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Abstract: The Internet of Things (IoT) has grown more pervasive in recent years. It makes it possible
to describe the physical world in detail and interact with it in several different ways. Consequently,
IoT has the potential to be involved in many different applications, including healthcare, supply chain,
logistics, and the automotive sector. IoT-based smart healthcare systems have significantly increased
the value of organizations that rely heavily on IoT infrastructures and solutions. In fact, with the
recent COVID-19 pandemic, IoT played an important role in combating diseases. However, IoT
devices are tiny, with limited capabilities. Therefore, IoT systems lack encryption, insufficient privacy
protection, and subject to many attacks. Accordingly, IoT healthcare systems are extremely vulnerable
to several security flaws that might result in more accurate, quick, and precise diagnoses. On the other
hand, blockchain technology has been proven to be effective in many critical applications. Blockchain
technology combined with IoT can greatly improve the healthcare industry’s efficiency, security, and
transparency while opening new commercial choices. This paper is an extension of the current effort
in the IoT smart healthcare systems. It has three main contributions, as follows: (1) it proposes a
smart unsupervised medical clinic without medical staff interventions. It tries to provide safe and
fast services confronting the pandemic without exposing medical staff to danger. (2) It proposes a
deep learning algorithm for COVID-19 detection-based X-ray images; it utilizes the transfer learning
(ResNet152) model. (3) The paper also presents a novel blockchain-based pharmaceutical system.
The proposed algorithms and systems have proven to be effective and secure enough to be used in
the healthcare environment.

Keywords: Internet of Things (IoT); blockchain; smart healthcare systems; transfer learning; deep learning

1. Introduction

The world has recently faced many difficult challenges in the health sector since the
spread of COVID-19 and the mutants of the virus. This poses significant challenges to
health systems worldwide in terms of balancing the needs of providing additional services
required to manage the pandemic while maintaining and improving access to essential
health services [1].
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Health and care workers (HCWs) play a critical role in the worldwide pandemic
response. The pandemic has increased the hazards of work exposure to a new, rapidly
spreading illness, while also mandating changes in duties and responsibilities for a wide
range of professional tasks and situations [2]. There is little doubt that the health and care
industry is one of the most affected by the pandemic since employees face several hazards
that harm their physical, mental and social health. Healthcare workers are more likely than
the general population to get infected with the COVID-19 virus [3].

Many HCWs and their families were infected and died because of the pandemic, and
the consequences are currently being measured using a diverse set of anecdotal evidence
and variable quality criteria [2].

The pandemic is also affecting the availability of health staff and their capacity to
provide critical services and meet expanding demand. During the COVID-19 pandemic,
health personnel may encounter issues such as a lack of sufficient Personal Protective
Equipment (PPE) and other necessary equipment; infection, quarantine, social prejudice,
assaults, and the dual task of caring for friends and family members [3]. As a result, a
radical solution to safeguard healthcare professionals and their families is necessary; this
research study proposes a smart health system that does not rely on medical personnel’s
presence. COVID-19 is chosen as a case study.

Several algorithms for determining COVID-19-related mortality among HCWs can be
classified as follows [3]:

• The first approach, the crude mortality rate from each country, or the total number of
fatalities reported to the World Health Organization (WHO) COVID-19 Dashboard
divided by population size was applied to simply estimate the number of deaths
among HCWs. This evaluation implies that HCWs, regardless of age or gender, have a
similar infection risk and risk of mortality to the general population, but a greater risk
of infection (both at the workplace and the community, particularly in countries lacking
practices, provisions, and guidance on infection prevention and control). Another
issue is its poor estimate. Only 6643 of the 3.45 million COVID-19-related deaths
reported to WHO were HCWs as shown in Figure 1a.

• The second approach is improving on the first approach by using age- and sex-indirect
standardization and age- and sex-specific mortality estimates. The reported COVID-19
fatalities were reallocated within each country based on the age and gender distri-
bution of mortality reported to WHO for chosen countries. The International Labor
Organization’s (ILO) estimated number of HCWs (split by gender) was redistributed
based on the age and gender mix of the population size in the age range of 25–64 years.
According to population estimates, roughly 115,500 HCWs (ranging from 80,000 to
1,600,001) of the 135-million-person global health and care workforce may have died.
The age- and gender-specific death rates for each nation were then estimated and
applied to the country’s redistributed HCW population. If the anticipated overall
mortality in high-burden nations is included, the top range of estimates might exceed
180,000. This strategy disregards any of the potentially increased risks indicated above
if HCWs have an exposure risk equivalent to the general population as presented in
Figure 1b.

• The third approach is based on the analysis of SARS-CoV-2 infections and deaths among
HCWs, which discovered that infections of HCWs accounted for 12.5% (confidence
interval 6.2%, 23.5%) of all SARS-CoV-2 infections between March and July 2020. The
decreasing proportion of HCW infections among all SARS-CoV-2 illnesses reported to
WHO supports the lower bound of 6.2% of all cases (from 5.7% in May 2020 to 1.8% by
May 2021). The meta-analysis revealed the prevalence of death among HCWs, which
was then multiplied by the estimated infection rate among HCWs, yielding an estimate
of 6.2% of all SARS-CoV-2 infections reported by each nation as illustrated in Figure 1c.

• In the fourth approach, a separate estimate based on meta-analysis summary statistics
yields a global estimated total of 79,700 HCW fatalities (as shown in Figure 1d), which
supports the 83,000 number (with figures falling between 39,900 and 159,500). It may be
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argued, however, that the lowest estimate in the range—39,900 HCWs—is the least plausible
because it combines the lowest infection rate (6.2%) and mortality rate (6.2%) (0.4%).

The number of deaths among HCWs from COVID-19 appears to be substantially
higher than officially recorded.

Figure 1. Estimates of the number of deaths in HCWs due to COVID-19 (January 2020–May 2021) us-
ing various methods. (a) HCWs deaths reported to the WHO COVID-19 Surveillance, (b) Population-
based estimate of HCW deaths, (c) HCWs deaths using indirect standardization, (d) HCWs deaths
using results of meta-analysis (based on PCR testing).

The Institute for Health Metrics and Evaluation (IHME) announced the findings of
their analysis employing excess all-cause mortality methodologies about the same time that
WHO completed its research [3]. Table 1 compares population-based estimates of COVID-
19-related HCW fatalities in the top 20 countries (which account for 80% of worldwide
COVID-19 deaths reported to WHO), using the IHME’s estimate of all COVID-19-related
deaths as the denominator. Surprisingly, considering the high-burden nations studied by
IHME, HCW mortality is expected to reach 179,500. After these analyses and statistics,
it became clear that there was a need for a method to protect medical staff and their
families for their vital and pivotal role in successive crises in the health sector, dealing
with epidemics, and providing health care for ordinary patients, in addition to the burdens
caused by the virus crisis and recent epidemics. As a result, in this work, we propose a smart
clinic without medical personnel to identify and diagnose infected patients and possible
viral carriers based on diagnosing the case in more than one stage utilizing temperature
sensors, oxygen levels in the blood, and X-rays.

The remainder of the paper is structured as follows: Section 2 presents an introduction
to the Internet of Things (IoT) and the blockchain. The proposed smart clinic is presented
in Section 3. Section 4 illustrates the proposed COVID-19 detection from an X-ray image
using deep learning. Results are presented in detail in Section 5. Section 6 presents the
proposed blockchain-based pharmaceutical system. Section 7 shows the result discussion.
The papers ends with a conclusion, acknowledgment, and references.
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Table 1. Comparison of the population-based deaths in HCWs related to COVID-19 using surveillance data reported to WHO and IHME’s total deaths—top-ranking
countries with Polymerase Chain Reaction (PCR Test) (January 2020–May 2021) [3].

Country
WHO
Rank

IHME
Rank

WHO COVID-19 Surveillance

Population-
Based

Estimated
HCW Deaths

Triangulation A
Indirect Standardization

(by Sex and Age)

Triangulation B
Meta-Analysis Based on PCR

Testing (at 6.2%
Infection)

Based on IHME
Estimated Overall

Deaths

All Deaths Share of All
Deaths (%) HCW Deaths HCW Deaths

HCW
Deaths

(All)

HCW
Deaths
(Males)

HCW
Deaths

(Females)

HCW
Deaths

(at 0.8%)

HCW
Deaths

(at 1.6%)
HCW Deaths

United States of
America 1 1 578,984 17.3 59 39,925 37,633 21,950 15,683 16,137 32,274 62,426

Brazil 2 4 430,417 12.8 684 9769 8966 5430 3536 7655 15,311 13,525

India 3 2 266,207 7.9 0 1129 2053 1378 675 12,089 24,178 2775

Mexico 4 3 219,901 6.6 3214 2717 2870 1899 971 1178 2356 7625

The United
Kingdom of Great

Britain and
Northern Ireland

5 6 127,668 3.8 0 8562 3177 1586 1519 2206 4411 14,061

Italy 6 7 123,927 3.7 269 3970 1462 810 652 2057 4114 5633

Russian Federation 7 5 115,480 3.4 0 4386 1532 803 729 2446 4892 22,546

France 8 14 106,666 3.2 4 6708 2545 1282 1263 2854 5708 8344

Germany 9 16 86,025 2.6 0 5809 2112 1056 1056 1778 3556 8152

Colombia 10 79,760 2.4 0 1609 1506 891 615 1522 3043

Spain 11 15 79,095 2.4 148 2845 998 503 495 1778 3556 4453

Islamic Republic
of Iran 12 8 76,433 2.3 0 737 877 639 238 1355 2710 1679

Poland 13 11 71,609 2.1 5 2013 676 318 358 1415 2829 4213

Argentina 14 69,254 2.1 534 1814 1883 1209 674 1608 3216

Peru 15 12 65,316 1.9 0 896 877 550 327 929 1858 2027

South
Africa 16 10 55,124 1.6 0 966 1620 905 715 798 1596 2812

Ukraine 17 13 47,942 1.4 615 1342 448 229 219 1067 2133 3877

Indonesia 18 17 47,823 1.4 0 314 534 321 213 860 1720 760

Turkey 19 44,301 1.3 0 803 318 178 140 2527 5055
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Table 1. Cont.

Country
WHO
Rank

IHME
Rank

WHO COVID-19 Surveillance

Population-
Based

Estimated
HCW Deaths

Triangulation A
Indirect Standardization

(by Sex and Age)

Triangulation B
Meta-Analysis Based on PCR

Testing (at 6.2%
Infection)

Based on IHME
Estimated Overall

Deaths

All Deaths Share of All
Deaths (%) HCW Deaths HCW Deaths

HCW
Deaths

(All)

HCW
Deaths
(Males)

HCW
Deaths

(Females)

HCW
Deaths

(at 0.8%)

HCW
Deaths

(at 1.6%)
HCW Deaths

Czech
Republic 20 29,712 0.9 87 1103 367 177 190 816 1632

Romania 21 19 29,413 0.9 12 652 214 100 114 531 1062 1943

Egypt 34 9 14,206 0.4 181 129 177 121 56 121 241 1544

Japan 39 18 11,365 0.3 0 942 745 389 356 333 666 8978

Kazakhstan 59 20 4760 0.1 0 119 46 24 22 203 406 2042

Sub-total 99,259 73,636 42,748 30,888 64,263 128,523 179,415
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2. Relevant Literature

This section presents a brief introduction to the Internet of Things (IoT) and the
blockchain. This section presents the importance of the IoT and the blockchain when
especially related to the healthcare sector. This section also presents the previous work
related to IoT and blockchain in the healthcare sector.

2.1. Internet of Things (IoT)

The Internet of Things (IoT) has roots in practically every aspect of society, including
numerous businesses such as the automobile industry, energy sector, industrial sector,
and healthcare sector [4]. Large volumes of data are frequently created, collected, and
transmitted throughout the healthcare system, which is an information-intensive medical
area. Due to the sensitive nature of data and constraints such as security and privacy,
storing and disseminating such a large amount of data is both necessary and difficult.

Processing and storage of smart medical devices necessitate extra procedures. Cur-
rently, storing and maintaining medical information is simplified by outsourcing confi-
dential medical information and Electronic Health Records (EHRs) to cloud storage [5].
Because it promotes information exchange, knowledge management, and predictive analyt-
ics across the healthcare ecosystem, the cloud-based medical system improves accuracy
and decreases costs compared to traditional healthcare systems [6,7]. Cloud computing,
on the other hand, has several drawbacks, including security, integrity, data loss, and so
on. A central administrator manages the cloud computing environment, and the central
administrator may share the user’s healthcare data with other third parties for commercial
gain [8,9]. As a result, patients’ or users’ medical information must be kept and handled
in a safe manner. Blockchain technology is one of the ideal alternatives for resolving this
problem since it provides a reliable distributed ledger [10].

The EHR industry is now highly valued, with estimates ranging in the tens of billions
of dollars [11]. However, because there are several dangers connected to privacy, security,
and interoperability, exchanging health data requires a safe and trustworthy infrastructure.
First, health data is extremely sensitive to privacy, especially since more and more data is
being kept in the cloud. As a result, the risks of sensitive data disclosure and leakage are
growing. Second, centralized architectures are commonly employed in modern systems
as well as security procedures. As a result, properly integrating interoperability among
healthcare systems that are deployed in many locations is difficult. Furthermore, consumers
have limited access to private health data, which is a serious challenge [12]. Considering
the notion of self-ownership, as well as the rising usage of mobile platforms and portable
computing devices, it is unavoidable to design a newer version of EHR systems that
ensures user access control and security preservation in a more distributive but effective
manner [13].

Such systems must have the capacity to communicate data safely and efficiently [14–16].
They must also enable more access control, privacy, and anonymity to the persons concerned.
Individuals will become hesitant to share crucial information or postpone seeking treatment if
security, privacy, and trust are not handled properly [17]. Many health data systems now rely
on a single entity to maintain private health data, which is extremely vulnerable to single point
of failure. Due to its distributive nature, blockchain technology has the potential to replace
this dependency. It provides the capacity to distribute and immutably overcome failure and
assaults [13].

It also serves as a record of the ownership of data and its authenticity [13,18]. It refers
to the usage of pseudo-anonymity in conjunction with public key infrastructure (PKI)
while maintaining user privacy [17]. The usage of blockchain technology in healthcare was
discussed [19]. The research supports the use of blockchain technology in the healthcare
domain, including privacy preservation for prediction modeling, increased large-scale
interoperability among institutions, invariability of health history records, improved health
assurance process, interchange of health data, artificial intelligence supporting healthcare
models, identity management, revenue strategies, and data record [19,20].
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2.2. Introduction to the Blockchain

The blockchain network allows users to share resources without worrying about a
single point of failure [21]. As a result, bottlenecks at the central location are eliminated. A
blockchain transaction contains user data and links to a ledger in the form of a block. A
block preserves the history of previous transactions indefinitely, while new transactions
are logged in the current one. The way in which a new block is added to a blockchain is
determined by consensus procedures in a blockchain network [10].

In the last several years, blockchain technology has been thoroughly investigated.
The notion of blockchain was developed as the supporting mechanism of the digital cryp-
tocurrency Bitcoin [22]. The basic concept of blockchain technology provides a foundation
for cooperation between unknown and untrustworthy things, as well as corroborating
the widely disseminated features of mobile (smart health) devices, without the need for
a central security and authentication authority, as in current cloud computing architec-
tures [23]. This fundamental technology is based on an immutable “public ledger”, which
is a shared database of data among all members. This public ledger comprises data blocks
that are connected using a cryptographic hash key. Proof of Work (PoW) is the term for
the connecting process [18]. The ledger and the consensus method are both resistant to
data tampering by design. Block data cannot be changed after the fact since this invalidates
earlier block hashes in the blockchain and disrupts node consensus. The use of blockchain
technology allows Bitcoin’s public distributed ledgers to perform digital money transac-
tions cheaply and securely without the need for a third party to validate the transaction,
avoiding the recurrent “double spending” problem [23]. When a transaction is launched, a
smart contract is run as a stored procedure. Decentralized control, data transparency and
auditability, distributed information, and security against hostile actors are all fundamental
features of blockchain technology [18,23].

The blockchain is a distributed database of records that are obtained via digital trans-
actions carried out by various network participants [18]. Each network transaction is
authenticated by the majority of the network system members. Each transaction record is
saved in this concept. Bitcoin is one of the most uncorrupted blockchain applications. The
reason for this is that it uses a digital ledger that is spread over the network to record all
transactions. When a new piece of data is saved in a block, it is added to the chain of blocks.
Blockchain, as the name implies, is a collection of interconnected blocks [18]. The following
four steps must be completed to add a single block to the blockchain. The first is that there
must be a transaction. Consider the case of a last-minute Amazon purchase. We come to
locate the last item and buy it after frantically browsing through several of the items [13].

The second need is that the transaction is validated. The transaction that we performed
after purchasing the goods must be validated. In the same way as other public records,
such as Wikipedia, will have a quality control system in place for new data entries, there
will be a quality control system in place for new data entries. However, in the case of
blockchain, it is a computer network with thousands of machines dispersed throughout
the globe. When a purchase is made, this network of computers is compelled to check
whether the transaction has occurred, that is, they examine the transaction data such as the
time, amount, and so on. The third is that the validated transaction will be saved in a block.
It will be assigned a green signal when the transaction has been verified. The block will
retain all transaction data, including the money, the customer’s signature, and Amazon’s
signature. This block will be joined by thousands of others [13].

Finally, a hash value must be assigned to the newly inserted block. The block is
assigned a unique and identifiable hash value when the transaction is validated. The block
will be added to the blockchain after the hash value has been assigned to it. The block
becomes available to everyone, including the user once it is inserted. When, where, and by
whom the block is uploaded to the blockchain may all be seen by the user [13].

A blockchain is a collection of complete and valid transaction records in the form of
a chronological succession of blocks. A reference (hash value) connects each block to the
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one before it, producing a chain. The parent block of a given block is known as the genesis
block, while the first block is known as the parent block.

As illustrated in Figure 2, a block comprises the block header and the block body [22].

Figure 2. Block structure [22].

The block header provides the following information [22]:

• Block version: block validation rules.
• Previous block hash: the previous block’s hash value.
• Timestamp: the current block’s creation time.
• Nonce: a 4-byte random field that miners adjust for every hash calculation to solve a

PoW mining puzzle.
• Body root hash: the hash value of the Merkle tree root built by transactions in the

block body.
• Target hash: target threshold of the hash value of a new valid block. The target hash is

used to determine the difficulty of the PoW puzzle.

The block body is made up of verified transactions from a given time. The Merkle
tree, in which every leaf node represents a transaction, and every non-leaf node is the
hash value of its two concatenated child nodes, is used to record all legitimate transactions.
Because every node may certify the validity of any transaction by the hash value of the
corresponding branches rather than the complete Merkle tree, such a tree structure is
efficient for verifying the transaction’s existence and integrity. Meanwhile, any changes
to the transaction will cause a new hash value to be generated in the top layer, resulting
in a faked root hash [24]. Furthermore, the maximum number of transactions that may be
contained in a block is determined by the size of each transaction as well as the block size.
These blocks are then linked together in an append-only structure using a cryptographic
hash function. Because it is difficult to change or delete the already validated data, new
data is only added in the form of extra blocks linked with prior blocks. As previously stated,
every change to one of the blocks will result in a new hash value and link relationship. As
a result, immutability and security are achieved [25].
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There are three different forms of blockchain technology [26,27]:

1. Public: A public blockchain, also known as the permissionless blockchain, is one that
does not require any permissions. By performing a bitcoin transaction, mining a block, or
operating and connecting as a node, anybody may become a participant in this blockchain.

2. Permission blockchain: The private blockchain is also known as the permission
blockchain. Only members of the organization or chosen persons can participate in
the event, which is closed to the public.

3. Consortium: This is a somewhat centralized and decentralized system. This type of
blockchain is managed by a consortium of companies, whereas others are managed
by a single company.

Blockchain has several advantages [27]:

1. Time Preservation: Because the certification of the central authority is required for
settlements, this procedure is quicker and less expensive.

2. Cost Reduction: It does away with third-party verification and direct asset transfer.
Sharing a copy of the ledger created by each participant eliminates middlemen and
decreases transaction effort. This is how the blockchain helps you save money.

3. Increased Security: The client system serves as a deterrent to cybercrime and fraud. It
is impossible to tamper with the data on the blockchain since it is shared with millions
of people.

There are several benefits to the blockchain technology in healthcare to ensure trust
among healthcare participants.

1. Administration of patient consent

The reliability of electronic health records (EHRs) that contain a patient’s medical
history, diagnoses, medications, and treatment protocols is essential to the efficacy of virtual
care and health monitoring [28]. To keep a patient’s medical records current, the EHRs
containing extremely sensitive and confidential information must be securely shared with
peers such as hospitals, pharmacies, and health regulatory agencies. By establishing data
access and utilization regulations, telemedicine health legislation has provided individuals
with greater ownership and management opportunities over their clinical data. Due to
the absence of intermediaries, blockchain technology can aid in enforcing trust. Consent
management is guaranteed and protected by blockchain via several peers that are members
of various participating organizations [29,30].

2. Remote treatment traceability

For a remote patient’s health to be accurately assessed during the practice of telehealth
and telemedicine, patients and specialists must interact electronically and face-to-face.
Direct-to-consumer (D2C) and business-to-business (B2B) models are used in the delivery
of telehealth services. Patients in the former model can electronically communicate with
doctors to discuss their health conditions, whereas caregivers in the latter model can
remotely participate in consultation and medical education services (e.g., patient surgery)
via tools that support audio and video conferencing. Health organizations are unable to
manage the silos of patient health records in existing telemedicine systems due to limited
data sharing among themselves [31]. Blockchain technology provides all stakeholders with
a unified and consistent view of patient EHRs [30]. Participating organizations can trace
a patient’s medical history and recommend the appropriate treatment. Using blockchain
technology, audits can be performed to determine who accessed electronic records and
what transactions were carried out [31,32].

3. Traceability of medical kits and devices used at home

In-home medical kits and devices can help patients self-diagnose in a non-clinical
setting. The use of commercially available test kits and devices to assess specific biochemical
responses for self-checkup and early disease detection can reduce overall healthcare costs.
The lack of transparency, visibility, and data provenance about medical kits in traditional
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centralized telehealth-based systems makes it difficult for physicians and patients to obtain
reliable medical kits from reputable manufacturers. In such a case, blockchain technology
can be used to record transactions related to the ownership and performance of testing kits
on the distributed ledger immutably and transparently [32].

4. Personal health records must be kept secure

A Personal Health Record (PHR) is a collection of an individual’s health data, personal
information, and other information related to the patient’s care. The PHR records are
created, maintained, and managed by the data owner. Traditional systems for providing
virtual healthcare services are mostly based on cloud platforms, which are less reliable
because they are managed by a single entity. PHR integrity is also jeopardized in traditional
cloud-based systems. The inherent features of decentralized blockchain technology allow
the owner of medical data to keep the data private [29,31,33].

5. Automated payments

The blockchain supports micropayments in the telehealth sector by accepting cryp-
tocurrency tokens as payment [34]. As a result, the direct transfer of cryptocurrency
tokens to the service provider’s wallet provides a fast, secure, transparent, and auditable
system that does not require a central mediation service to resolve payment settlement
disputes [28,34].

6. Reliable monitoring of elderly care services

The Internet of Things (IoT) technological advancements can help the telehealth sector
remotely monitor a patient’s health using precise biomedical sensors [26]. The biomedical
sensors can continuously monitor and store health data on a high-performance edge server,
which aids in the analysis of a patient’s health condition. Vital indicators such as blood
pressure and body temperature can be linked to health data. However, inaccurate data
captured by a faulty device can result in medical errors. To address this issue satisfactorily,
the decentralized blockchain technology uses smart contracts to register and verify the
access rights of biomedical sensors to store the EHR on the ledger [31]. Smart contracts can
send timely alerts to doctors and health centers in the event of an emergency. In the case
of in-home care, IoT-assisted blockchain systems can proactively send a medication refill
notification to the patient [35].

7. Drug delivery and pharmacy refill traceability

Blockchain technology, through hash functions, can help to eliminate potential pre-
scription errors and record alteration [28,36]. Registered pharmacists can access the drug
prescriptions stored on the blockchain to verify, prepare, and deliver the medications
to patients. In exchange, the shipper can record the shipment’s current location on the
blockchain, allowing pharmacists and patients to track and trace it. Furthermore, due to
the transparency and traceability of blockchain transactions, patients and doctors can verify
the legitimacy of the medicine via its data provenance [31].

8. Reliable health insurance services

Blockchain technology can help insurance providers reduce insurance fraud (consent-
based). Patients can be compensated for allowing insurance companies to use their medical
records [28,33,34]. Furthermore, many insurance companies provide premium holders
with incentives in the form of cryptocurrency tokens for maintaining a healthy lifestyle,
such as tracking gym visits. The smart devices attached to the patient can transact on the
blockchain to establish trust.

9. Specialist referral services with a good reputation

In a blockchain-based solution, the referring healthcare provider can store the referral
documents on an IPFS server, which returns an IPFS hash of the document for storage on
the blockchain, allowing consulting healthcare specialists to access them [31]. It is possible
to determine whether the stored document on the IPFS server has been altered using the
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IPFS hash stored on the blockchain. The consulting healthcare specialist can examine the
patient’s health report, and then health specialists can store such a diagnosis report on the
blockchain ledger. The referring healthcare provider can update the reputation score on the
blockchain based on the total service time and satisfaction score of the consulting health
specialist [31].

10. Patient follow-up care service automation

Blockchain technology can automate the patient’s follow-up service. Smart contracts
can automatically send a notification to the patient, physician, and nursing staff to remind
them of the upcoming follow-up schedule. The physician can access the patient’s trans-
parent and immutable EHR to confirm the health status that was recorded during the last
follow-up meeting (virtual). Furthermore, the patient can use a smart contract to register
and share the IPFS hash with the physician for accessing health reports by using IPFS
servers that can host medical test reports [28,31,33].

3. The Proposed Smart Clinic

This section presents the proposed smart medical clinics which depend on the medical
diagnosis of the patient without medical staff. The proposed medical clinic can only serve
one patient at a time. Then, the process is carried out to receive a new patient.

The proposed algorithm is divided into two phases. The first phase is entering the
clinic’s website which consists of three steps: the first step is registration, data collection,
and receiving symptoms of the patient. The second step is generating the QR code and
determining the appropriate appointment for the patient. The final step is suggesting an
appropriate treatment protocol. The second phase is visiting the clinic which consists of
two essential steps, the sensing and measurements stage, then the X-ray stage. The block
diagram of the phases of the smart clinic is presented in Figure 3.

Figure 3. The block diagram of phases of the smart clinic.
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3.1. Phase I: The Clinic’s Website

The website is considered an interface that is used to communicate between the
patient and the doctor without any physical connection between them. Because the cases
of COVID-19 are exponentially increasing, a number of healthcare providers and hospitals
cannot provide their services to this huge number of people at the same time, so one of
the important reasons for creating the website is to organize the booking appointments
for the patients. In addition, booking an appointment with only one doctor helps many
patients, since the doctor gives advice to them remotely. Figure 4 presents the front page of
the clinic’s website.

Figure 4. The front page of the proposed clinic’s website.

There are three steps offered by the website that the patient must take when they enter
the website, including the following:

1. Registration, data collection, and receiving symptoms of the patient

When a person feels tired, or some symptoms of COVID-19 are experienced, they can
enter the clinic’s website to register and fill out the form that includes two parts:

• Data Collection

Personal information such as Name, National ID, gender, phone number, etc. The
form is shown in Figure 5.

Figure 5. The registration form.
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• Symptoms of the Patient

- The chronic diseases that the patient suffers from (e.g., diabetes, hypertension,
heart disease, obesity, cancer, asthma, etc.).

- The symptoms that the patient is feeling (e.g., fever, cough, tiredness, loss of taste
or smell, sore throat, headache, aches and pains, diarrhea, red or irritated eyes).

- Whether the patient is a smoker or not.

This information is used to determine the appropriate treatment protocol for each person.

2. QR code generation and determination of the appropriate appointment for the patient

After filling out the form and answering all questions, the patient now can choose the
appropriate date and time to visit the clinic for the examination. Then, the patient clicks
“submit” to confirm the Reservation. After confirmation, a QR Code will be generated and
sent to the patient, as in Figure 6, to be used to access the clinic. This information is stored
in the database with the ID and the QR code that the patient uses to enter the clinic to do
the test.

Figure 6. QR code generation.

3. Suggestion of an appropriate treatment protocol

After the patient visits the clinic, a suitable protocol will be suggested based on the result.

3.2. Phase II: Clinic Visit

The patient can use the QR code and the ID to access the clinic by scanning the QR
code using the QR code reader placed at the entrance door. The clinic structure consists
of two essential stages, the sensing and measurements stage, and the X-ray stage. Based
on the result of these stages, there are different scenarios. The plan of the proposed smart
clinic is shown in Figure 7.

Depending on the result of patient parameter readings (temperature and SpO2), there
are two different scenarios: Scenario I: Normal case; then the patient will take the green
path “Path (A)”. Scenario II: Abnormal case, then the patient will take the yellow path
“Path (B)” or the red path “Path (C)”. All of these scenarios will be presented in detail in
Section 3.2.2.
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Figure 7. The plan of the proposed smart clinic.

3.2.1. Stage 1: Sensing and Measurements

In this stage, parameter readings have been taken by using different types of sensors
and measurement equipment. A schematic diagram of the sensing and measurements
stage of the second phase of the proposed smart clinic system is shown in Figure 8.

Figure 8. Schematic diagram of the sensing and measurements stage.

The sensing and measurements stage consists of five components: Node-MCU con-
troller, Sensing elements (SpO2 and Temperature Sensor), power supply, O-LED display,
and webpage.
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Node MCU Controller

Node MCU is an IoT-Platform that is a low-cost, widely used device that can connect
to a Wi-Fi network and communicate with the Internet as well as build up its own network
for other devices to connect to directly. In addition, it can be driven by a low-voltage power
supply. This broadens the Node MCU’s range of applications.

The Node MCU controller is regarded as the system’s brain, accepting readings from
both the temperature sensor and the blood oxygen saturation level (SpO2) sensor, and
displaying the results on an O-LED display in addition to having the option of uploading
the results to a website.

Sensing Elements

The proposed smart clinic system architecture has two main sensors, blood oxygen
saturation level (MAX30100) (SpO2) and temperature sensor (MLX90614).

• SpO2 Level

- Blood oxygen saturation is calculated using the number of oxygenated and deoxy-
genated hemoglobin molecules, which is represented as a percentage by the SpO2
parameters. According to medical research, SpO2, or the percentage of oxygen in
a healthy human body, should be greater than 94%, or more than 94 hemoglobin
in 100 hemoglobin.

- Pulse oximetry technology measures the amount of SpO2 in the body by using infrared
and red light. Oxygenated hemoglobin always absorbs infrared light while passing
a red light, and deoxygenated hemoglobin always absorbs red light while passing
infrared light. The SpO2 data is derived from this pass-through and absorption.

- The pulse rate is also determined using the same data since the heart rate causes
the blood pressure to rise because the amplitude of the wave created by the
raw data is high and low depending on the heartbeat, which is calculated and
shown as the PR value. An adult human being’s typical heart rate ranges between
60 and 100 beats per minute.

The structure of the pulse oximeter is presented in Figure 9.

Figure 9. The structure of the pulse oximeter.

• Temperature Sensor MLX90614

- The MLX90614 temperature sensor has been used in the proposed smart clinic; it is
a contactless IR temperature sensor that works on the Stefan Boltzmann principle.
It states that everybody radiates IR radiation proportional to their temperature.
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A specific object’s temperature can be measured with the MLX90614 Contactless
Infrared (IR) Digital Temperature Sensor between −70 ◦C and 382.2 ◦C. The sensor
communicates with the microcontroller using the I2C protocol and measures the
object’s temperature using IR rays without making any physical contact.

3.2.2. Stage 2: X-ray Image

Capturing a chest X-ray image is one of the initial stages in determining whether the
patient is infected with COVID-19 or not. A chest X-ray in most cases shows abnormalities,
such as consolidation, caused by COVID-19 viral pneumonia. The detail of this step is
presented in Section 5.

Depending on the result of patient parameter readings (temperature and SpO2), there
are two different scenarios:

• Scenario I: Normal case

- The patient is considered negative when he has a normal temperature and normal
SpO2 reading or a high temperature and normal SpO2 reading. The patient takes
the green path “Path (A)” toward the lobby and leaves the clinic from the side
door shown in Figure 7. Then, the sterilization process is carried out.

- In the first state of normal temperature and normal SpO2 reading, the patient can
leave and go home.

- In the second state of high temperature and normal SpO2 reading, the patient can
visit the medical service rooms to check up on the reason for the high temperature.

• Scenario II: Abnormal case

- The patient is considered negative when he has a high temperature and abnormal
SpO2 reading. In this case, the probability of being infected with a virus or being
a virus carrier is increased. Therefore, an X-ray check becomes a necessary step.

- The patient is exposed to chest X-ray radiation. ResNet152 model is utilized in
the COVID-19 detection system. The result of the X-ray image detection is either
a “negative case” or a “positive case”.

- In the negative case, the patient takes the yellow path “Path (B)” toward the
lobby and leaves the clinic from the side door as shown in Figure 7. Then, the
sterilization process is carried out.

- In the positive case, the patient takes the red path “Path (C)” toward the isolation
rooms; according to the patient’s case and registration data, the appropriate
treatment protocol is selected.

This information is stored in the database as historical data for this patient for fu-
ture requirements.

Some patients prefer to follow the recommended treatment protocol and isolate them-
selves at home. Instructions and the recommended treatment protocol are announced on
the patient’s pages.

4. The Proposed COVID-19 Detection from an X-ray Image Using Deep Learning

This section presents the proposed diagnosis of whether the patient has COVID-19 or
not from an X-ray image that had been captured from Stage 2 in Section 3. The proposed
algorithm depends on Convolutional Neural Network (CNN) model. The ResNet152
pre-trained model on the same type of medical images is introduced, and its efficiency is
discussed. Finally, the proposed algorithm based on ResNet152 is developed. The block
diagram of the proposed COVID-19 detection algorithm is presented in Figure 10.

The proposed algorithm presented in Figure 10 collects the X-ray images from different
datasets. Next, the preprocessing step is applied to the collected image using several
techniques to enhance these images. In the third step, the enhanced images are divided into
training and testing sets. Finally, the classifier is evaluated using testing images to classify
the images as positive or negative. All these steps are presented in detail in Sections 4.1–4.4.
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Figure 10. The block diagram of the proposed COVID-19 detection algorithm from X-ray images.
The letters (A–C) are used to show different samples of x-ray images.

4.1. Dataset Construction

There are different databases, regularly updated day by day. The dataset that had
been used in the proposed algorithm is constructed from several datasets:

1. Radiopaedia [37]: open-edit radiology resource where radiologists submit their daily cases.
2. SIRM [38]: the website of the Italian Society of Medical and Interventional Radiology,

which has a dedicated database of COVID-19.
3. EuroRad [39]: a peer-reviewed image resource of radiological case reports.

After the construction of the proposed dataset, the number of normal images is 43%
and that of the COVID-19 images is 57%.

4.2. Preprocessing

The next step after collecting the images is preprocessing these images. The prepro-
cessing step is an important step to make all images nearly the same. First, all images are
scaled to be the same size of (224 × 224) pixels. Next, some operations are applied to the
images to be the same such as resizing, shear, zoom, rotation, padding, horizontal flipping,
and cropping, which can be used to remove the overfitting of the data.

4.3. Training Model

After preprocessing step, all images now have the same size and orientation. The
images are divided into training and testing sets. The training images are equal to 80% of
all images and the testing images are the remaining 20% of the images. The training images
are used to train the deep learning classifier, then the testing images are used for testing the
classifier. The data was trained for up to 20 epochs.

4.4. Classification

Following training, the classifier is evaluated using testing images. Deep learning and
the ResNet model are at the heart of the model. A Residual Neural Network (ResNet) is an
Artificial Neural Network (ANN). It is a gateless or open-gated variant of the HighwayNet.
The suggested model is fine-tuned using hyperparameters.

Transfer learning is the process of reusing learning from a base model to a target
model, which is used in the proposed ResNet model. A previously trained model can
contribute to the target model’s starting point. It is frequently regarded as an optimization



Processes 2023, 11, 34 18 of 27

strategy for saving time and improving efficiency. This is advantageous when the features
are universal, which means they are appropriate for both the source and target datasets
rather than only the base task. The transfer learning approach has the potential to save
resources such as processing power and time. Transfer learning procedures are classified
into two categories. First, fixed features are removed, and then the model is trained by data
from the intermediate layer. Second, the data samples are fine-tuned.

The net weights of ResNet152 are used by the ResNet and the completely linked layer at
the end is replaced. Figure 11 depicts a neural network, such as a ResNet Architecture, with
the input x. The essential mapping, which is accomplished by learning F, was examined (x).
ResNet’s activation function is at the top. Prior to the activation function, the mapping was
examined. Consider mapping in terms of F(x) and residual mapping in terms of F(x) − x.

Figure 11. ResNet architecture.

ResNet Architecture

A Residual Neural Network (ResNet) is made up of an input layer, four stages, and an
output layer, as shown in Figure 12. Each stage indicates a step in the process that is carried
out sequentially. It takes input from previous stages, runs one step of the CNN, and outputs
the results. ResNet is broken into five stages, with Stage 0 serving as a pre-processing of
input and the latter four stages consisting of a bottleneck and having a more comparable
structure. In addition, an input stem performs a 7-7 convolution, has 64 output channels,
and a stride of 2. Following that is a 3-3 max pooling layer with a stride of 2. The input
width and height were effectively reduced four times in this layer, but the channel size was
increased to 64.

There is a down-sampling block and leftover blocks in Stage 2 and the subsequent
stages. The residual blocks work in the same way as the down-sampling blocks, with the
only change being the stride of the convolutions, which in this example is 1. Changing the
number of residual blocks yields alternative models, such as the ResNet50 and ResNet152,
which simply represent the number of convolutional layers in the network.



Processes 2023, 11, 34 19 of 27

Figure 12. The ResNet Architecture, the convolution kernel size, and output channel size pooling layers.

Convolutional layers, an activation unit, pooling, and batch normalization are the key
components of ResNet. Figure 13 illustrates these components.

Figure 13. Layers of ResNet.

1. Convolution layer

Convolution layers in neural networks conduct the essential process of extracting
information from input pictures. This convolution is accomplished by employing a series
of filters. From the input photos, this layer generates feature maps.

2. Activation function

A transformation is performed to the output of each convolution layer in a convolution
neural network. This is done to introduce nonlinearity into the framework. The Rectified
Linear Activation (ReLU) function is a prominent activation function. The ReLU is a
piecewise linear function that outputs the input directly if it is positive; otherwise, it outputs
zero. It has become the default activation function for many types of neural networks
since it is quicker to train and frequently results in higher performance. This ReLU is less
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expensive to compute and has better gradient convergence than other activation functions.
If the input is negative, the output of ReLU is zero; if the input is positive, the output equals
the input.

3. Pooling layer

The feature maps obtained from convolution operations are summarized using a
pooling layer. This layer decreases the number of parameters that are considered during
the training process. This also assures that the computation time is reduced. Furthermore,
this layer aids in the regulation of the over-fitting procedure. The output of max pooling
is the maximum value of the input element. In the case of average pooling, however, the
output is the mean value of the input element.

4. Batch normalization

The batch normalization test is used to enhance the quality of convergence throughout
the training period. This layer regularizes the preceding layer’s output. This layer has the
advantage of allowing the use of a greater learning rate.

5. The Proposed Blockchain-Based Pharmaceutical System

This section applies the proposed algorithm with the blockchain to the pharmaceutical
supply chain as a case study as shown in Figure 14. The proposed medical kit and sensing
devices are connected to physicians and Health Authority through the blockchain network.

Figure 14. A high-level architecture for the proposed blockchain-based system for the pharmaceutical
supply chain.

The structure of the proposed algorithm with the blockchain on the pharmaceutical
supply chain is presented as follows:

1. The blockchain network connects the medical kit with physicians and Health Author-
ity. The blockchain network will use several smart contracts which will be applied to
the data passed through it, such as:
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• Registration Smart Contract;
• Authentication Smart Contract;
• Patient monitoring Smart Contract;
• Consent Management Smart Contract;
• Drug prescription verification.

Using these smart contracts, the patient’s data will be secured against any unautho-
rized use.

2. The medical kit and sensing devices: the medical kit has sensing devices that read the
measurements of the patients. First, the kit sends device registration to the Health
Authority through the blockchain network to access the login to the decentralized
storage systems connected to the Health Authority. If the login fails, the blockchain
network sends an emergency alert; otherwise, the registration succeeds. Next, the
medical kit sends the updated measurement reports, which include Temperature
value, Pulse Rate, and SpO2, to physicians through the blockchain network when they
ask for the reports. Finally, the kit can directly store the final measurements report in
the decentralized storage systems.

3. The physicians: first, the physicians will send the registration to access the data stored
in the decentralized storage systems in the Health Authority through the blockchain
network. If the registration fails, the blockchain network will return an emergency
alert; otherwise, the registration succeeds. Next, the physicians can inquire about
measurement reports for any patient; then, they obtain permission for requested
reports from the blockchain network; then, they can update reports based on patents’
analysis. Finally, the physicians can directly access the decentralized storage systems
in the Health Authority to update the patients’ periodical reports.

4. The Health Authority: all operations are done on it through the blockchain network
by the physicians and the medical kit. The Health Authority receives regular registra-
tion from physicians and the medical kit; then, it checks whether to accept or deny
these registrations. After accepting the registration, it sends the requested medical
protocol and diagnosis report. Next, it receives a request to obtain permission for
requested information from the physicians. Finally, it calculates and updates the
reputation score.

5. The Decentralized Storage Systems: it is a storage system to store the patients’ data
and different cure protocols. It has several storage protocols such as IPFS, STORJ.IO,
SWARM, etc. The medical kit can directly send the measurement reports that include
Temperature value, Pulse Rate, and SpO2 to the storage system. In addition, the
physicians can directly request or update the patients’ periodical reports.

Any patient who wants to use the proposed blockchain-based system can take the
following steps:

1. Log into the website for registration, then input some personal information and the
symptoms. This information is used to determine the appropriate treatment protocol
for each person. Then, the patient can choose the appropriate date and time to visit
the clinic for the examination. All patient data are now stored in the data storage.

2. The patient now can visit the clinic. The clinic structure consists of two essential
stages, the sensing and measurements stage, and the X-ray stage. The sensing and
measurements stage consists of five components: Node-MCU controller, sensing
elements (SpO2 and Temperature Sensor), power supply, O-LED display, and web-
page. The readings of the sensors’ measurements can decide whether the patient
needs to proceed to the X-ray stage or not. All these measurements are stored in the
Decentralized Storage Systems in the patient’s file. The physicians can see or update
the patient’s file anytime.

3. Now, the patient can obtain treatment and cure protocol due to the readings of
the sensing elements. The cure protocol is also stored in the patient’s report in the
storage system.
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4. When the patient visits at another time, their report will have all the symptoms they
reported before together with the cure protocol he received, and any new symptoms
will be stored in the same report.

6. Experimental Results

This section outlines the experiments and the findings. Google Collaborator, often
known as Colab, carried out the trials. The Colab may provide a service using the K80 GPU
(Tesla). The NVIDIA 12 GB RAM can support a 12 h operation. Google Collaboratory is an
open-source cloud-based platform that distributes information such as a Jupyter notebook
for deep learning. This cloud-based service was utilized for testing reasons. Furthermore,
NumPy, pandas, TensorFlow, and Matplotlib were used as libraries for the experiment. In
the trials, an optimizer named Adam was used for the situation of a learning rate (at the
start) of 0.001. The model’s training was carried out utilizing a dynamic learning strategy.

The studies were conducted using a variety of parameter values, including a factor of
0.5, patience of 5, and a minimum learning rate of 0.3–10. The validation loss was tracked
using an early halting strategy with a patience value of 5. If the next 5 epochs fail to lower
the validation loss, the training phase is over. The epochs were set at 20 for the experiments,
with a batch size of 64.

In the output layer, sigmoid activation is present. It may be represented using the
Equation (1) illustrated in Figure 15:

σ(z) =
1

1 + e−z . (1)

Figure 15. Sigmoid activation in the output layer.

The next sections describe data pretreatment, image normalization, and data augmen-
tation. We consider data preparation first. This preprocessing enhances the visual capability
of the training operation. Several variables can help enhance your vision. These are the
rise and, in contrast, the elimination of high/low spatial frequency components, and the
decrease in the image’s noise component. As part of the preprocessing in this study, the
images are resized to (224 × 224) pixels and their intensities are normalized. The intensity
of image pixels is standardized from their original 0–255 values to a normal distribution
using the “min–max normalization” approach in intensity normalization. The bias factor is
thereby eliminated, resulting in uniform distribution.

Figure 16 presents the accuracy curve for 20 epochs of the ResNet152 model. The peak
value of these curves could be determined. Figure 17 depicts the loss curves for 20 epochs
of the ResNet152 model. It can be observed that while epochs are increasing, the losses are
decreasing. The most accurate result for this algorithm was obtained while the value of the
loss was low.
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Figure 16. Accuracy curve based on 20 epochs for ResNet152.

Figure 17. Losses of model based on 20 epochs for ResNet152.

This model (ResNet152) was selected after comparing this model with other models
such as linear and DenseNet121. The ResNet152 provides higher accuracy than the other
algorithms. Many different models were tested to see which is a better fit for this problem.
They all incorporate transfer learning, which utilizes a pre-trained model to use as a base,
and layers are added afterward to adapt to the problem we are working with. This reduces
the time needed to train the network. All models utilize a different base model; however,
each is a Convolutional Neural Network (CNN). CNN is the base structure for image
classification tasks as it can extract features from images—edges, lines, and other shapes.

The proposed model was first based on a linear model as a baseline; it was a very
simple model with only one trainable hidden layer. A pre-trained ResNet is used as a base,
but all the parameters are set to be untrainable. The proposed model was improved by
using deep learning and adding more hidden layers to improve the performance.

DenseNets require fewer parameters and allow feature reuse; they result in more
compact models and have achieved state-of-the-art performances and better results across
competitive datasets as compared to their standard CNN or ResNet counterparts. Table 2
shows a comparison between linear, DenseNet121, and ResNet152 models.

Table 2. Comparison between linear, DenseNet121, and ResNet152 models.

Model
Metric Parameter

Training Accuracy Training Loss Validation Accuracy Validation Loss

Linear 95.7% 13.8% 94.3% 16.4%

DensNet121 88.5% 30.3% 87.4% 30.5%

ResNet152 97.5% 8.6% 95.2% 14.9%
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Figures 18–21 present training accuracy, validation accuracy, training loss, and valida-
tion loss, respectively, for linear, the DenseNet121, and the ResNet152 models.

Figure 18. Training Accuracy curves for ResNet152, Dense121, and linear models.

Figure 19. Validation Accuracy curves for ResNet152, Dense121, and linear models.

Figure 20. Training Loss curves for ResNet152, Dense121, and linear models.
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Figure 21. Validation Loss curves for ResNet152, Dense121, and linear models.

7. Result Discussion

Table 2 shows that the linear model provides higher training and validation accuracy
with lower training and validation loss compared to the DensNet121 model. When the
linear model improved after the implementation of deep learning in the ResNet152 model,
the training and validation accuracy increased to 97.5% and 95.2%, respectively, and the
training and validation loss reduced to 8.6% and 14.9% respectively.

Figures 17 and 18 show that the ResNet152 model provides higher training and
validation accuracy when the number of epochs increases (20 epochs) than the Dense121
and linear models.

From Figures 19 and 20, the ResNet152 model provides lower training and validation
loss when the number of epochs increases (20 epochs) than the Dense121 and linear models.

8. Conclusions

IoT is one of the emerging fields that has been recently used in many applications,
including healthcare. However, IoT systems, especially in healthcare, suffer from different
vulnerabilities and attacks. This paper designed an IoT smart healthcare system based on
blockchain technology for a secure and efficient system. It is designed to work indepen-
dently without human intervention, saving medical staff from any exposure to disease. This
paper also proposed COVID-19 detection using a deep learning algorithm from an X-ray
image. The transfer learning ResNet152 model is utilized to develop a fully automated and
robust COVID-19 detection system. The paper also presents the proposed blockchain-based
pharmaceutical system. The proposed systems and algorithms are compared to the most
recent algorithms and show higher performance quality in terms of accuracy. The proposed
algorithm produces higher training and validation accuracy with lower training and vali-
dation loss than the other algorithms using 20 epochs. The training and validation accuracy
reached 97.5% and 95.2%, respectively. For future work, the proposed system needs to
be compared with more algorithms. In addition, it is planned to deploy the proposed
framework in a physical hospital as a pilot project to be generalized if proven effective.
More deep learning algorithms could be examined for better performance.
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