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Abstract: NGH (natural gas hydrate) is a sort of green energy with huge reserves. When drilling and
exploiting NGH, the complex drilling environment will aggravate the vibration of the drill string,
which will destroy the stability of the NGH reservoir and make it decompose to produce a large
amount of gas. Gas flows into the annular with the drilling fluid, filling the annular with a gas–liquid
two-phase flow with a complex variation in the characteristic parameters of the pipe flow. The mixed
gas–liquid annular flow will make the drill string vibration more complex and intense. In this study,
the nonlinear mathematical model of the drill string lateral vibration is established by considering
the influence of the internal and external fluids, gravity, and the bottom axial force on the lateral
vibration of the drill string. The effect of the annular fluid velocity and gas content on the lateral
vibration of the drill string was studied through experiments and numerical simulations. This study
found that, with an increase in annular fluid velocity and gas content, the stability of the drill string
is weakened, and the lateral vibration is intensified, so the effect of the annular fluid velocity on the
lateral vibration of drill string is greater than that of the annular gas content.

Keywords: NGH; drill string; drilling; fluid–structure interaction; gas–liquid two-phase flow

1. Introduction

Natural gas hydrate (also known as combustible ice) is a new kind of green energy.
NGH is a kind of clathrate crystalline solid. This solid contains a large number of water
cavities, which contain a large number of gas molecules (mainly methane). After the
decomposition of 1 m3 NGH, natural gas in a 164 m3 standard condition can be released.
NGH is considered as an alternative energy for the future due to its huge reserves and
its clean and pollution-free characteristics. At present, the discovered NGH reserves in
the world are about 2.1 × 1016 m3. These are about twice the world’s proven oil and gas
reserves [1–5]. With the burning of a large amount of fossil energy, a lot of greenhouse gases
(mainly CO2) are produced, which greatly damages the global ecological environment.
Natural gas, as a common energy source, can significantly reduce the production of CO2,
as shown in Figure 1 [6].

On the other hand, NGH may pose a great challenge to the environment, while
solving the energy problem. Since the chemical properties of NGH are unstable, it easily
decomposes during extraction. Methane from the breakdown of gas hydrates, if released
into the atmosphere, can accelerate global warming, because methane has a far greater
impact on global warming than carbon dioxide. Simultaneously, global warming may lead
to changes in the properties of NGH reservoirs, which will promote the decomposition of
NGH and produce large amounts of methane that go into the atmosphere, exacerbating
global warming [7,8].
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Figure 1. General relationship of CO2 produced by common combustion fuels. 

Compared with common fossil fuels such as gasoline and coal, natural gas’s carbon 
dioxide emissions have fallen by 16–50%. Meanwhile, the global total consumption of nat-
ural gas is also increasing year by year, reaching 3.62 × 1012 m3 in 2017, with a year-on-year 
growth of 2.2% [9]. Forecasts from the International Energy Agency state that the total 
global gas consumption will be more than 4 × 1012 m3 by 2023, among which the incremen-
tal part is contributed to by China, the Middle East, the USA, India, Africa, and Latin 
America, as shown in Figure 2 [10]. 

 
Figure 2. Global natural gas consumption growth forecast for 2023 (compared to 2017). 

In order to deal with the problem of energy shortage, many countries make much 
account of the exploration and development of NGH in the world. NGH is mainly distrib-
uted in the seabed’s shallow layer and can exist stably in an environment of low temper-
ature and high pressure. In order to increase the contact area between the well and the 
NGH reservoir and improve the exploitation efficiency, horizontal well drilling is often 
used to exploit NGH. Drilling for NGH is a complex process that requires the establish-
ment of a successive pipeline from the ground to a reservoir for gas production, complex 

Figure 1. General relationship of CO2 produced by common combustion fuels.

Compared with common fossil fuels such as gasoline and coal, natural gas’s carbon
dioxide emissions have fallen by 16–50%. Meanwhile, the global total consumption of
natural gas is also increasing year by year, reaching 3.62 × 1012 m3 in 2017, with a year-
on-year growth of 2.2% [9]. Forecasts from the International Energy Agency state that the
total global gas consumption will be more than 4 × 1012 m3 by 2023, among which the
incremental part is contributed to by China, the Middle East, the USA, India, Africa, and
Latin America, as shown in Figure 2 [10].
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Figure 2. Global natural gas consumption growth forecast for 2023 (compared to 2017).

In order to deal with the problem of energy shortage, many countries make much ac-
count of the exploration and development of NGH in the world. NGH is mainly distributed
in the seabed’s shallow layer and can exist stably in an environment of low temperature
and high pressure. In order to increase the contact area between the well and the NGH
reservoir and improve the exploitation efficiency, horizontal well drilling is often used to
exploit NGH. Drilling for NGH is a complex process that requires the establishment of
a successive pipeline from the ground to a reservoir for gas production, complex fluid
injection, or reservoir monitoring and evaluation [11–13]. Figure 3 is the schematic diagram
of NGH drilling with horizontal wells.
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Figure 3. Horizontal drilling for NGH.

In the process of drilling horizontal wells to extract NGH, the complex drilling en-
vironment will change the nature of the NGH reservoir, resulting in the decomposition
of NGH to produce a large amount of gas (mainly natural gas). The gas flows into the
annular (the interspace between the drill string and the wellbore) along with the drilling
fluid, making the fluid in the annular become a gas–liquid two-phase flow with a complex
variation in the characteristic parameters of the pipe flow. In the meantime, the properties
of drilling fluid change due to the addition of gas, leading to severe lateral vibrations of the
drill string. Meanwhile, the severe vibration of the drill string will change the environment
of the NGH reservoir and accelerate the decomposition of NGH. This drilling process is
depicted in Figure 4. In addition, a too intense drill string vibration can easily cause a
formation collapse and other serious drilling accidents. The drill string is an indispensable
part of the drilling process, and also the key factor that decides the success or failure of
the drilling process [14–17]. The vibration reduction in the drill string mainly depends on
the annular fluid, as, in the process of NGH drilling, the decomposition of NGH changes
the nature of the annular fluid. This produces a great effect on the lateral vibration of the
drill string, which leads to a drill string stress mutation caused by a bigger alternating load
that can prematurely invalidate the drill string, greatly increasing the difficulty and cost of
drilling.
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Figure 4. Drilling in the NGH reservoir.

The failure of the drill string is always a difficult challenge in oilfield drilling, and
the main reason for drill string failure is the violent vibration of the drill string. In recent
years, many scholars have completed a mass of studies on the transverse vibration of the
drill string in energy exploitation. In order to study the complex drilling process, a large
number of linear and nonlinear models have been established. In continuous research, these
models are widely used [18,19]. Among the early studies, it is worth noting that Huang
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and Mclvor studied the transverse vibration of a long vertical drill string in a plane and the
coupled axial and transverse nonlinear vibration of the drill string under dynamic load,
successfully applying the Galerkin method [20,21]. The Galerkin approximation method
is useful for calculating nonlinear drilling models [22]. Wang et al. studied the dynamics
of the drill string, considering the coupling between the drill string and drilling fluid and
the influence of support stiffness [23]. Paidoussis et al. and Moditis et al. considered the
drill string as an elastic cantilever suspended in a rigid outer tube with a large diameter.
The dynamic characteristic of the drill string with axial flow inside and outside it has been
studied, and a kinematic model has been established [24,25]. Huo et al. and Zhu et al.
considered the nonlinear coupling of the axial and transverse displacements of rotating
unfolded beams and studied the vibration behavior of drill strings more accurately and
comprehensively [26,27]. Considering the axial, torsional, and transverse vibrations of the
drill string, Zhang derived a fully coupled finite element equation of the drill string and
numerically simulated the stick–slip and rotational vibrations [28]. Volpi et al. established
a lumped parameter model to study the coupled torsional–transverse vibrations of the
drill string [29]. Yigit et al. studied the lateral vibration of a non-rotating drill string by
considering the impact between the drill string and the well wall and the existence of
drilling fluid. The drill string is simulated as a thin beam with simple support [30].

The influence of the fluid character of drilling fluid on drill string vibration has been
studied extensively [31–34]. Ytrehus et al. and Chang et al. investigated the shake of
the drill string in drilling by changing the properties of drilling fluid [35,36]. Yang et al.
researched the influence of drilling fluid on the transverse vibration frequency of the drill
string through simulation and experiment [37]. A lot of experts have used numerical
methods to study the effect of the annular fluid type and properties on the pressure
drop [38–40]. Lian et al. combined natural gas drilling with a horizontal well, established
a theoretical model of the drill string dynamics for gas drilling, and deduced nonlinear
dynamic equations to research the dynamic response of the drill string [41]. Khajiyeva
et al. derived the kinetic equation of the lateral vibration of the drill string and studied the
influence of annular gas parameters on the transverse vibration of the drill string [42]. Many
experts have studied the loss of pressure of the annular multiphase flow under different
flow patterns by means of experiment and simulation [43–45]. Zhou et al. studied the
transient flow law of annular air–liquid two-phase flow through numerical simulation. [46].

In conclusion, most studies have only researched the effect of the flow in the drill
string and the single-phase fluid (gas or liquid) in the annular on the transverse vibration
of the drill string and did not consider the influence of the presence of both gas and fluid
in the annular on the lateral vibration of the drill string. Although a few experts have
studied the flow feature of annular two-phase flow, they have not studied the influence of
two-phase flow on the transverse vibration of the drill string.

In this paper, the nonlinear lateral vibration of the drill string under the coupled action
of gas–liquid two-phase flow is researched, and the dynamic theoretical model of the lateral
vibration of the drill string is derived. Through experiments and by solving equations of
motion, the effect of fluid velocity and gas holdup in the annular on the lateral vibration
of the drill string is analyzed. In order to facilitate the establishment of and solution by
the mathematical model, the annular fluid was simplified, and the drilling mud, free gas,
cuttings, and probably some hydrate particles in the annular fluid were not considered.
It was assumed that the annular fluid only included gas and liquid, and the two were
considered to be evenly mixed.

2. Derivation of the Lateral Vibration Model of the Drill String System

In this part, a specific dynamics model is obtained. The simplified mechanical model
of the drill string in horizontal wells is shown in Figure 5. It is assumed that the drill string
is a continuous elastomer of an equal section of length L, and the two ends of the drill
string are fixed with hinge supports. There is an incompressible liquid with a flow rate Ui
in the drill string. The liquid flows through the bottom of the drill string and mixes with
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the gas decomposed by NGH to become a gas–liquid two-phase flow, which then flows
into the annular at a flow rate Uo. Due to the bit constantly cutting rock while drilling,
there is an axial force TL at the bottom of the drill string. Next, the drill string element, the
fluid element in the drill string, and the fluid element in the annular with a length of δx
will be intercepted in the mechanical model shown in Figure 5, and the lateral vibration
governing equation of the drill string system will be established based on the loads and
interaction forces of these three elements.
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2.1. Force Analysis of Drill String Element

The force of the drill string element is shown in Figure 6.
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According to the force of the drill string element, the balance equation of the force in
the x and y directions is as follows:

∂T
∂x + ∂

∂x

(
Q ∂y

∂x

)
+ Fit − Fin

∂y
∂x − Fet + Fen

∂y
∂x = 0 (1)

Mt
∂2y
∂t2 −

∂

∂x

(
T

∂y
∂x

)
− ∂Q

∂x
− Fin − Fit

∂y
∂x

+ Fen + Fet
∂y
∂x

= 0 (2)

where Q is the lateral shear force; Mt is the mass per unit length of the drill string; T is the
axial tension; Fin and Fen are the normal hydrodynamic forces generated by the flow inside
and outside the drill string, respectively; Fit and Fet are the tangential hydrodynamic forces
generated by the flow inside and outside the drill string, respectively; and y is the lateral
deflection.
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According to Euler–Bernoulli beam theory:

Q = − ∂

∂x

(
EI

∂2y
∂x2

)
(3)

where E is the elastic modulus of the drill string, I is the moment of inertia of the drill string.
By substituting Equation (3) into Equations (1) and (2) and ignoring high-order small

quantities, we can obtain

∂T
∂x + Fit − Fin

∂y
∂x − Fet + Fen

∂y
∂x = 0 (4)

EI
∂4y
∂t4 + Mt

∂2y
∂t2 −

∂

∂x

(
T

∂y
∂x

)
− Fin − Fit

∂y
∂x

+ Fen + Fet
∂y
∂x

= 0 (5)

2.2. Force Analysis of Fluid Element in Drill String

The fluid elements in the drill string are affected by gravity, pressure, and the interac-
tion forces with the drill string, as shown in Figure 7.
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According to the force of the fluid element in the drill string, the balance formula of
the force in the x and y directions is as follows:

Fit − Fin
∂y
∂x

= −∂AiPi
∂x

(6)

− Fin − Fit
∂y
∂x

=
∂

∂x

(
AiPi

∂y
∂x

)
+ Mi f

(
∂2y
∂t2 + 2Ui

∂2y
∂x∂t

+ U2
i

∂2y
∂x2

)
(7)

where Ai is the internal cross-sectional area of the drill string, Pi is the pressure of the fluid
in the drill string, and Mifg is the gravity of the fluid in the drill string.

2.3. Force Analysis of Annular Fluid Element

The force condition of the annular fluid is very complex, so the force balance equation
cannot be established directly. The annular fluid forces acting on the drill string are the
component forces caused by pressure and gravity, Fpx and Fpy; the frictional viscous forces,
FL and FN; and the lateral inviscid hydrodynamic force, FA. The force diagram of the
annular fluid element is shown in Figure 8.
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2.4. Forces Fpx and Fpz Caused by the Pressure and Gravity

Assuming the annular pressure Po changes linearly in the x direction, from hydrostatics
and frictional pressure loss, we can obtain [47]

Fpx = − ∂

∂x
(Po Ao) + Ao

∂Po

∂x
(8)

Fpy = Ao
∂

∂x

(
Po

∂y
∂x

)
(9)

where Ao is the external cross-sectional area of the drill string. Since the drill string is of an
equal section, ∂Ao/∂x = 0, and Fpx = 0.

The force diagram of the annular fluid element in x direction is shown in Figure 9.
The expression of annular pressure Po can be obtained by establishing the force balance
equation for the annular fluid.
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The force balance equation of the annular fluid element in the x direction is as follows:

Ach po + Ff δx− Ach

(
po +

∂po

∂x
δx
)
= 0 (10)

Ff = FL

(
Stot

So

)
(11)
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where Ach = π(D2
ch − D2

o )/4 is the cross-sectional area of the annular, Do is the external
diameter of the drill string, Dch is the internal diameter of the wellbore, Stot = π(Dch + Do)
is the total wetted area, So = πDo is the wet area outside the drill string element, and Ff is
the total friction.

Combining Equations (10) and (11) and integrating x, we can obtain

Po =

(
FLDo

AoDh

)
x (12)

where Dh = 4Ach/Stot is the hydraulic diameter of the annular channel flow.

2.5. Inviscid Hydrodynamic Force

According to Hannoyer et al. and Paidoussis et al., the transverse inviscid hydrody-
namic form of the fluid element is [24,47]

FA = χ

(
∂

∂t
−Uo

∂

∂x

)[
ρo Ao

(
∂y
∂t
−Uo

∂y
∂x

)]
(13)

χ =
(Dch/Do)

2 + 1

(Dch/Do)
2 − 1

(14)

where ρo is the fluid density in the annular, and χ is the coefficient of the added mass.

2.6. Forces of Frictional Viscous

The normal and tangential viscous friction forces of the annular fluid acting on the
drill string can be calculated by the following equation [48]:

FN =
1
2

C f ρoDoUo

(
∂y
∂t
−Uo

∂y
∂x

)
+ k

∂y
∂t

(15)

FL =
1
2

C f ρoDoU2
o (16)

where Cf and k are the coefficients of the viscous damping, and the k is as follows:

k =
2
√

2√
S

1 + γ3(
1− γ2)2 ρo AoΩ (17)

where S = Ωr2
o/v is the Stokes number, Ω is the circumferential vibration frequency, v is the

kinematic viscosity of annular flow, ro = Do/2, and γ = Do/Dch.

2.7. Force Balance Equation of Annular Fluid Element

By combining Equations (8), (9), (13), (15) and (16), the force of the annular fluid
elements on the drill string can be expressed as

Fet − Fen
∂y
∂x

= FL + Fpx (18)

Fet
∂y
∂x

+ Fen = FA − Fpy + FL
∂y
∂x

+ FN (19)

2.8. Lateral Vibration Model of Drill String System

By substituting Equations (7) and (19) into Equation (5), the dynamic equation of the
lateral vibration of the drill string system can be obtained as follows:
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EI ∂4y
∂t4 + Mt

∂2y
∂t2 − ∂

∂x

[
(T − Ai pi + Ao po)

∂y
∂x

]
+ Mi f

(
∂2y
∂t2 + 2Ui

∂2y
∂x∂t + U2

i
∂2y
∂x2

)
+χρo Ao

(
∂2y
∂t2 − 2Uo

∂2y
∂x∂t + U2

o
∂2y
∂x2

)
+ 1

2 C f ρoDoUo
∂y
∂t + k ∂y

∂t = 0

(20)

After substituting Equations (6), (12), (15), (16) and (18) into Equation (4), (T − AiPi +
AoPo) can be obtained, as shown in Equation (21):

∂

∂x
(T − Ai pi + Ao po)−

1
2

C f ρoDoU2
o

(
1 +

Do

Dh

)
= 0 (21)

then, after integrating from x to L, this becomes

(T − Ai pi + Ao po) = (T − Ai pi + Ao po)L −
1
2

C f ρoDoU2
o

(
1 +

Do

Dh

)
(L− x) (22)

By substituting Equation (22) into Equation (20), the final form of the lateral vibration
dynamic model of the drill string system can be obtained:

EI ∂4y
∂t4 + Mt

∂2y
∂t2 −

[
(T − Ai pi + Ao po)L − 1

2 C f ρoDoU2
o

(
1 + Do

Dh

)
(L− x)

]
∂2y
∂x2

− 1
2 C f ρoDoU2

o

(
1 + Do

Dh

)
∂y
∂x + Mi f

(
∂2y
∂t2 + 2Ui

∂2y
∂x∂t + U2

i
∂2y
∂x2

)
+χρo Ao

(
∂2y
∂t2 − 2Uo

∂2y
∂x∂t + U2

o
∂2y
∂x2

)
+ 1

2 C f ρoDoUo
∂y
∂t + k ∂y

∂t = 0

(23)

Assuming that the fluid in the annular is mixed evenly and that there is no energy
loss when the drilling fluid enters the annular from the bottom of the drill string system,
the fluid parameters of the gas–liquid two-phase flow can be calculated by the volume
averaging method [49]:

ρo = ρi(1− α) + ρgα

Uo =
Ui Ai
Ach

(24)

where α is the gas content of the annular fluid, and ρg is the density of the natural gas.

2.9. Boundary Conditions

The lateral vibration dynamic, Equation (23), is subjected to the following boundary
conditions:

y(0, t) = 0, ∂2y
∂x2 (0, t) = 0

y(L, t) = 0, ∂2y
∂x2 (L, t) = 0

(25)

2.10. Dimensionless Equation of Motion

In order to solve the model of motion conveniently, it is analyzed as being dimension-
less. The following dimensionless formula can be used to change the motion model into a
dimensionless equation more conveniently.
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ξ = x/L, η = w/L, τ =
[

EI/
(

2Mt + 2Mi f + ρo Ao

)]1/2
t/L2

ui =
(

Mi f /EI
)1/2

UiL, uo = (ρo Ao/EI)1/2UoL, βo = ρo Ao/
(

Mt + Mi f + ρo Ao

)
βi = Mi f /

(
2Mt + 2Mi f + ρo Ao

)
, Γ = TLL2/EI, c f = 4C f /π

ΠiL = piL AiL2/EI, ΠoL = poL AoL2/EI, κ = kL2/
[

EI
(

2Mt + 2Mi f + ρo Ao

)]1/2

ε = L/Do, h = Do/Dh

(26)

By substituting Equation (26) into Equation (23), we can obtain

∂4η

∂ξ4 + a
∂2η

∂τ2 + b
∂2η

∂τ∂ξ
+ d

∂η

∂ξ
+ {c− d(1− ξ)− (Γ−ΠiL + ΠoL)}

∂2η

∂ξ2 + e
∂η

∂τ
= 0 (27)

a = 1 + βo(χ− 1), b = 2
(

uiβ
1/2
i − χuoβ1/2

o

)
, c = u2

i + χu2
o

d = − 1
2 c f εu2

o(1 + h), e = 1
2 c f εuoβ1/2

o + κ

(28)

The corresponding boundary conditions are

η(0, τ) = 0, ∂2η

∂ξ2 (0, τ) = 0

η(1, τ) = 0, ∂2η

∂ξ2 (1, τ) = 0

(29)

3. Method of Solution

In this part, the Galerkin method is used to discretize the above motion model to
obtain an ordinary differential equation. Then, the influence of annular fluid characteristic
parameters on the stability of drill string system is studied by solving ordinary differential
equations.

Galerkin Method

Galerkin method is an approximate solution based on eigenvalue problems of differ-
ential equations and is applicable to any beam or beam-like object subjected to fluid loads.
According to Galerkin theory, the vibration of an elastic body can be decomposed into the
product of a function with respect to time and a function with respect to space. Therefore,
we can set the solution of Equation (27) as follows:

η(ξ, τ) = Φ · qT (30)

where Φ = [Φ1, Φ2, Φ3, . . . ,ΦN] is the mode function satisfying the boundary conditions
of displacement and force, and q = [q1, q2, q3, . . . ,qN] is discrete system’s generalized
coordinates.

By substituting Equation (30) into Equation (27) and using the orthogonality of modal
function, after integrating in the interval [0, 1], the equation can be written as follows:

M
..
q + C

.
q + Kq = 0 (31)
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where M is a matrix of mass: Mij = aδij; C is a matrix of damping: Cij = bΛij + eδij; K is a
matrix of stiffness: Kij = (iπ)4δij − (c + d)(iπ)2δij + d(Λij + Dij); δij is Kronecker delta; and Λij
and Dij are, respectively:

Λij =

{
ij

i2−j2

[
1− (−1)i+j

]
i 6= j

0 i = j
Dij =


4ij3

(i2−j2)2

[
1− (−1)i+j

]
i 6= j

−(iπ)4

4 i = j

(32)

The solution of Equation (31) can be set as:

q = qeωτ (33)

By substituting Equation (33) into Equation (31), we can obtain:(
ω2M + ωC + K

)
q = 0 (34)

Equation (34) is a generalized eigenvalue problem, and the stability of the drill string
system could be determined by calculating the complex eigenvalues ω of the matrix E. The
expression of matrix E is as follows:

E =

[
0 I

−M−1K −M−1C

]
(35)

where I is the identity matrix. The relationship between the stability of the system and
the generalized eigenvalues ω of matrix E is as follows: Re(ω) and Im(ω) are the real
and imaginary parts of ω, respectively. Re(ω) is related to modal damping of the system,
Im(ω) is related to the natural frequency of the system, and, when the value of Im(ω)
decreases, the stability of the drill string system decreases. When Re(ω) < 0 and Im(ω) 6= 0,
the drill string system is in steady state. In the case of Re(ω) ≥ 0 and Im(ω) 6= 0, flutter
instability occurs, and the corresponding fluid velocity Uo, when Re(ω) increases to zero
from negative values, is called the critical flutter velocity. Buckling instability happens
when Im(ω) = 0, and the corresponding fluid velocity Uo is called the critical buckling
velocity [50,51].

4. Numerical Results

In this section, MATLAB software is used to solve the generalized eigenvalue of matrix
E. By changing the velocity and gas content of the annular fluid, the effect of the fluid
peculiarity of the annular fluid on the stability of the horizontal drill string system can be
found. The drill string system parameters used in the above study are shown in Table 1 [52].

Table 1. Drill system parameters.

Parameter Value Unit

L 1000 m
E 207 GPa
ρt 7800 kg/m3

Di 0.108 m
Do 0.127 m
Mt 27.35 kg/m
Dch 0.312 m
ρi 1200 kg/m3

ρg 0.75 kg/m3

v 10−6 m2/s
Cf 0.0125 1
χ 1.4 1
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4.1. Effect of Annular Fluid Velocity on the Stability of Drill String System

As shown in Figure 10, the changes of the first four order complex frequencies of the
drill string system, with an increase in the fluid velocity of the annular, were calculated
when the annular fluid gas content ranged from 0% to 30%. The results show that the Re(ω)
value is always less than zero, and the Im(ω) value gradually decreases when the fluid
velocity and gas content of the annular fluid increase. When the Im(ω) value decreases
from positive to 0, drill string system buckling occurs. This means that with an increase in
annular fluid velocity and gas content, the transverse vibration frequency of the drill string
system decreases.
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4.2. Effect of Annular Fluid Gas Content on Stability of Drill String System

As is shown above, when Im(ω) = 0, the drill string system will demonstrate buckling
instability, and the corresponding annular fluid velocity is the critical buckling velocity of
the drill string system. As shown in Figure 11, in order to observe the influence of the gas
content on the stability of the drill string system, the critical velocity Uo of the annular fluid
was calculated when buckling instability occurred in the first four modes of the drill string
system with different gas content. The results show that with an increase in annular fluid
gas content, the critical velocity of the first four orders of the drill string system decreases,
that is, the stability of drill string system decreases along with an increase in the annular
fluid gas content.

As shown in Figure 12, in order to further understand the relationship between annular
fluid velocity and annular fluid gas content, the complex frequency change of the drill
string system under the same annular flow velocity was calculated. We found that at
the same annular fluid velocity, the Im(ω) decreases with an increase in the gas content.
This means that at the same annular fluid velocity, the stability of the drill string system
deteriorates as the annular fluid gas content increases.

In order to exclude the effect of the force at the bottom of the drill string, the critical
flow rate of the annular with gas content ranging from 0–30% under different bottom forces
was solved; the result is shown in Figure 13. We found that the stability area of the drill
string system decreases with the increase in gas content under different bottom forces.
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5. Experimental Study

In this part, the effects of annular fluid velocity and gas content on the transverse
vibration of a horizontal drill string are studied by using experimental equipment.
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5.1. Experimental Apparatus and Procedure

According to the similitude principle, the experiment device was developed to simu-
late the working condition of horizontal drilling with gas. The structure diagram of the
experiment device is shown in Figures 14 and 15. The experiment device was mainly
composed of six systems, which were the drive system, pipe system, circulation system,
loading system (including axial load and bottomhole simulation load), gas–liquid mixing
system, and test system.
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We use the dimension analysis method to derive the similarity criterion. The dimen-
sionality of the parameters and the dimensionality matrix of the system are shown in
Tables 2 and 3, respectively.

Table 2. The dimensions of the parameters.

Parameter Dimensions

Density ML−3

Mass M
Length L
Force MT−2

Angular T−1

Table 3. The dimensionality matrix of the system.

a1 a2 a3 a4 a5 a6 a7

M 0 1 1 1 0 1 0
L 1 −1 −3 0 4 1 0
T 0 −2 0 0 0 −2 −1
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We can organize the dimensionality matrix of the system into the following equations:
a2 + a3 + a4 + a6 = 0

a1 − a2 − 3a3 + 4a5 + a6 = 0

−2a2 − 2a6 − a7 = 0

(36)

The following equations can be obtained from the πmatrix:
π1 = l−3ρ−1 = m

l3ρ

π2 = l−4 I = I
l4

,


π3 = l−2EF = F

l2E

π4 = lE−0.5ρ0.5 ϕ = lϕ
√

ρ
E

(37)

According to the similarity theory, the actual drill string size corresponding to this
experimental equipment was as follows: outer diameter 127 mm, inner diameter 108 mm,
and total length 100 m. In addition, all physical quantities with length units should abide
by the length similarity ratio. Taking the length similarity ratio as c_l = 1:10, the outer
diameter of the experimental drill string was 15 mm, the inner diameter was 10 mm, and
the total length was 10 m. In practice, the drill string was made of alloy steel with a density
of ρ = 7800 kg/m3 and an elastic modulus of E = 207 GPa. The experimental material
should have a stress–strain curve similar to that of the actual material. According to the
density similarity ratio c_ρ = 0.14 and the elastic modulus similarity ratio c_E = 0.011,
ABS engineering plastic was selected as the material for the drill string in the experiment.
The elastic modulus of the ABS engineering plastic was 2.3 GPa, and the density was
1100 kg/m3.

In the simulation experiment, the servo motor of the driving system provided the
speed for the drill string, the water in the cistern entered the drill string; flowed into the
annular through the water inlet of the cycling system, and then returned to the cistern
through the outlet of the cycling system; and the velocity of the annular fluid as determined
by the liquid flow meter in the cycling system. The drilling string and borehole were
simulated by the pipe string system, and the axial load and bottomhole load on the drilling
string were simulated by the loading system. The gas–liquid mixing system was used
to inject gas into the end of the wellbore to simulate the working condition of the gas
produced by the decomposition of NGH during the exploitation, and the gas content in the
annular as determined by the gas flow meter. Finally, the voltage signal as obtained by the
eddy current sensor arranged horizontally in the testing system, and the voltage signal was
converted into the lateral displacement data of the drill string. The experimental device
could totally simulate the work condition when drilling horizontal wells to extract NGH,
and the actual pictures of each system are shown in Figure 16.

Next, the control variable method was used to conduct experiments. Three experi-
ments were conducted under each condition, and the duration of each experiment was one
minute. By observing and comparing the results of the three experiments under the same
conditions (the waveform of drill string transverse displacement), after a short irregular
fluctuation, the waveform of the three experiments was almost the same. Finally, the
section with the most consistent lateral displacement waveform of drill string in the three
experiments was selected as the experimental results.
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5.2. Experiment Result

In order to verify the reliability of the effect of annular fluid velocity on the transverse
vibration of the drill string obtained from the numerical results above, the experiment
was carried out by using the control variable method. In this experiment, the rotational
speed of the drill string (180 rad/min), axial load (2 kg), gas content (0%), frequency of the
vibration generator (12 Hz), and power amplifier of the vibration generator (5 V) were kept
unchanged, so only the velocity of the annular fluid was changed (from 0.3 m/s to 1.2 m/s).
The influence of the annular fluid velocity on the transverse vibration of drill string was
obtained by comparing the experimental results of different annular fluid velocities.

Figure 17 shows the change of the lateral displacement of the drill string with time
at different annular flow rates when the annular fluid gas content is 0%. Figure 17a–d,
respectively, correspond to annular flow rates of 0.3 m/s, 0.6 m/s, 0.9 m/s, and 1.2 m/s,
and the time to intercept the experimental data under each experimental condition is 5 s.
By observing and comparing Figure 17a–d, the frequency of the lateral vibration of the
drill string gradually decreases, and the displacement of the lateral vibration of the drill
string increases by about 0.5–2 mm. This also indicates that when the gas content of the
annular fluid is 0%, the transverse vibration frequency of the drill string decreases and the
amplitude increases with an increase in the annular fluid velocity.

Then, in order to verify the reliability of the influence of annular gas content on the
lateral vibration of drill string obtained from the above numerical results, the control
variable method was used again to carry out experiments. In the following experiments,
the annular fluid velocity was kept at 0.3 m/s, the gas content of the annular fluid was
changed (from 10% to 30%), and other experimental parameters were kept consistent with
those in the previous set of experiments.

As shown in Figure 18, using the above experimental parameters, the results of the
lateral displacement of drill string changing with time under different annular fluid gas
content were obtained. As the experimental conditions corresponding to Figure 17a are as
follows: annular fluid flow rate is 0.3 m/s and gas content is 0%, a comparative analysis
can be made between Figures 17a and 18a–c, and the gas content values of annular fluid
corresponding to Figures 17a and 18a–c are 0%, 10%, 20% and 30% respectively. It can be
seen from Figures 17a and 18a–c that with an increase in annular fluid gas content, the
transverse vibration frequency of the drill string decreases, and the transverse vibration
amplitude of the drill string increases. When there is no gas in the annular, the lateral
displacement of the drill string changes periodically with time. However, with an increase
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in annular gas content, the transverse displacement of the drill string changes more and
more irregularly with time, that is, with an increase in the gas content of the annular
fluid, the periodic change of the transverse vibration of the drill string becomes more and
more complex.
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According to the above experimental results, with an increase in annular fluid velocity
and gas content, the lateral vibration frequency of the drill string decreases, the transverse
vibration amplitude of the drill string increases, that is, the stability of the drill string
system decreases, which is consistent with the results obtained by the mathematical model
above, further proving the reliability of this study.
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6. Discussion

In this study, the effect of annular fluid on the transverse vibration of a horizontal drill
string was studied by establishing a mathematical model, and the results of the numerical
solution were verified by experiments. In the mathematical model, the influence of annular
fluid on horizontal drill string stability was researched by changing the fluid velocity and
gas content of the annular fluid. To verify the reliability of the numerical solution, relevant
experiments were carried out by changing the fluid velocity and gas content of the annular
fluid. In the experimental results, we observed the transverse vibration amplitude and
frequency of the horizontal drill string, to determine how the stability of the drill string
changes when the fluid velocity and gas content of the annular are changed. We compared
the numerical results with the experimental results, and we found that the influence of
annular fluid on drill string stability, obtained from the numerical results, is consistent with
the experimental results.

7. Conclusions

In this paper, the nonlinear mathematical model of a drill string’s lateral vibration was
established, and the effect of annular fluid characteristics on drill string transverse vibration
was studied. The results obtained by numerical simulation were verified by experiments.
The following results can be concluded: 1. With an increase in annular fluid velocity, the
stability of the drill string system decreases, the frequency of the drill string lateral vibration
decreases, and the amplitude of the drill string lateral vibration increases, when there is
no gas in the annular. 2. When the annular fluid velocity is constant, with an increase in
annular fluid gas content, the stability of the drill string system decreases, the periodic
change of the drill string transverse vibration becomes more and more complicated, and
the amplitude of the drill string transverse vibration increases. 3. The transverse vibration
frequency of the drill string changes more quickly when the flow rate of the annular fluid
increases than when the annular gas content increases. Therefore, the influence of annular
fluid flow velocity on the lateral vibration of the drill string is greater than that of annular
fluid gas content on the transverse vibration of the drill string.
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Nomenclature

L Length of drill string (m)
Ui Drilling fluid velocity in drill string (m/s)
Uo Annular fluid velocity (m/s)
TL Axial force at bottom (N)
Q Lateral shear force in the drill string (N)
Mt Mass of drill string element (kg)
T Axial force of drill string section (N)



Processes 2023, 11, 54 19 of 21

y Lateral deflection (m)
Ai Cross-sectional area of drill string internal (m2)
Pi Pressure of the fluid inside the drill string (Pa)
Mif Mass of the fluid inside the drill string (kg)
Fpx, Fpy Component forces caused by pressure and gravity (N)
FL, FN Frictional viscous forces (N)
FA Lateral inviscid hydrodynamic force (N)
Po Annular pressure (Pa)
Ao Cross-sectional area of drill string external (m2)
Ach Annular cross-sectional area (m2)
Do Drill string outer diameter (m)
Dch Wellbore inner diameter (m)
Stot Total wetted area (m2)
So Wet area outside the drill string (m2)
Dh Hydraulic diameter of the annular channel flow
ρo Gas–liquid mixture density (kg/m3)
ρi Drilling fluid density (kg/m3)
ρg Natural gas density (kg/m3)
χ Added mass coefficient (-)
S Stokes number (-)
Cf, k Viscous damping coefficients (-)
v Kinematic viscosity of annular fluid (m2/s)
Ω Circular frequency of oscillation (rad/s)
α Gas content (-)
Fin Normal hydrodynamic force generated by internal flow (N)
Fit Tangential hydrodynamic force generated by internal flow (N)
Fen Normal hydrodynamic force generated by external flow (N)
Fet Tangential hydrodynamic force generated by external flow (N)
E Elastic modulus of drill string (GPa)
I Moment of inertia of drill string (m4)
Ff The total friction force applied to the drill string element (N)
M Mass matrix
C Damping matrix
K Stiffness matrix
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