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Abstract: The complex operating environment of gearboxes and the easy interference of early fault
feature information make fault identification difficult. This paper proposes a fault diagnosis method
based on a combination of whale optimization algorithm (WOA), variational mode decomposition
(VMD), and deep transfer learning. First, the VMD is optimized by using the WOA, and the minimum
sample entropy is used as the fitness function to solve for the K value and penalty parameter α

corresponding to the optimal decomposition of the VMD, and the correlation coefficient is used to
reconstruct the signal. Second, the reconstructed signal after reducing noise is used to generate a
two-dimensional image using the continuous wavelet transform method as the transfer learning
target domain data. Finally, the AlexNet model is used as the transfer object, which is pretrained and
fine-tuned with model parameters to make it suitable for early crack fault diagnosis in gearboxes.
The experimental results show that the method proposed in this paper can effectively reduce the
noise of gearbox vibration signals under a complex working environment, and the fault diagnosis
method of using transfer learning is effective and achieves high accuracy of fault diagnosis.

Keywords: whale optimization algorithm; variational mode decomposition; deep transfer learning;
gearbox; fault diagnosis

1. Introduction

Gearbox is a key component of the transmission systems of large instruments, such
as helicopters, cars, and fans. These pieces of equipment are constantly subjected to
external weather and rain, as well as subjected to high-intensity loads for extended periods
of time, resulting in frequent gearbox failures that disrupt normal operation and even
cause economic losses and casualties. Being able to detect failures at an early stage can
avoid catastrophic consequences. Therefore, intelligent fault diagnosis of gearboxes has
significant research value [1–6].

Currently, vibration signals are commonly used for fault diagnosis in gearboxes. The
actual operating environment of the gearbox is extremely severe, with constantly changing
load conditions, resulting in an irregular vibration signal in the gearbox. Interference
between the internal components of the gearbox causes the vibration signal to be nonlinear;
therefore, the collected vibration signal contains a variety of complex noise components.
Consequently, the use of vibration signals for noise reduction processing and fault diagnosis
is a hot topic in contemporary research, and fruitful results have been obtained [7–9]. After
the discovery of the empirical mode decomposition (EMD) method of noise reduction for
nonstationary, nonlinear signals, EMD-like methods have been widely applied to signal
noise reduction. For example, Abdelkader et al. [10] used the average energy to optimize
the threshold operation for the intrinsic mode function (IMF) component of the EMD to
achieve noise reduction, and the experiments verified that this noise reduction method
is more effective and sensitive for the detection and diagnosis of rolling bearing faults.
Liu et al. [11] used kurtosis to select the intrinsic mode function (IMF) component of
the EMD as the main IMF function, and then filtered the main IMF function with an
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impact dictionary, which can separate the high-frequency resonant component from the
meshing harmonics and partial noise to achieve noise reduction. Gao et al. [12] used
integrated evaluation and wavelet thresholding to select and process the IMF components
decomposed by ensemble empirical mode decomposition (EEMD), and used simulation
methods to verify the feasibility of the method used to extract valid information from the
signal under high noise. Liu et al. [13] used the complementary ensemble empirical mode
decomposition (CEEMD) method for nonstationary and nonlinear vibration signals, and
the experiment demonstrated that the CEEMD algorithm has good adaptive capability for
unstable signals and can effectively extract fault features. Although the above algorithms
achieve good results in noise reduction of vibration signal, they also have the following
problems: The difficulty of solving the endpoint effect and mode mixing problems of EMD
in decomposing vibration signals and the addition of Gaussian white noise to the EEMD
decomposition result in a high computational effort and a tendency to decompose spurious
IMF components. Although CEEMD solves the endpoint effect and mode mixing problem,
there are differences in the number of IMF components generated during decomposition,
leading to errors in ensemble averaging.

However, in 2014, Dragomiretskiy et al. [14] proposed the variational mode decompo-
sition (VMD) method, which has better processing effect for strong noise and interference
signal processing. The accuracy of the VMD of a vibration signal depends on the decom-
position parameter K and the penalty factor α. There are different methods for finding
the optimal number of layers K and the penalty parameter α of the VMD. For example,
Fu et al. [15] used a central frequency observation method to determine the value of the
predefined decomposition level K. Yan et al. [16] used solving for the spectral centroid of
each IMF component to determine the value of K. Zhan et al. [17] used changes in scattering
entropy to determine the optimal K value for the VMD. Zhang et al. [18] used a genetic
algorithm combined with nonlinear programming to solve for the VMD parameters. All
of the above methods can solve the problem of VMD parameters well, but they all have
one-sidedness. Therefore, a better optimization method is sought for noise reduction of the
original signal so that the data used for diagnosis can better characterize the fault. Using
the noise-reduced signal as sample data for fault diagnosis can better improve the accuracy
of fault diagnosis.

With the in-depth research of deep learning theory, more and more scholars have
used the theory of deep learning on fault diagnosis, making deep learning an effective
means of fault diagnosis [19–21]. The advantage of deep learning methods over traditional
machine learning is that they can automatically learn features from raw vibration data,
solving the disadvantage of requiring manual extraction of fault features and making deep
learning much more accurate for fault diagnosis. Therefore, deep learning fault diagnosis
methods based on vibration signals are widely used for all types of mechanical equipment.
He et al. [22] proposed a method that uses a combination of vibration signal analysis
and deep learning to form a deep learning structure embedded with a time-synchronous
resampling mechanism for solving early bearing fault diagnosis. Xu et al. [23] studied
a hybrid deep learning model that substantially improved the accuracy of bearing fault
diagnosis. Bai et al. [24] used a stacked sparse autoencoder for fault feature dimension
reduction and a support vector machine for the diesel engine fault diagnosis method with
good results and engineering application value. Li et al. [25] proposed the use of deep
learning and multimodal feature fusion approaches to build models for fault diagnosis.
Shen et al. [26] used a multilabel convolutional neural network deep learning method
to learn relevant features in vibration signals for fault diagnosis, with higher diagnostic
accuracy than conventional methods.
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Although the above methods can solve the gearbox fault diagnosis problem to a certain
extent, there are still the following problems:

1. The gearbox operating environment is harsh, the weak early fault signal is seriously
affected by noise, and fault information is disturbed or masked, making it difficult to
reveal fault characteristic information.

2. Deep learning requires a large amount of labelled data to support it, but in practical
engineering applications, the fault states exist for a short time, and large amounts of
fault data are difficult to obtain in a short time. To obtain a sufficient amount of data,
the equipment needs to fail several times and be in a state of failure for a long time.
Once enough data have been collected, a deep learning model with robustness still
needs to spend more time on training. These make deep learning methods have major
limitations in practical engineering applications.

With the advent of transfer learning, it can effectively solve the problem of fault di-
agnosis in deep learning, which requires huge amounts of labelled data. Using a transfer
learning approach, there is no need to retrain the model, and only a small number of
labelled samples are needed to fine-tune the model parameters to achieve good diagnos-
tic results. Yu et al. [27] combined wavelet packet transform and multicore maximum
mean square difference to perform deep transfer diagnosis of bearing faults using resid-
ual networks (ResNet), which can perform diagnosis and suppress noise effects well.
Bai et al. [28] proposed a fault diagnosis method based on transfer learning with optimized
variational modal decomposition and deep residual networks, which is effective for noise
reduction and fault diagnosis of diesel engines. Su et al. [29] extended convolutional deep
belief networks to extract the transportable features from the raw vibration data and used
dynamic multilayer perceptron for fault classification, which were experimentally shown
to have good classification accuracy for bearing variable condition problems. Luo et al. [30]
used the sparse term divergence in the original stacked autoencoder to replace it with
a convolutional shortcut to solve the gradient disappearance problem in deep transfer
learning and improve feature extraction, which is used for rolling bearing diagnosis with
more superior results.

To address these issues, a method combined with the whale optimization algorithm
(WOA), VMD, and deep transfer learning is proposed for the fault diagnosis gearboxes.
First, the WOA is used to find the optimal decomposition parameters (K and α), and the
correlation coefficient is used to determine the IMF components and thus select them for
signal reconstruction to achieve noise reduction. In the second step, a continuous wavelet
transform (CWT) method is used to convert the reconstructed signal into a two-dimensional
time–frequency map, which forms the dataset for fault diagnosis. Finally, the AlexNet
network is used as the transfer model; after pretraining and fine-tuning, the AlexNet
transfer learning (AlexNet-TL) network model is generated to classify the generated 2D
time–frequency maps. Experiments have shown that this method can identify fault types
quickly and with a higher accuracy.

The main contributions and innovations of this paper are as follows:

1. For the problem of difficult processing of nonlinear nonsmooth vibration signals,
weak fault signals under complex conditions, and difficult extraction of fault features,
this paper proposes a WOA-VMD method of signal noise reduction. In complex
environments and in more intrusive conditions, the use of this method allows the
effects of noise to be well removed, making the fault signature signal more visible.

2. This paper uses the method of continuous wavelets to turn a one-dimensional vi-
bration signal into a two-dimensional time–frequency image. The good effect of
using deep learning on image feature extraction in two dimensions can avoid the
blindness of manual extraction of fault features in traditional machine learning, and
can effectively improve fault diagnosis accuracy.

3. This paper uses the fault diagnosis method of model migration. The large amount
of data available on ImageNet can be used to train a stable diagnostic model. With
the help of model transfer, the need for labelled samples and the reliance on expert



Processes 2023, 11, 68 4 of 22

experience can be greatly reduced, making the diagnostic approach more general
and generalizable.

The other sections of this paper are detailed as follows: Section 2 describes the noise
reduction method of WOA-VMD; Section 3 presents the basic theory of CWT-based time–
frequency transformed image generation and deep transfer learning; Section 4 describes in
detail the fault diagnosis method steps for WOA-VMD and transfer learning; Section 5 is
devoted to experiments and the comparative validation of the proposed fault diagnosis
methods; Section 6 presents the conclusions.

2. Methodological Theory of Vibration Signal Denoising Based on WOA-VMD
2.1. Whale Optimization Algorithm

The WOA is a heuristic optimization algorithm proposed by Mirjalili and Lewis in
2016 [31], inspired by humpback whale predation behavior. By simulating the bubble net
hunting method of humpback whales, a mathematical model is established, which can be
used to optimize complex problems. The WOA is divided into two main parts: the hunting
phases and exploration phases.

2.1.1. Hunting Phase

Whales target the location of their prey. There is a 50/50 chance of whether whales use
the constriction mechanism of the bubble net to hunt, or the spiral renewal to get closer to
their prey. Mathematical modelling based on this type of hunting is shown in Equation (1):

Xj+1 =

{
Xj − A× D
D′ ebl cos(2πl) + X∗j

p < 0.5
p ≥ 0.5

(1)

where X∗ is the position vector of the current optimal solution, X is the current position
vector, D is the distance between the humpback whale and the target prey, D′ =

∣∣∣X∗j − Xj

∣∣∣
is the distance between the i-th humpback whale and its prey, and the value range of l is
[–1, 1]. p is a random number between [0, 1]; b is the constant that determines the shape of
the logarithmic helix.

2.1.2. Exploration Phase

Humpback whales can randomly search for other prey based on their current location,
simulating this behavior by changing the size of A. A can take a random value greater
than 1 or less than −1 to force the humpback whale away from existing prey to find more
suitable prey. The ability to enhance the algorithm’s global search with variations of A. The
mathematical model for searching for prey is shown below:

Xj+1 = Xrand − A× D (2)

D =
∣∣C× Xrand − Xj

∣∣ (3)

where Xrand is a random position vector selected from the existing population.

2.2. Variational Mode Decomposition

The VMD is a solving process of a variational problem. The original signal f (x) is
decomposed into K modal functions, and the sum of all modal functions uk(t) is equal to
the original signal as a condition of constraint. It is also guaranteed that the decomposition
sequence is the minimum sum of the bandwidths of the modal components of a finite



Processes 2023, 11, 68 5 of 22

bandwidth with a central frequency. Therefore, the VMD constrained variational model
equation is shown below [32,33]: min

{uk},{ωk}

{
∑
k

∥∥∥∂t[(δ(t) +
j

πt )× u(t)]e−jωt
∥∥∥ 2

2
s.t.∑

k
uk = f (t)

(4)

where δ is the Dirac distribution, and × is the convolution.
To transform the constrained problem in the above equation into an unconstrained

variational problem, a quadratic penalty factor and a Lagrangian function are used to
introduce the solution process. The quadratic penalty term a and the Lagrange multiplier
˘(t) are introduced. The extended Lagrangian expression is shown below:

L({uk}, {ωk}, ˘ ) = α∑
k

∥∥∥∥∂t[(δ(t) +
j

πt
)× uk(t)]e−jωkt

∥∥∥∥2
+

∥∥∥∥∥ f (t)−∑
k

uk(t)

∥∥∥∥∥
2

+

〈
˘(t), f (t)−∑

k
uk(t)

〉
(5)

where α is the penalty factor, and˘ is the Lagrange multiplier.
The decomposition process of the VMD is as follows:

1. Initialization of uk, ωk, ˘, and, n = 0, k = 0;
2. Starting with n = n + 1, iterative computation;

3. Update the modal components
∧
u

n+1

k and the central frequency ωn+1
k according to the

current ukand ωk;

∧
u

n+1

k (ω) =

∧
f (ω)−

k
∑

i 6=k

∧
ui(ω) +

∧
˘(ω)/2

1 + 2α(ω−ωk)
2 (6)

ωn+1
k =

∫ ∞
0 ω
∣∣∣∧u(ω)

∣∣∣2dω∫ ∞
0 |uk(ω)|2dω

(7)

4. Update the Lagrange multiplier ˘;

∧
˘

n+1
←
∧
˘

n
(ω) + τ[

∧
f (ω)−∑

k

∧
u

n+1
(ω)] (8)

5. Judgement of the end of decomposition.

Given a judgement accuracy of e > 0, the decomposition ends when the iteration
reaches Equation (9) less than e.

K

∑
k=1

(∥∥∥∥∧un+1

k − ∧u
n
k

∥∥∥∥2

2
/
∥∥∥∥∧un

k

∥∥∥∥2

2

)
< e (9)

2.3. Principle and Function of the WOA-VMD
2.3.1. WOA-VMD Optimization Process and Role

The steps to solve for the optimal parameters of the VMD using the WOA are
as follows:

1. The whale population size, maximum number of iterations, spatial dimension, and
initial population location were initialized, and the VMD parameters K and a range
were set before the WOA began.

2. The VMD of the collected raw vibration signals using the whale’s position vector,
using the sample entropy as the individual fitness of the initial population.
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3. The sample entropy of the current position of the whale is derived after each decompo-
sition until the minimum sample entropy corresponding to the position of the whale
appears, that is, the position of the best individual in the current group is obtained to
update the spatial position of the individuals in the current group.

4. The position vector of the best individual whale is output, that is, the combination of
the decomposition parameters of the VMD is obtained;

5. The role of the WOA-VMD in the overall fault diagnosis is shown in Figure 1.
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2.3.2. Sample Entropy

Sample entropy [34] has the advantages of being resistant to interference and noise,
and is often used in the field of mechanical signal analysis and fault diagnosis. In the VMD,
the sample entropy is utilized as the fitness function. The lower the entropy of the sample,
the more regular the distribution of the time series, indicating that the IMF obtained by
VMD processing contains more valid information. In contrast, the closer the time series is
to a random distribution, the more noise components are in the IMF. Therefore, when the
sample entropy is smallest, the corresponding parameter is optimal.

2.3.3. Evaluation Indicators for Signal Noise Reduction

In order to better verify the noise reduction effect of WOA-VMD, signal-to-noise ratio
(SNR) and root mean square error (RMSE) are used as the evaluation index of the noise
reduction effect. The SNR is a metric used to compare the desired signal strength with
the strength of the background noise. A higher SNR indicates better noise reduction. The
RMSE is used to judge the difference between the original signal and the noise reduction
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signal, indicating the degree of dispersion of the signal. The smaller the RMSE, the better
the noise reduction effect. The calculation formula is shown in Equations (10) and (11):

SNR = 10 log(

n
∑

i=1
f (n)

n
∑

i=1
[ fd(n)− f (n)]2

) (10)

RMSE =

√
1
n

n

∑
i=1

( fd(n)− f (n))2 (11)

where n is the number of samples, f (n) is the original signal, and fd(n) is the noise
reduction signal.

3. Time–Frequency Image Generation and Deep Transfer Learning Model Building
3.1. Time–Frequency Image Generation

In fault diagnosis, the continuous wavelet transform can convert a one-dimensional
vibration signal into a two-dimensional spectral image, allowing the fault signal to be
viewed in both the time and frequency domains. Time–frequency diagrams give a good
indication of nonstationary signal characteristics and are effective in faulty signal processing.
Therefore, the continuous wavelet transform is used in this paper to convert the vibration
signal into a two-dimensional time–frequency image [35,36].

3.1.1. The Concept of Wavelets

When the functions ψ(t) ∈ L1(R) ∩ L2(R) and
∧
ψ(0) = 0, that is,

∫ +∞
−∞ψ(t)dt = 0, are

generated by translation and telescoping the family of functions:

ψa,b(t) = |a|−1/2ψ(
t− b

a
), a, b ∈ R, a 6= 0 (12)

where ψ(t) is the base or mother wavelet, a is the scaling factor (also called the scale
factor), and b is the translation factor.ψa,b(t) is the continuous wavelet generated by the
base wavelet ψ(t).

3.1.2. Continuous Wavelet Transform

For an ψa,b(t) wavelet function, the wavelet transform is defined for any
non- f (t) ∈ L2(R) by:

W f (a, b) = |a|−1/2
∫ +∞

−∞
f (t)ψ∗(

t− b
a

)dt (13)

The above equation is called the continuous wavelet transform (CWT), where f (t) is
the original vibration signal. The continuous wavelet transform transforms the original
vibration signal into a two-dimensional time–frequency map signal, as shown in Figure 2.
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3.2. Construction of a Deep Neural Network Transfer Model
3.2.1. Transfer Learning

Deep learning models for fault diagnosis require a large amount of labelled data to
train the model, the larger the amount of data, the more stable the model and the higher
the accuracy of the fault diagnosis. The reality is that fault-based tagging data are difficult
to obtain, resulting in poor diagnostic accuracy. However, migration learning solves this
problem very well. Transfer learning is the migration of a model trained in the source
domain to the target domain using a model that has some of the same parameters when
used in the source and target domains. Therefore, only a small number of parameters need
to be fine-tuned for the target domain in order to carry out fault diagnosis. Figure 3 shows
the principle of the deep migration model. In this paper, we choose the AlexNet network
model [37] as the transfer target. The AlexNet network model won the championship in
image recognition in 2012 and has outstanding image recognition ability. The AlexNet
network model is relatively simple, and as a transfer model, there are fewer parameters to
adjust, and after fine-tuning the model parameters, a new deep transfer network model,
AlexNet-TL, can be generated. Inputting data from the target domain into the AlexNet-TL
model for fault diagnosis and diagnosis achieves the desired results. This will save a lot
of time and effort compared with the approach of collecting fault data from scratch and
training a new deep learning model.
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3.2.2. Models for AlexNet Neural Networks

The AlexNet network has five convolutional layers, three maximum pooling layers,
and three fully connected layers, as shown in Figure 4.
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Figure 4. AlexNet network model.

1. Convolutional layers

The role of the convolution layer is to extract the image features of the input image.
The input data are computed using a convolution kernel to obtain the output data, which
form the output feature map for the next layer. The convolution process is shown in
Figure 5.

2. The formula for the convolution operation is as follows:

xn
j = f ( ∑

i∈Nj

xn−1
i ∗ωn

ij + bn
j ) (14)

where xn
j is the output layer data, xn−1

i is the input layer data, Nj is the convolution region,
n is the nth convolution layer, i is the input feature number, j is the output feature number,
ωn

ij is the weight factor, bn
j is the bias parameter, and f (·) is the activation function. The

maximum pooling operation for images is shown in Figure 6.

Processes 2023, 11, x FOR PEER REVIEW 11 of 27 
 

 

 

 

Figure 5. Schematic diagram of the convolution process. 

2. The formula for the convolution operation is as follows: 

1( * )
j

n n n n

j i ij j

i N

x f x b−



= +  (14) 

where 
n

jx  is the output layer data, 
1n

ix −
 is the input layer data, jN  is the convolution 

region, n  is the nth convolution layer, i  is the input feature number, j  is the output 

feature number, 
n

ij  is the weight factor, 
n

jb  is the bias parameter, and ( )f   is the ac-

tivation function. The maximum pooling operation for images is shown in Figure 6. 

3. Pooling layers 

The maximum pooling layer is adopted in the AlexNet network. The main reason for 

this is that taking maximum pooling allows the image features to be downscaled, and the 

result of the process avoids the overfitting phenomenon. The maximum pooling operation 

for images is shown in Figure 6. 

  

Figure 5. Schematic diagram of the convolution process.

Processes 2023, 11, x FOR PEER REVIEW 12 of 27 
 

 

 

 

Figure 6. Schematic diagram of the max pooling process. 

The size of the pooling layer is calculated by matrix sliding. The calculation formula 

is shown below: 

1( * ( ) )m m m m

i ix g down x b −= +  (15) 

where 
m

ix  is the output data, 
1m

ix −
 is the input data, ( )down   is the pooling function, 

m  is the weighting factor, and 
mb  is the bias parameter. 

4. Fully connected layer 

The role of the fully connected layer is to reduce the dimensionality of the data in 

order to prevent the loss of important data feature information in the image caused by the 

data going directly from the convolution layer to the output layer. The full connection is 

located at the end of the AlexNet network and connects the output layer, which is classi-

fied by softmax. The formula for its calculation is shown below: 

1max( * )l l l lx Soft x b −= +  (16) 

where 
lx  is the fully connected layers output data, 

1lx −
 is the fully connected layers’ 

input data, 
l  is the weighting factor, 

lb  is the bias parameter, and l  is the l th layer 

network. 

From the AlexNet network structure, it can be seen that after the 2D image is pro-

cessed by five convolutional layers and three maximum pooling layers, the features of the 

image are further extracted, and the AlexNet network obtains deeper features of the 2D 

image. After the fully connected layers’ processing and then classification, a better classi-

fication result can be obtained. 

4. Gearbox Fault Diagnosis Based on WOA-VMD and Deep Transfer Learning 

The flow of the gear fault diagnosis method proposed in this paper, represented in 

Figure 7, is divided into the following four key processes: 

Step 1. Vibration signal noise reduction and reconstruction: Using the experimental 

platform to collect data for different working conditions, the WOA-VMD method is used 

to decompose the original signal and solve for the sample entropy corresponding to each 

IMF component. When the sample entropy is smallest, the corresponding K  and   

values are the optimal parameters. The correlation coefficient between the solved IMF 

components and the original signal is then used to further determine the relationship be-

tween the IMF components and the original signal, and the IMF components with high 

correlation coefficients are then selected and added together for reconstruction to obtain 

the denoised signal. 

Figure 6. Schematic diagram of the max pooling process.



Processes 2023, 11, 68 10 of 22

3. Pooling layers

The maximum pooling layer is adopted in the AlexNet network. The main reason for
this is that taking maximum pooling allows the image features to be downscaled, and the
result of the process avoids the overfitting phenomenon. The maximum pooling operation
for images is shown in Figure 6.

The size of the pooling layer is calculated by matrix sliding. The calculation formula is
shown below:

xm
i = g(˘m ∗ down(xm−1

i ) + bm) (15)

where xm
i is the output data, xm−1

i is the input data, down(·) is the pooling function, ˘m is
the weighting factor, and bm is the bias parameter.

4. Fully connected layer

The role of the fully connected layer is to reduce the dimensionality of the data in
order to prevent the loss of important data feature information in the image caused by the
data going directly from the convolution layer to the output layer. The full connection is
located at the end of the AlexNet network and connects the output layer, which is classified
by softmax. The formula for its calculation is shown below:

xl = So f tmax(ωl ∗ xl−1 + bl) (16)

where xl is the fully connected layers output data, xl−1 is the fully connected layers’ input
data, ωl is the weighting factor, bl is the bias parameter, and l is the lth layer network.

From the AlexNet network structure, it can be seen that after the 2D image is processed
by five convolutional layers and three maximum pooling layers, the features of the image
are further extracted, and the AlexNet network obtains deeper features of the 2D image.
After the fully connected layers’ processing and then classification, a better classification
result can be obtained.

4. Gearbox Fault Diagnosis Based on WOA-VMD and Deep Transfer Learning

The flow of the gear fault diagnosis method proposed in this paper, represented in
Figure 7, is divided into the following four key processes:

Step 1. Vibration signal noise reduction and reconstruction: Using the experimental
platform to collect data for different working conditions, the WOA-VMD method is used
to decompose the original signal and solve for the sample entropy corresponding to
each IMF component. When the sample entropy is smallest, the corresponding K and α
values are the optimal parameters. The correlation coefficient between the solved IMF
components and the original signal is then used to further determine the relationship
between the IMF components and the original signal, and the IMF components with high
correlation coefficients are then selected and added together for reconstruction to obtain the
denoised signal.

Step 2. 2D time–frequency plot conversion and dataset generation: Using the signal
reconstructed after denoising in the previous step as the input condition, a CWT method
is used to convert the one-dimensional vibration signal into a two-dimensional time–
frequency signal dataset.

Step 3. Generation of AlexNet-TL network models: The AlexNet network model
was used as the transfer target. In the fine-tuning of the model parameters, the parameters
of the first five convolutional layers are kept frozen, and the parameters of the last three
fully connected layers are fine-tuned, and the training data from the generated dataset are
fed into the pretrained model for training. A new network model, named AlexNet-TL, was
generated after fine-tuning the parameters of the AlexNet network.

Step 4. Fault pattern recognition with AlexNet-TL: The test set and validation set
data for the four operating conditions are imported into the AlexNet-TL network model to
obtain the results of the fault diagnosis.
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5. Experimental Process and Method Validation

In order to verify the feasibility of the theoretical approach proposed in this paper,
experiments were carried out using a laboratory gearbox experimental platform with
pre-set faults.

5.1. Introduction to the Experimental Platform

The preset experiments were carried out on a JZQ175 speed reducer manufactured
by the General Machinery Factory in Hejian City of Hebei Province, China. The vibration
sensor model used in the experiments is IEPE general purpose no. 14100. The structure of
the experimental platform is shown in Figure 8. The experimental platform mainly consists
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of a base, a three-phase asynchronous motor, an electromagnetic speed control motor, a
planetary gear reducer, and a magnetic powder brake.
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Figure 8. Gear reducer test stand and sensor layout.

This paper focuses on the early failure of gears with cracks. Using the experimental
platform, the vibration signals of the gearbox gears were tested under normal 2 mm crack,
5 mm crack, and 8 mm crack, as shown in Table 1. The cracking of the gears in the test was
set up using the CNC lathe, and the fault presets are shown in Figure 9.

Table 1. Fault presetting modes for gearheads.

Serial Number Working Condition Labels Fault Status

1 S1 Normal
2 S2 2 mm crack
3 S3 5 mm crack
4 S4 8 mm crack
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Figure 9. Fault preset states: (a) 2 mm crack, (b) 5 mm crack, (c) 8 mm crack.

5.2. Vibration Signal Acquisition and Preprocessing
5.2.1. Vibration Signal Acquisition Scheme

Signal acquisition was carried out under stable operating conditions on the experimen-
tal platform. At this point, the motor input speed was 800 r/min, and five sets of data were
collected for each operating condition. The sampling frequency of the vibration sensor was
20 kHz, and the data acquisition time for each group was 6 s, with the next group of data
acquired at an interval of 5 s. The data collection for the four different operating conditions
is shown in Table 2. Figure 10 shows the time domain waveforms of the vibration signals
for the four operating conditions of the gear.
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Table 2. Experimental data acquisition scheme.

Labels Sample
Frequency

Sampling
Time

Sampling
Interval

Data
Groups

Input
Speed

Number
of Sensors

S1 20 kHz 6 s 5 s 5 800 r/min 4
S2 20 kHz 6 s 5 s 5 800 r/min 4
S3 20 kHz 6 s 5 s 5 800 r/min 4
S4 20 kHz 6 s 5 s 5 800 r/min 4
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Figure 10. Vibration waveforms of gear reducer under four different states: (a) S1 state, (b) S2 state,
(c) S3 status, (d) S4 state.

5.2.2. Signal Preprocessing

The experimental data collected by Sensor 2 are used in this paper for experimental
verification. The collected raw signals are processed using WOA−VMD to find the values
of the optimal decomposition parameters K and a using the sample entropy as the fitness
function, and the results are shown in Table 3. Considering the same treatment method, the
S4 working condition is used as an example. At this point, the smallest sample entropy
corresponding to a K value of 7 and an a value of 2000 is obtained, and the time and
frequency domain plots after the VMD are shown in Figure 11.

Table 3. The corresponding K and α of WOA−VMD under different fault states and minimum
sample entropy.

Labels Sample Entropy Minimum K α

S1 0.892 8 2000
S2 0.693 8 1980
S3 0.598 9 1920
S4 0.893 7 2000
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To optimize the signal even further and to remove noise from the signal, a correlation
coefficient [38] was introduced for this purpose to judge the IMF components from the
VMD. The calculation formula is shown below:

ρXY =
1
n

n
∑

i=1
(Xi − E(X))(Yi − E(Y))√

n
∑

i=1
(Xi−E(X))2

n

√
n
∑

i=1
(Yi−E(Y))2

n

(17)

where n is the number of samples, Xi is the original signal, and Yi is the corresponding

IMF component; E(X) =

n
∑

i=1
Xi

n I s the mean value of the original signal; E(Y) =

n
∑

i=1
Yi

n for the
IMF component.

After WOA-VMD, the correlation coefficients between the IMF components and their
respective original signals for the four operating conditions are shown in Table 4 below.

Table 4. Correlation coefficient between IMF component and original signal.

Labels IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

S1 0.1731 0.2878 0.2253 0.2767 0.3655 0.6305 0.4508 0.4862
S2 0.1521 0.1925 0.2922 0.3908 0.4675 0.5295 0.5356 0.4887
S3 0.1911 0.2995 0.3583 0.3425 0.3444 0.3863 0.4512 0.4803 0.4961
S4 0.2627 0.3690 0.3391 0.3439 0.5131 0.5808 0.4981

According to the principle of correlation coefficient, the higher the value of the correla-
tion coefficient, the stronger the correlation; thus, the IMF components with a higher corre-
lation degree are selected from the table for signal reconstruction. A continuous wavelet
approach is taken to the reconstructed signal, which is transformed into a two-dimensional
time–frequency map and used as the target domain dataset for transfer learning. The size
of the time–frequency image in pixels is set to 227 × 227, and the two-dimensional time–
frequency images for the four different operating conditions are shown in Figure 12. As
can be seen from Section 5.2.1, the number of points sampled for each operating condition
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is 600,000, and a two-dimensional time–frequency image sample is generated at every
3000 points; then the dataset used for the experiment is shown in Table 5.
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Figure 12. Two-dimensional time–frequency images of four different operating conditions:
(a) S1 state, (b) S2 state, (c) S3 status, (d) S4 state.

Table 5. Time–frequency plot datasets for four different fault states after WOA-VMD.

Labels Number of Samples Training Samples Test Samples Validation Samples

S1 240 180 20 40
S2 240 180 20 40
S3 240 180 20 40
S4 240 180 20 40

Total 960 720 80 160

5.3. Determination and Training of AlexNet-TL Model Parameters

The direct use of the AlexNet network for fault diagnosis is not ideal, and therefore,
the AlexNet network needs to be adapted. The main modifications are in the last three
fully connected layers of the AlexNet network. The AlexNet network was trained using
the training and test samples in Table 5, and then its network model parameters were
fine-tuned. The parameters of the AlexNet-TL model after adjustment are shown in Table 6.

To demonstrate the effectiveness of the AlexNet-TL model proposed in this paper for
gear fault diagnosis, a feature visualization approach is adopted for validation. The dataset
in Table 5 was fed into AlexNet-TL for training, and the t-distributed random neighborhood
embedding (t-SNE) method was adopted to visualize the distribution of image features
for different working conditions on different layers. The scatter plots of the four different
working condition image features on different layers are shown in Figure 13. The figure
shows that at pooling layer 1 and pooling layer 2, there is a cross-mixing of 5 mm crack
fault characteristics and 8 mm crack failure signatures that are not well separated. As
learning progresses, the 5 mm crack fault features and 8 mm crack fault features can be
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well separated at the fifth convolutional layer, but fault features of 2 mm cracks and normal
states still cross-mixing affects the fault diagnosis accuracy. As the fault feature learning
progresses to the seventh fully connected layer, the fault features of the four operating
conditions can be perfectly separated. It can thus be shown that the AlexNet-TL model
with adjusted parameters in this paper is superior for gear fault diagnosis.

Table 6. Model parameters of AlexNet-TL.

Layer Name Input Size Output Size Activation Function

Input 227 × 227 × 3 - -
Conv1 227 × 227 × 3 55 × 55 × 96 ReLU

Maxpooling1 55 × 55 × 96 27 × 27 × 96 -
Conv2 27 × 27 × 96 27 × 27 × 256 ReLU

Maxpooling2 27 × 27 × 256 13 × 13 × 256 -
Conv3 13 × 13 × 256 13 × 13 × 384 ReLU
Conv4 13 × 13 × 384 13 × 13 × 384 ReLU
Conv5 13 × 13 × 384 13 × 13 × 256 ReLU

Maxpooling5 13 × 13 × 256 6 × 6 × 256 -
Fully connected6 6 × 6 × 256 512 ReLU
Fully connected7 512 256 ReLU
Fully connected8 256 4 -

Output - 4 -
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5.4. Comparative Analysis of the Effectiveness of Different Noise Reduction Methods
5.4.1. Comparative Analysis of Signal Noise Reduction Effects

To verify the superiority of WOA−VMD noise reduction, its noise reduction effect
is compared with EMD, EEMD, CEEMD, VMD, and other methods. The SNR and RMSE
were calculated for different operating conditions using different noise reduction methods,
and the results are shown in Table 7. The table shows that the SNR of the WOA−VMD
noise reduction method adopted in this paper is larger, and the RMSE is smaller than that of
several other methods. Combined with the judging criteria in Section 2.3.3, the superiority
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of the WOA−VMD noise reduction effect adopted in this paper can be illustrated from
these two aspects.

Table 7. SNR and RMSE after using different denoising methods.

Labels Evaluation Indicators EMD EEMD CEEMD VMD WOA-VMD

S1
SNR 3.23 4.36 5.27 7.31 7.89

RMSE 0.58 0.63 0.66 0.50 0.45

S2
SNR 2.18 4.63 5.36 6.45 8.86

RMSE 0.66 0.59 0.56 0.46 0.39

S3
SNR 3.42 5.34 4.23 6.77 8.34

RMSE 0.72 0.57 0.61 0.51 0.44

S4
SNR 2.63 5.28 3.15 6.24 8.18

RMSE 0.64 0.61 0.47 0.53 0.40

5.4.2. Comparative Analysis of Fault Diagnosis Results Corresponding to Different Noise
Reduction Methods

To better illustrate the effect of noise reduction on the diagnostic results, the noise
reduced signal is fed into the AlexNet−TL network for fault diagnosis, and the diagnostic
results are used to judge the effect of noise reduction. EMD, EEMD, CEEMD, and WOA-
VMD were used to reconstruct the original signal for noise reduction, and the reconstructed
signal was converted into a two-dimensional time–frequency image signal by the CWT
method. The above time–frequency image signals were used as the target domain dataset
and input to AlexNet−TL for fault classification, and the classification results are shown in
Table 8.

Table 8. Comparative analysis of fault diagnosis results corresponding to different noise
reduction methods.

Labels Original Signal EMD EEMD CEEMD VMD WOA-VMD

S1 95.0% 97.5% 100.0% 100.0% 100.0% 100.0%
S2 82.5% 92.5% 95.0% 97.5% 97.5% 100.0%
S3 80.0% 97.5% 95.0% 95.0% 97.5% 100.0%
S4 57.5% 90.0% 92.5% 95.0% 97.5% 100.0%

Accuracy 78.75% 93.75% 95.63% 96.88% 98.125% 100.0%

Figure 14 shows the results of the new and original signals after reconstruction us-
ing WOA−VMD, VMD, CEEMD, EEMD, and EMD noise reduction methods and fault
diagnosis using AlexNet−TL. The accuracy rates for fault diagnosis were 100.0%, 98.125%,
96.88%, 95.63%, 93.125%, and 78.75%, respectively. In terms of classification results, the
use of noise reduction methods can greatly improve fault classification accuracy. Even
the EMD classification with the worst noise reduction achieved an accuracy of 93.125%,
much higher than the 78.75% of the original signal. This shows the importance of signal
noise reduction in fault diagnosis. The diagnostic accuracy of WOA-VMD was the highest
compared with the remaining five noise reduction methods, reaching 100.0%. It can be
shown that the signal after noise reduction using WOA-VMD is the most effective for fault
diagnosis. Therefore, the noise reduction method chosen in this paper is effective.
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5.5. Comparative Analysis of the Diagnostic Effects of Different Neural Network Models

In order to demonstrate that the diagnostic effect of AlexNet−TL proposed in this
paper is better than other networks, the dataset in Table 5 was selected for fault diagno-
sis using the AlexNet−TL network model proposed in this paper and the GoogLeNet,
ResNet18, and SqueezeNet network models. The fault diagnosis results for the four dif-
ferent networks are shown in Figure 15. As you can see from the graph, AlexNet−TL
has the highest accuracy rate at 100%. SqueezeNet and ResNet18 also demonstrate their
powerful image feature learning capabilities and can achieve 100% recognition accuracy for
some working conditions. Although there is still a gap in overall accuracy compared with
AlexNet−TL, this is under small sample conditions, and AlexNet−TL has been pretrained



Processes 2023, 11, 68 19 of 22

and fine-tuned prior to diagnosis. Overall, the AlexNet−TL neural network demonstrated
excellent diagnostic accuracy for gear faults, with a much higher accuracy rate compared
with the other three neural network models. The superiority of the proposed diagnostic
method can be further illustrated by the comparison of the diagnostic results.
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5.6. Comparative Analysis of the Diagnostic Effects of Different Fault Diagnosis Methods

To further illustrate the novelty and superiority of the fault diagnosis methods adopted
in this paper, the fault diagnosis methods used in this paper are compared with the five fault
diagnosis methods mentioned in the introduction section. All diagnostic methods make use
of the same experimental data. The experimental data are derived from Section 5.2.1. The
five diagnostic methods mentioned in the introduction section are (1) hybrid deep signal
processing methods for fault diagnosis, (2) hybrid deep learning models based on CNN
and gcForest for fault diagnosis (CNN−gcForest), (3) fault diagnosis method based on
superimposed autoencoders and support vector machines (SSAE-SVM), (4) fault diagnostic
method based on deep learning technology and multimodel feature fusion (MMFF−FD),
and (5) fault diagnostic method based on deep multilabel learning framework called
multilabel convolutional neural network (MLCNN). The results of the diagnosis are shown
in Table 9.

Table 9. Diagnostic results of different fault diagnosis methods.

Diagnostic Methods Hybrid Deep
Signal Processing CNN-gcForest SSAE-SVM MMFF-FD MLCNN AlexNet-TL

S1 94.44% 94.44% 94.44% 97.22% 97.22% 100.0%
S2 97.22% 97.22% 97.22% 100.0% 100.0% 100.0%
S3 100.0% 97.22% 97.22% 97.22% 97.22% 100.0%
S4 100.0% 97.22% 91.67% 94.44% 100.0% 100.0%

Diagnosis Accuracy 97.92% 96.53% 95.14% 97.22% 98.61% 100.0%
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Figure 16 shows the specifics of the diagnostic results of the five fault diagnosis
methods and the methods in this paper. As can be seen from the graph, AlexNet-TL’s
method had the highest accuracy rate of 100.00%. The classification accuracy is the highest
compared with the other five diagnostic methods. Of these five methods, SSAE-SVM and
MMFF-FD are fault diagnosis methods that use one-dimensional vibration signals to extract
fault features before classifying faults. In contrast, the method used in this paper transforms
a one-dimensional vibration signal into a two-dimensional time–frequency image, and
then uses deep migration learning to extract picture fault features for fault classification.
Obviously, the fault characteristics are more prominent in two-dimensional time–frequency
space, making the method used in this paper more accurate in diagnosis. The remaining
three methods also use deep learning to extract 2D time–frequency image features for
fault diagnosis, but are limited by small samples, resulting in gaps in fault classification
accuracy. The approach used in the paper draws on the strengths of deep learning and
transfer learning. One is the advantage of deep learning’s strong capability in image feature
extraction. Second, transfer learning has the advantage of being better at solving small
sample problems. Thus, the novelty of the diagnostic method proposed in this paper can
be demonstrated compared with the other five methods.
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6. Conclusions

This paper proposed a fault diagnosis method using a combination of WOA-VMD
and AlexNet−TL. The essential findings are as follows:

1. Using the WOA with sample entropy as an adaptation function, the optimal decom-
position level K and penalty parameter α can be found quickly to achieve better
noise reduction.

2. The CWT method is used to program a one-dimensional vibration signal into a
two-dimensional time–frequency image signal, which is combined with the good
performance of deep transfer networks for image recognition for fault classification of
gear faults.

3. A reliable fault diagnosis method based on deep transfer learning is proposed. The
AlexNet network was chosen as the transfer object, and through pretraining and fine-
tuning of the model, it has a good recognition effect on early gear faults of gearboxes,
solving the problem of small sample constraints in fault diagnosis.

The method proposed in this paper only investigates the single fault of a cracked
gear. In practice, however, gears work for long periods in harsh environments, often with
multiple faults occurring together. At present, we have not conducted enough research on
fault diagnosis methods for multiple fault conditions and will focus on this direction in the
next step.
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