length ×
1.0 mm thickness,

capacity 63 µL)
n.s.

Stir rate: 800 rpm; Extraction time: 1h;
Extraction temperature: 25 ◦C;

Desorption solvent: 500 µL acetone;
Desorption time: 30 min

GC-MS n.s. [73]
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Table 4. Cont.

Compounds Sample Amount Type of Sorbent Limit of
Quantitation Conditions of Extraction Instrumentation Recovery

(%) Ref.

Polychlorinated
biphenyls Fish n.s. Apt-MOF 0.011–0.015

ng/mL

Stir rate: 500 rpm; Extraction time: 50 min;
Extraction temperature: 50 ◦C; Desorption
solvent: 5 mL of methylene chloride–pH 3
glycine–HCl buffer (1:10, v/v); Desorption

time: 20 min, pH = 3

GC-MS 89–97 [74]

Aflatoxins Soy milk 0.1 L GO 7.5–25 pg/mL
Stir time: 40 min; Extraction time: 40 min;

Desorption solvent: 1.5 mL methanol;
Desorption time: 10 min

HPLC-LIF 80–102 [75]

Volatile aroma
compounds Apple juice 20.0 mL PDMS (length 10 mm,

thickness 1.0 mm) n.s.

Stir rate: 800 rpm; Extraction time: 120 min;
DHE: incubation temperature: 30 ◦C;

Incubation time: 30 min; Agitator on time:
10 s; Agitator off time: 1 s; Agitator speed:

500 rpm; Transfer heater temp: 70 ◦C;
Trapping volume: 200 mL; Flow:

10 mL/min; Trap temp: 30 ◦C; Incubation
temp: 30 ◦C; Drying phase volume: 10 mL;

Drying flow: 10 mL/min and drying
temperature of 30 ◦C

GC-FID n.s. [76]

Volatile
compounds Longjing tea 0.6 g

PDMS (10 mm length,
0.5 mm thickness,

24 µL capacity)
n.s.

Salt: 500 mg NaCl; Extraction time: 90 min;
Extraction temperature: room temperature;

Stir rate: 1250 rpm
GC-MS 112 [77]

Volatile
compounds Dark tea 0.6 g

PDMS twister (10 mm
length, 1.0 mm thickness,

24 µL capacity)
n.s.

Salt: 500 mg NaCl; Extraction time: 90min;
Extraction temperature 80 ◦C; Stir rate:

1200 rpm; Thermal desorption: 80 ◦C, held at
30 ◦C for 1 min, and then increased to 240 ◦C
at a rate of 100 ◦C/min and held for 5 min

GC-MS n.s. [78]
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Table 4. Cont.

Compounds Sample Amount Type of Sorbent Limit of
Quantitation Conditions of Extraction Instrumentation Recovery

(%) Ref.

Volatile
compounds Green tea 1.0 g PDMS n.s.

Stirred at 1000 rpm for 60 min at 60 ◦C (a
control experiment was carried out at room

temperature, about 28–30)

Es-GC-
O/MS n.s. [79]

Volatile
compounds Beer 50.0 mL

PDMS
(10 mm long and

0.5 mm thick)
0.01–45.71 ppb

Salt: 25% (w/v); Stir rate: 1000 rpm;
Extraction time: 180 min; Thermal

desorption: the desorption temperature was
set up to climb from 40 ◦C to 300 ◦C with

0.5 min delay time and 10 min holding time

GC-MS 80–120 [80]

Legend: aLGN: Amino-modified linear graphene nanocomposites; Apt-MOF: Aptamer-functionalized-metal–organic framework; DHe: Dynamic headspace extraction; Es-GC-O/MS:
Enantioselective Gas chromatography–olfactometry/mass spectrometry; FID: Flame ionization detection; GC: Carboxyl graphene; GC-MS: gas chromatography–mass spectrometry;
GO: graphene oxide; HPLC: High-performance liquid chromatography; LIF: Laser-induced fluorescence; MIP: Molecularly imprinted polymer; MMA-EGDMA: Methyl methacrylate–
ethyleneglycol dimethacrylate; n.s.: Not specified; PA: Polyacrylate; PANi: Polyaniline; PDMS: Polydimethylsiloxane; UV: Ultraviolet detection; ZIF-67: Zeolitic imidazole framework-67;
ZIF-8/poly: Zeolitic imidazolate framework-8; Zn-Al LDH: Layered double-hydroxide-coated anodized aluminium; Ref.: Reference.
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2.4. Matrix Solid-Phase Dispersion

Matrix solid-phase dispersion (MSPD) was first introduced by Barker et al. [81]. For
solid, semi-solid, and viscous materials, this technique offers an alternate method for
reducing solvent use and analysis time [82].

To create a uniform mixture, samples and sorbent are often blended together during
an MSPD technique. The resultant mixture is moved into an extraction column, where it
will be packed. The washing and elution processes are then carried out on the column in
order to extract and isolate the analytes from the matrix (Figure 4). To further clean the
eluent, an extra sorbent may occasionally be loaded at the bottom of the column. Analytical
methods based on chromatography can typically be used to analyse the final extract [82].
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One advantage of using MSPD is that, when compared to traditional solvent extraction,
it does not require repetitive centrifugation, filtration, or extraction stages. With MSPD,
the solvent extraction step is skipped. This significantly reduces the solvent and time
needed for preparation-related manipulation [82]. Compared to other sample-preparation
techniques, MSPD is more flexible, robust, and simple to use (no special equipment or
instrumentation is needed).

The mild extraction conditions (i.e., room temperature and atmospheric pressure)
preserve analytes from degradation and denaturation [82,83]. Moreover, MSPD has oc-
casionally been used in combination with pressurized liquid extraction to enhance the
recoveries of compounds that have significant interactions with the solid matrix [83,84]. The
process’s effectiveness and selectivity are determined by choice of solid support and elution
solvent. Overall, MSPD requires a minimal consumption of organic solvents, particularly
when miniaturized [83,85]. Although this extraction method is relatively quick, it cannot
be fully automated, which is a problem when large sample sets are required for routine
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analyses. The majority of the time, materials that have been processed or extracted using
MSPD are subsequently analysed using GC-MS or LC-MS [83].

In MSPD, a variety of dispersing substances have been used. Materials frequently
employed as SPE phases can improve the technique’s selectivity and combine the ex-
traction and clean-up steps. Most works use reversed-phase (RP) materials such as C18-
and C8-silica bonded phases, but normal-phase (NP) materials, including alumina, sil-
ica, and florisil, are frequently used. New MSPD systems have recently been proposed,
including molecularly imprinted polymers and carbon-based materials [83]. Deng et al.
used a C18-silica sorbent in MSPD combined with UPLC-MS/MS to determine eight gib-
berellins in Arabidopsis thaliana leaves. The recoveries ranged between 83–104% and LOQs of
0.87–4.37 pg/mL [86]. Gómez-Mejía et al. [87] created a novel with a straightforward MSPD
extraction process that relied on titanium dioxide nanoparticles and capillary liquid chro-
matography connected to a diode array detector and mass analyser (cLC-DAD-MS) for the
extraction and identification of polyphenols from grape residues [87]. Wei et al. [88] pro-
posed a method for determining the five sesquiterpenoids of Curcuma wenyujin by MSPD
extraction coupled with microemulsion electrokinetic capillary chromatography (MEEKC).
This study investigated four conventional dispersants (silica gel, florisil, neutral alumina,
and C18) and three molecular sieves (TS-1, SBa-15, SAPO-11). The results demonstrated
that C18 and silica gel exhibited a relatively higher extraction efficiency for curcumenol.
However, the molecular sieves resulted in higher recoveries for all target sesquiterpenoids
than conventional sorbents [88].

Table 5 includes all data described above and some additional findings from our
investigation regarding MSPD techniques for natural products.
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Table 5. Application of MSPD techniques for extraction of several compounds in natural products.

Compounds Sample Amount Mode Type of Sorbent Limit of
Quantitation Conditions of extraction Instrumentation Recovery

(%) Ref.

Gibberellins Arabidopsis
thaliana leaves 0.30−0.80 mg MSPD silica 0.87–4.37

pg/mL

Stir time: 10 min; Stir rate:
10,000 rpm; Extraction solvent:
methanol (10 mL/g); Extraction

temperature: 4 ◦C

UPLC-
MS/MS 83–104 [86]

Polyphenols Grape residues 0.1 g MSPD
titanium dioxide

nanoparticles and
diatomaceous earth

0.2–207 µg/g

Stir time: 1 min; Stir rate: 3000 rpm;
Extraction solvent: 2 mL ethanol:

water (20:80, v/v); Extraction
temperature: room temperature;

Other extraction time: 3 min

cLC-DAD-MS ns [87]

Sesquiterpenes Curcuma
wenyujin 2.0 g MSPD polypropylene 0.005–0.034

mg/mL

200 mg dispersant;
Extraction solvent:
1 mL of methanol

MEEKC 99–102 [88]

5-HMF and
glycosides Fructus Corni 20.0 mg MSPD silica 0.07–0.24

µg/mL
Stir time: 3 min; Extraction solvent:

6 mL [Domim]HSO4; Extraction
time: 6 min

UHPLC-UV 95–103 [89]

Caffeic acid;
Forsythoside A;

Philyrin;
Quercetin;

Isorhamnetic;
Arctigenin

Forsythiae
Fructus 20.0 mg MSPD Surfactant T114-based

vortex-synchronized
0.08–0.25
µg/mL

Extraction solvent: 2 mL 10%
surfactant T114;

Extraction time: 5 min
UHPLC-DAD 95–104 [90]

Polyphenols Pomegranate
peel 26.0 mg µ-MSPD Carbon molecular sieve 0.76–11.00

ng/mL
Extraction solvent; 200 µL

methanol; Extraction time: 1.5 min
UHPLC-Q-

TOF-MS 88–106 [91]

Lignans
Aerial parts of

Saururus
chinensis

0.2 g MSPD Silica gel 0.26–2.63
µg/mL

Extraction solvent: 5 mL of
methanol; Extraction time: 15 min HPLC-DAD 93–103 [92]

Anthraquinones Cassieae Semen 0.02 g MSPD C18 and silica gel 2.20–13.20
µg/mL

Extraction solvent:
1 mL of 250 mM [Domim]HSO4;

Extraction time: 10 min
HPLC 91–106 [93]

Terpenoids,
crocins, quinic
acid flavonoids

Gardeniae fructus 10.0 mg MSPD 2,6-dimethyl-β-
cyclodextrin

0.06–1.25
µg/mL

Extraction solvent:
0.5 mL of 100 mM [C12mim]HSO4; UHPLC-DAD 96–100 [94]

Legend: [C12mim]HSO4: 1-dodecyl-3-methylimidazolium hydrogen sulfate; [Domim]HSO4: 1-do- decyl-3-Methyl-1H-Imidazolium hydrogensulfate; µ-MSPD: Micro matrix solid-phase
dispersion; cLC-DAD-MS: Capillary liquid chromatography coupled to a diode array detection and a mass spectrometry; DAD: Diode array detection; HPLC: High-performance
liquid chromatography; MEEKC: Microemulsion electrokinetic capillary chromatography; MS: Mass spectrometry; MSPD: matrix solid-phase dispersion; UHPLC-Q-TOF-MS:
ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry; UV: ultraviolet detection; Ref.: Reference.
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2.5. Micro-Solid Phase Extraction

Modern SPE-modified techniques can be categorized into three groups: micro-SPE (µ-
SPE), dispersive micro-SPE (D-µ-SPE), and magnetic dispersive SPE (M-D-µ-SPE) method [95].

Micro-SPE (µ-SPE) has been used in many studies in reference to the trend towards
miniaturization, with the “µ” designation intended to imply a reduction in device dimen-
sions, amount of sorbents, and/or use of microsized or nanosized materials (particularly
the latter with their advantageously large surface area and exceptional physicochemical
properties) [96]. In comparison to standard SPE, µ-SPE provided substantial insight into
sample preparation that reduces the solvents’ operating time and chemical consumption.
As a result, µ-SPE became quite well-known as a solvent-free method [95]. Therefore, µ-SPE
has several benefits, including low solvent consumption, a higher enrichment factor than
SPME, extremely high selectivity and sensitivity, simplicity of application, being less time
consuming, a relatively low cost, compatibility with various systems of analyte separation
and detection, and also enabling headspace and immersion modes. Despite all of this, there
are drawbacks to the implementation of µ-SPE, including analyte carry-over, fragile fibres,
and a stationary phase with a restricted range [60,95,96].

µ-SPE extraction is conducted using a device that comprises a porous membrane
envelope containing a small amount of sorbent (Figure 5). A wide variety of commercial
and in-house-synthesized sorbent materials can be utilized in µ-SPE, with the choice of
sorbent being predominantly dictated by the nature of the target analytes. There are several
commercially available sorbents: activated alumina, Haye-Sep B, Haye-Sep A, Porapak R,
ethylsilane (C2), octylsilane (C8), octadecylsilane (C18), activated carbon (CA), carbograph
(GC), and multi-walled carbon nanotubes (MWCNTs) [64]. Khayoon et al. [97] used µ-SPE
in combination with LC-MS/MS for the extraction and determination of aflatoxins (B1, B2,
G1, G2) from food samples (coffee and malt beverage). The authors resorted to C8, with
only 350 µL of solvent volume. The detection limits ranged from 0.12–0.76 ng/g [97]. In
another example, Oasis µ-SPE was used to extract and determine phenolic compounds
in four sea algae samples. Sorbents of µ-SPE plate mixed-mode cation exchange sorbent
(MCX) and mixed-mode anion exchange sorbent (WAX) with MCX and WAX sorbent SPE
cartridges were compared. The authors concluded that using the MAX cartridge in µ-SPE
plate was more efficient than conventional SPE columns [98].
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Some of the most used novel sorbents are zeolite, silica, molecularly imprinted poly-
mers, and MOFs [96]. MOFs are among the most significant µ-SPE materials [95]. However,
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there are few reports on applying this technique to determine natural products, since inves-
tigations with D-µ-SPE are more common. Nonetheless, the studies that implement µ-SPE
use molecularly imprinted polymer sorbents. Lee et al. [99] used molecularly imprinted
polymers combined with HPLC and coupled with a fluorescence detector (FD) for the
determination of ochratoxin A (OTA) from coffee and grape juice samples. The method was
applied in 24 samples, where 18 were positive for OTA. Furthermore, compared to other
methods that employed LC-MS/MS, the proposed method achieved a lower LOQ [99].

Concerning D-µ-SPE, Anastassiades et al. [100] worked on the first article that intro-
duced the D-µ-SPE method. This miniaturized technique has superior advantages over
the conventional SPE method, such as a convenient conduction process (once it does not
involve the passage of the sample solution or extraction solvent through an SPE column),
being cost-effective, fast, requiring lower volumes of solvent, can be applied to different
analyte–matrix combinations, and can avoid column-blocking problems [60,95].

This method leads to a higher interaction between the sorbent and analyte, conse-
quently improving extraction efficiency since the sorbent is directly mixed with the sample
through methods such as sonication or vortexing (Figure 6) [95,96]. Extensive types of
sorbents have been investigated for their maximum adsorption capability and reusability.
Hence, the development of novel materials such as RP-C18, mesoporous hybrid materials,
carbon nanotubes, graphene, and functionalized silica. Furthermore, MOFs have been used
as extraction sorbents in the D-µ-SPE method [95].
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Asfaram et al. [101] created a method of D-µ-SPE combined with UV-Vis spectrometry
via ultrasound to determine quercetin concentrations in extracts of Nasturium officinale and
fruit juice. For this method, the sorbent was synthesized by doping copper and sulfide into
the tetragonal structure of SnO2-nanoparticles (Cu- and S- @SnO2-NPs) and subsequently
loading it on activated carbon (AC). Recoveries ranging from 90–97% were achieved [101].
More recently, Bakhytkyzy et al. [102] extracted a diverse range of lipids from a total of
30 commercially available oilseeds using dispersive sorbent hybrid SPE-Phospholipid and
C18 (50/50, w/w) and LC-Q-TOF-MS. The identified lipid classes included lysophosphatidyl-
cholines (LPC), lysophosphatidylethanolamine (LPE), glycerol phosphatidylcholines (PC),
glycerophosphatidylethanolamines (PE), diacylglycerols (DG), and triacylglycerols (TG) [102].

In addition to the facts mentioned above, Table 6 encompasses other research results
from our research.
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Table 6. Application of µ-SPE/D-µ-SPE techniques for extraction of several compounds in natural products.

Compounds Sample Amount Mode Type of Sorbent Limit of Quantitation Conditions of Extraction Instrumentation Recovery
(%) Ref.

Aflatoxins Coffee and
malt beverage 10.0 mL µ-SPE C8 0.40–1.94 ng/g

Stir rate: 1000 rpm; Extraction time:
90 min; Desorption solvent: 350 µL

acetonitrile; Desorption time: 25 min
LC-MS/MS 86–109 [97]

Phenolics Sea algae 50.0 mg µ-SPE MCX, MAX,
WAX, WCX, 0.23–1.68 ng/mL

Conditioning: 50 µL methanol and
50 µL water; Washing: 2% acetic acid in

methanol; Elution: 2% ammonium
hydroxide in methanol

RRLC-MS/MS n.s. [98]

Ochratoxin A Coffee and
grape juice

10.0 g of coffee
and 10 mL

of juice
µ-SPE MIP 0.06–0.19 ng/g

Stir rate: 1000 rpm; Extraction time:
30 min; pH sample: 1.5; Desorption

solvent: 250 µL methanol: acetic acid
(98:2, v/v); Desorption time: 20 min

HPLC-FD 90–101 [99]

Quercetin
Nasturtium

officinale extract
and fruit juice

0.01 g D-µ-SPE Cu- and S-
@SnO2-NPs-AC 14.49 ng/mL

pH sample: 3.5; Stir rate: 4000 rpm;
Extraction time: 4 min; Desorption

solvent: 200 µL methanol;
Desorption time: 2 min

UV-Vis 90–97 [101]

Lipids Oilseed 1.0 mL D-µ-SPE
HybridSPE-

Phospholipid and C18,
(50/50, w/w)

n.s.

Stir rate: 20 000 rpm; Stir time: 10 min;
centrifuged for 5 min at 7000 rpm.

Washing: 1 mL of 70% methanol in
water, mixed for 10 min and

centrifuged for 5 min. Elution: 1 mL
methanol: ammonium (95:5, v/v)

LC-Q-TOF-MS n.s. [102]

Cholecalciferol Milk 1.0 mL D-µ-SPE 3DG-Fe3O4@Sp 10.23 µg/L
Stir time: 15 min; Desorption solvent:

400 µL acetonitrile;
Desorption time: 4 min

HPLC-UV 71–113 [103]

Flavonoids

Dark tea,
chocolate,

vegetable and
fruit juice

10.0 mL D-µ-SPE MANPs 0.66–3.63 µg/L

pH sample: 4.9; Stir time: 2.1 min;
Desorption solvent: 100 µL

tetramethylammonium chloride and
lactic acid; Desorption time: 5 min

HPLC-UV >91 [104]

Flavonoids Apple, grape juice,
green tea 0.5–1.0 g Magnetic

D-µ-SPE SiO2@Fe3O4 2.98 µg/L
Extraction time: 10 min; Desorption

solvent: 250 µL of ethanol;
Desorption time: 2 min

HPLC-UV 97 [105]

Legend: µ-SPE: Micro-solid-phase extraction; Cu- and S- @SnO2-NPs-AC: Copper and sulfide into the tetragonal structure of SnO2-nanoparticles; D-µ-SPE: Dispersive micro-solid-phase
extraction; FD: Fluorescence detector; HPLC: High-performance liquid chromatography; LC-MS/MS: liquid chromatography–tandem mass spectrometry; LC-Q-TOF-MS: Liquid
chromatography/quadrupole time-of-flight mass spectrometry; MANPs: Magnetic agarose nanoparticles; MAX: Mixed-mode anion- exchange a reversed-phase sorbent; MCX:
Mixed-mode cation-exchange a reversed-phase; n.s.: Not specified; RRLC-MS/MS: Rapid resolution liquid chromatography coupled to tandem mass spectrometry; MIP: molecularly
imprinted polymer; UV: Ultraviolet detector; UV-Vis: ultraviolet-visible detector; WAX: Mixed-mode weak anion-exchange a reversed-phase sorbent; WCX: Mixed-mode weak
cation-exchange a reversed-phase sorbent; Ref.: Reference.
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2.6. Molecularly Imprinted Polymers

Molecularly imprinted polymers (MIPs) are tailor-made materials with recognition
sites able to rebind a target molecule specifically in preference to other closely-related
compounds [106]. These sorptive materials are the latest development in MSPE coatings
and can be used for very selective extractions of analytes [60,107,108]. The first MISPE
procedure was reported by Sellergren in 1994 [60,109], and since that time, this technique
has been developed and is widely used in many research areas [60].

MIP particles have been packed in cartridges and columns for performing SPE, al-
lowing the development of a great variety of MISPE-based analytical methods for the
selective extraction and determination of organic compounds in bio-, food, and environ-
mental samples [110]. They have also been widely used as artificial receptors in catalysis,
sensors, and drug development and screening [60,111]. MIPs used for SPE can be synthe-
sized by non-covalent imprinting, covalent imprinting, and hybridization of covalent and
non-covalent imprinting, also called semi-covalent imprinting [60,109]. These materials
are obtained by polymerizing functional and cross-linking monomers around a template
molecule, leading to a highly cross-linked polymer. Once polymerization has taken place,
the template molecule is removed, and binding sites with shape, size and functionalities
complementary to the target analyte are established [110].

The template molecule is removed after polymerization, and subsequently, binding
sites with similar shape, size, and functionality to the target analyte are generated [110].
Since these synthetic polymers present predetermined selectivity towards a given analyte
or a group of structurally related species [60,112], this results in an imprinted polymer that
is stable, robust, and resistant to a wide range of pH, solvents, and temperatures. Therefore,
their behaviour emulates the interactions established by natural receptors to retain a target
molecule in a particular way but without the associated stability limitations. It also has
the benefit of being a low-cost synthesis approach [60,110,113,114]. Combining MIPs with
microextraction techniques provides powerful analytical tools with the characteristics of
both technologies: simplicity, flexibility, and selectivity [110]. MIP has drawbacks, including
difficulties with optimization, the length of time required for any analysis, and the potential
impossibility of long-term use due to analyte build-up [113,114].

Recently, there have been reports of applications of MIP in traditional SPE to deter-
minate flavonoids (myricetin, quercetin, and naringin, among others) in extracts of plants,
essentially using HPLC [115–120]. For example, molecularly imprinted polymers prepared
by a surface imprinting were used to direct extraction of flavonoids from Gingko leaves,
obtaining recoveries of 97% [117]. However, also MIPs have been applied in different
separation methods, such as SBSE and MSPD.

The published research on the determination and quantification of the analytes being
studied in natural products is summarised in Table 7.



Processes 2023, 11, 243 25 of 32

Table 7. Application of MISPE techniques for extraction of several compounds in natural products.

Compounds Sample Amount Mode Type of Sorbent Limit of
Detection Condition of Extraction Instrument Recovery

(%) Ref.

Rosmarinic acid
Aerial parts of

Rosmarinus
officinalis L.

113.0 g SPE MIP 2.01 µg/mL

Loading solvent: 2 mL
acetonitrile/water (97.5:2.5, v/v);
Washing solvent: 2 mL of water;

Elution solvent: 2 mL of methanol:
acetic acid (9:1, v/v).

HPLC/DAD/MS 81 [121]

Salidroside Rhodiola crenulata
root powder 1.0 g SPE MIP

(200 mg) 0.21 µg/L

Loading solvent: methanol
Washing solvent: 1 mL methanol:

water (5:95, v/v); Elution solvent: 2 mL
methanol: acetic acid (1:9, v/v)

HPLC-UV 88–97 [122]

Paclitaxel Pacific yew
tree powder 10.0 g n.s. MIP n.s. Extraction solvent: 400 mL of

methanol; extraction time: 30 min HPLC n.s. [123]

Coumarins,
7-hydroxycoumarin,
7-methoxycoumarin

food and
plant extracts 1.0 g SPE MMIPs 1.04–5.92 µg/g

Conditioning: 3 mL of methanol:
acetic acid (9:1, v/v) and 5 mL of

analyte solvent (methanol/water 1/1,
v/v); Stir time 30 min at 22 ◦C.

Washing: 2 mL water; Elution: 1.25 mL
methanol: acetic acid (9:1, v/v) and

stirred for 30 min.

HPLC-DAD 71.4–90.3 [124]

Oblongifolin C Garcinia
yunnanensis Hu 45.0 g SPE MIP n.s

Loading solvent:
methanol-water (80:20, v/v);

Eluting solution: methanol-water
(50:50, v/v) and 70:30 (v/v)

HPLC 48–77 [125]

Matrine, oxymatrine,
and sophocarpine

Sophora
moorcroftiana
(roots, stems,

leaves, and seeds)

1.0 mL SPE
double-templated

molecularly
imprinted polymers

9.23–15.42 ng/g

Wash with water, acetic acid/MeOH
(20:80, v/v), and acetonitrile; Loading

solvents: MeOH, acetonitrile, and
water; Washing solvents: (2 mL) of

n-hexane, carbon tetrachloride (CCl4),
methylene chloride (CH2Cl2),

acetonitrile, MeOH, and water; Elution
solvent: acetic acid-MeOH.

HPLC–
MS/MS 73–98 [126]
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Table 7. Cont.

Compounds Sample Amount Mode Type of Sorbent Limit of
Detection Condition of Extraction Instrument Recovery

(%) Ref.

Myricetin

Carthamus
tinctorius L. and

Abelmoschus
manihot

15.0 g SPE MIP 0–25 µg/mL

Column rinsed with 5 mL water and
5 mL methanol (×3). Extract solution
was loaded on the column at a flow

rate of 0.2 mL/ min. Wash with 10 mL
pure water (×3) and 10 mL 10%

methanol–water (v/v) (×3). Elution
with 10 mL of methanol–acetic

acid (8:2, v/v).

HPLC-DAD 79–84 [116]

Flavonoids Astragali Radix
extract 10.0 mL SPE calycosin-MIPs n.s.

Conditioning: 10 mL of methanol;
Sample load flow rate: 1 mL/min;

Washing: 9 mL of methanol and 12 mL
of methanol: acetic acid (9:1 v/v);

Elution: methanol: acetic acid

HPLC-UV n.s. [115]

Flavonoids Ginkgo leaves 4.0 g SPE MIP n.s.

Conditioning: methanol; Sample
loading flow rate: 1 mL/min; Washing:

12 mL of acetone; Elution: 9 mL
methanol: acetic acid (9:1, v/v)

HPLC-UV n.s. [117]

Naringin Citri grandis
extract n.s. SPE SMIMs n.s.

Conditioning: 5 mL methanol;
Washing: 4 mL of methanol; Elution:

4 mL of ethanol: water: acetic
acid (50:50:2)

HPLC-UV 84 [118]

Naringin; genistein Sophora japonica or
shaddock peels

10.0 g or
5.0 g SPE MIP n.s. Washing: ethanol; Elution: ethanol:

acetic acid (4:1, v/v) HPLC-UV n.s. [119]

Flavonoids Ginkgo biloba tea 5.0 g SPE h-BN-MIP n.s. Washing: 1 mL deionized water;
Elution: 1 mL ethanol HPLC-UV 98–100 [120]

Legend: DAD: Diode array detector; h-BN: Hexagonal boron nitride; HPLC: High-performance liquid chromatography; LC: Liquid chromatography; MIP: Molecularly imprinted
polymer; MMIPS: Magnetic molecularly imprinted polymer; MS/MS: Tandem mass spectrometry; MS: Mass spectrometry; n.s.: Not specified; SMIMs: Surface molecularly imprinted
polymer microspheres; SPE: Solid-phase extraction; UV: Ultraviolet detector; Ref.: Reference.
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3. Conclusions

Pawliszyn et al. published the first works on SPME in the 1990s, and several microex-
traction procedures have appeared since. Concerning the analysis of natural compounds,
there is no doubt that HS-SPME is the most used approach. Its advantages, such as the fact
that no organic solvents are used, the safety for the operator, sustainability, renewability,
and reusability of materials, make this technique the ideal prototype of the so-called “green”
procedures in sample preparation, according to the AGREEprep analytical greenness metric
tool. Despite this, other approaches such as MEPS or SBSE are being increasingly used,
perhaps due to the speed and simplicity of the extractions, or, in the case of MEPS, due to
the advent of fully automated devices (eVol® or MEPS syringes). There has been a great
deal of attention concerning developing modified sorbents, such as multi-walled carbon
nanotubes (MWCNTs) and MIPs, probably due to their high selectivity.

However, one of the main challenges of using those approaches is obtaining pure
and well-characterized materials, as well as the fact that they are not commercially avail-
able, which poses a problem to laboratories and industry. Therefore, a great range of
opportunities have appeared for developing greener sample preparation methods while
ensuring high analytical performance concerning the chemical characterization of natural
compounds. One should bear in mind that applying environmentally benign sample prepa-
ration methods is a social responsibility of analysts, as it contributes to pollution reduction
and sustained development.
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