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Abstract: The recovery of metal resources from wastewater is very important for both resource
recovery and wastewater treatment. Compared with traditional metal-polluted wastewater treatment
technologies, advanced wastewater treatment technologies with the functions of both recovering
metals and generating electricity have been developed rapidly in recent years. These advanced
technologies include microbial fuel cells, photo fuel cells, coupled redox fuel cells, etc. In this paper,
these advanced technologies are elaborated from their principles to their applications in wastewater
treatment for metals recovery and electricity generation. The recent progress of these technologies
was also reviewed. The effects of different metal ions, cell configurations, and various operating
parameters on their performance were also discussed. Although these technologies are promising,
the challenges and the efforts needed to overcome them are also highlighted.

Keywords: heavy metal; microbial fuel cell; photo fuel cell; coupled redox fuel cell; wastewater
treatment; resources recovery

1. Introduction

Mining, metal processing, electroplating, batteries, and other industries often dis-
charge a large amount of wastewater containing metals, such as lead, cadmium, mercury,
chromium, copper, zinc, nickel, vanadium, etc. [1]. Because metals, especially heavy metals,
cannot be degraded, after their discharge into the water environment, they may cause seri-
ous environmental problems. They may also enter the human body through the food chain,
and a certain number of metals will affect the organs and nervous system and cause harm
to human health [2]. Therefore, it is very important to remove metals from wastewater.

Traditionally, various chemical technologies have been applied in metal-polluted
wastewater treatment, such as chemical precipitation, electrolysis and reduction, etc. In
chemical precipitation methods, metal ions are removed in the form of insoluble hydroxide,
sulfide, or carbonate precipitation. However, the precipitation method is limited due to
its consumption of large amounts of chemicals and the discharge of toxic sludges, which
may cause other safety concerns [3]. The electrolysis method can recover metals via elec-
trodeposition on a cathode, but this method usually has the disadvantage of high energy
consumption [4]. The reduction method usually consumes a large amount of chemicals and
may produce toxic sludge [5]. In addition, there are also many physical chemical methods
for metal-polluted wastewater treatment such as ion exchange, adsorption, solvent extract-
ing, membrane filtration, etc. [6]. Ion exchange, adsorption and solvent extraction methods
usually use resins, adsorbents and solvent to purify water, but concentrated wastewater may
be produced. In membrane separation, membrane fouling is usually serious and frequent
maintenance of the membrane filtration system is required. The metal-polluted wastewater
is concentrated without metal recovery in the membrane separation method. In general,
research shows that traditional metal-polluted wastewater treatment techniques usually
have drawbacks such as the production of toxic sludge, high energy consumption, low
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recovery efficiency, and the potential to cause secondary pollution [7,8]. In addition, metals
with large exploitation face resource shortage problems. Thus, the effective recovery of
metals through wastewater treatment has great economic value but faces great challenges.
Therefore, it has become a major research topic to develop novel metal recovery technologies
for wastewater treatment with the characteristics of no secondary pollution, low energy
consumption, high treatment efficiency, and low operation costs.

Electrochemical technologies, such as microbial fuel cells (MFCs), photoelectrochemi-
cal fuel cells (PFCs), and coupled redox fuel cells (CRFCs), have undergone tremendous
scientific and technical growth over the past decade, because they can directly convert the
chemical energy in waste into electricity and recover metal resources. These technologies
have shown promising application in energy, resource recovery, and wastewater treat-
ment [9]. In particular, in recent years, these electrochemical technologies have been widely
applied in metal-polluted wastewater treatment for metal resource and electricity recovery.
Many reputed researchers have been involved and a number of papers have been published
in this area. In order to promote research work on these electrochemical technologies, it is
necessary to provide a review in this area. This review is intended to introduce the basic
knowledge, the most relevant features, and the recent research progress in terms of the
corresponding electrochemical technologies.

2. Microbial Fuel Cells

In a typical MFC, bacteria on the anode can oxidize organic matter into carbon dioxide and
release protons and electrons, while oxygen can combine with protons and electrons to produce
water on the cathode. This technology can realize wastewater treatment and power recovery
simultaneously and provides a promising solution to solve the energy and environmental
challenges. It has thus become one of the major topics in environmental engineering.

For the metal removal in an MFC, metal ions in aqueous solution usually function as
electron acceptors, and their reduction and recovery mostly occur on the cathode [10–12]. The
mechanism for the cathodic removal of metals is relatively simple, as illustrated in Figure 1.
The metal ions function as electron acceptors on the cathode to replace oxygen, while the same
organic oxidation reactions occur on the bioanode as in traditional MFCs. In this case, metal
ions were mainly reduced to lower valences or metals to be recovered [13,14]. In order to avoid
their effects on the bioanode, the MFCs were usually separated by an ion exchange membrane.
In addition, metal ions can be reduced by reductants produced on the cathode in MFCs.
Liu et al. reported that H2O2 can be directly generated on the MFC cathode and metal ions can
be further reduced by H2O2 [15,16].
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Figure 1. Metals removal on the cathode of MFCs. 
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However, in some cases, some metal ions may be directly adsorbed by the bacteria on the
anode and metals can be transformed. The principles of metal ion removal on a bioanode are
illustrated in Figure 2. As in the illustration, the bacteria on the anode can adsorb the metal
ions and transfer the metal ions to cellular substances or precipitates. Miran et al. [17] enriched
sulfate reducing bacteria (SRB) and exoelectrogens on the anode and used the bioanode in an
MFC for copper removal. It was found that in 48 h, over 63% of copper could be removed by
SRB through the direct adsorption and ca. 7% of copper was removed by the copper sulfide
precipitation. The sulfide was produced by SRB via sulfate reduction. In this case, biosorption
and sulfides precipitation are the major mechanisms for metal ion removal in the MFCs. Liu
et al. [18] also proposed similar mechanisms for Zn and Cd removal. Under a low initial
concentration of less than 0.5 mM, the Zn and Cd removal efficiency can reach 97% and 90%,
respectively, with decreased power generation performance.
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To date, many reports have shown that the metal ion removal efficiency and electricity
production performance in MFCs are mainly affected by the metal ion type and concen-
tration, electrode materials, anode substrates, and microbe community [19,20]. It is very
meaningful to better understand these factors and their effects on the system in order to
develop efficient and applicable technologies for metal-polluted wastewater treatment. As
different metal ions usually have different oxidation potentials (shown in Table 1), their
reduction performance is thermodynamically different. In the following section, this topic
will be reviewed from the perspective of different metal ions.

Table 1. Oxidation potentials for typical metal ions.

Typical Ions Reactions Standard Oxidation
Potential/V

Cr(VI) Cr2O7
2− + 14H+ + 6e− → 2Cr3+ + 7H2O 1.232

V(V) VO2
+ + 2H+ + e− → VO2+ + H2O 0.991

Co(III) CoO2
− + 4H+ + e− → Co2+ + 2H2O 1.61

Cu(II) Cu2+ + 2e− → Cu 0.341
Ag(I) Ag+ + e− → Ag 0.80

Au(III) AuCl4− + 3e− → Au(s) + 4Cl− 1.002
Hg(II) Hg2+ + 2e− → Hg 0.851
Cd(II) Cd2+ + 2e− → Cd −0.403
Ni(II) Ni2+ + e− → Ni −0.257
Zn(II) Zn2+ + 2e− → Zn −0.762
Pb(II) Pb2+ + 2e− → Pb −0.126
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2.1. Chromium

Chromium is widely found in the textile, electroplating, metallurgy, and pharma-
ceutical industrial sectors. Chromium is usually present as Cr(VI) and Cr(III). Cr(VI) is
more water-soluble at a broad pH range, and it is a more dangerous and carcinogenic form
than Cr(III). Cr(III) can form hydroxide precipitation at the appropriate pH range and be
removed from water. Therefore, reducing Cr(VI) in wastewater to Cr(III) is a common
detoxification mechanism [21].

Tandukar et al. [22] treated chromium-containing wastewater in an MFC with a
biocathode, and they found that when the Cr(VI) concentration was below 80 mg/L, the
Cr(VI) reduction rate was fast because a high Cr(VI) concentration may harm the bacteria
on the cathode. The maximum Cr(VI) reduction rate was 0.46 mg Cr(VI)/g·h on the
biocathode and the maximum power density was 55.5 mW/m2. Huang [23,24] studied
Cr(VI) reduction on different carbon-based cathodes in a tubular MFC and found that
when using a biological cathode with a low set potential, Cr(VI) could be quickly removed
from the polluted environment by electrical and biological adsorption. The synergetic
effect can improve the performance for Cr(VI) reduction compared with the traditional
electrochemical reduction method. The above research indicated that a biocathode was
effective in Cr(VI) reduction under low concentrations. Thus, the bacteria on the cathode
are very important to improve performance. Romo et al. studied the microbe diversity on
the biocathode and found an efficient microbe for Cr(VI) reduction, and the Cr(VI) removal
rate could reach 97.8% [25]. These microbes can also be used in the bioremediation of
Cr(VI)-contaminated soil and water. Zhao et al. constructed a biocathode inoculated with
corynebacterium LZU47-1 in an MFC for Cr(VI) removal [26]. The Cr(VI) removal rate
could reach 98.6% due to the large surface area, high electric conductivity, and high electron
transfer rate of the biocathode. Besides an effective biocathode, other cathode materials and
anode materials were also investigated to improve the Cr(VI)–MFC performance. Gupta
et al. [27] prepared a cathode by using composites of Al2O3/Ni nanoparticles and carbon
nanofiber, with good conductivity and adsorption capability. Thus, Cr(VI) can be almost
completely removed in MFCs with a composite cathode.

The substrates for bioanodes are also an important factor in the MFCs for Cr(VI)
removal. Substrates for bioanodes with a lower oxidation potential will generate a higher
cell voltage in MFCs. However, the MFCs’ performance is affected by the substrates’
metabolism on the bioanode. To date, substrates widely used in MFCs include glucose,
acetate, and organic wastewater. Zhao et al. [28] constructed a dual-chamber microbial
fuel cell with glucose solution in the anode chamber and chromium-containing wastewater
in the cathode chamber. In this glucose substrate MFC, the maximum power output was
108 mW/m2 and the Cr(VI) removal rate was 92.8% after 10 h. The experimental results
showed that a low catholyte pH and high initial Cr(VI) concentration can improve the
electrical production performance of MFCs. Carboxymethyl cellulose was also used as the
substrate for a bioanode in an MFC, and Cr(VI) could be reduced to less toxic Cr(III) with
95.2 ± 2.7% of Cr(VI) removal rate [29].

In addition, MFCs were used to simultaneously remove Cr(VI) and Cr(III) [30]. The
principle is to use the energy generated from Cr(VI) reduction in the Cr(VI)–MFC to drive
Cr(III) reduction in another Cr(III)–MFC, because Cr(III) reduction generally needs an
external energy input. It was found that Cr(VI) removal could reach 99.9%, while Cr(III)
removal could reach 82%, when a Cr(VI)/Cr(III) ratio of 2 was used.

2.2. Vanadium

Vanadium is a trace element in organisms and has wide application in various indus-
trial sectors, such as vanadium alloys, chemical synthesis, ceramic coloring, etc. Vanadium-
contaminated water is usually discharged from industrial application sectors, mining, and
V2O5 production. Pentavalent vanadium (V(V)) is the most toxic form of vanadium; when
its concentration exceeds 1~10 µg/L, it will be harmful to animals and plants. Mean-
while, tetravalent vanadium (V(IV)) is less toxic and is insoluble in neutral and alkaline
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water [31]. For V(V)-contaminated water treatment, researchers usually reduce V(V) to a
V(IV) precipitate to reduce vanadium’s pollution and toxicity.

With the development of MFCs, many papers have been published on the use of V(V)
as an electron acceptor in MFCs, as a new vanadium wastewater treatment technology to
recover electricity. In some of these studies, dual-chamber MFCs were employed and over
70% V(V) could be reduced in the cathode chamber, with an electricity of over 600 mW/m2

produced [32,33]. In this type of MFC, because the cathode and anode were separated
by a membrane, a high concentration of V(V) caused little harm to the bacteria on the
anode, and the electricity production was higher under a higher V(V) concentration due
to the thermal dynamics. However, some researchers also used single-chamber MFCs
to treat vanadium-polluted wastewater. In single-chamber MFCs, V(V) may cause harm
to the bacteria on the anode and a high V concentration cannot be applied. In addition,
the V(V) may directly accept electrons from the anode, and this may cause a decrease in
electricity generation. Hao et al. used a single-chamber MFC to treat vanadium-polluted
wastewater, and found that the V(V) removal rate reached of 77.6% with acetate as the
anode substrate [34]. Even in dual-chamber MFCs with biocathodes, harm to cathodic
bacteria was also noted when the vanadium concentration was high [35,36]. However,
a biocathode may enhance the charge transfer, which may facilitate vanadium removal
under low concentrations. As V and Cr usually coexist in wastewater, Zhang et al. [37]
investigated the simultaneous reduction of Cr(VI) and V(V) and found that Cr(VI) could
enhance the V reduction, with higher treatment efficiency.

2.3. Cobalt

Cobalt is a rare metal with a content of 0.001% in the earth’s crust, which mainly arises
from the by-products of copper and nickel refinement. Cobalt can regulate or stimulate
certain enzymes, and it is an essential element in processing vitamin B12. The content of
cobalt in a lithium battery can reach 5–10% (w/w). However, Co(III) has a strong toxic
effect on animals, plants, and human beings. Thus, wastewater containing cobalt has to be
treated properly before its discharge.

MFCs have been employed in cobalt wastewater treatment recently, because Co(III) has
a very high redox potential of +1.61 V, and it can function as a good electron acceptor to be
reduced to Co(II). Dual-chamber MFCs were employed to leach Co from LiCoO2 and it was
found that Cu(II) addition could improve the Co leaching rate by over 3 times [38]. Huang
et al. utilized a cathode with LiCoO2 in MFCs and found that the Co leaching rate increased
by 3.4 times compared to the chemical leaching method [39]. Moreover, cobalt existed
as Co(II) rather than Co(III) in the leachate, indicating that Co(III) functioned as a good
electron acceptor on the cathode. Huang et al. [40] further used both cobalt and oxygen as
the electron acceptors in MFCs and found that oxygen can be reduced to OH− and OH− can
further react with the produced Co(II) to form a Co(OH)2 precipitate. They also optimized
the operation parameters and found that when the dissolved oxygen concentration was
0.031 mg/L and the pH was 5.6, the cobalt removal and recovery efficiency were the highest,
with a simultaneous electricity production of 1.5 W/m3.

2.4. Copper

In recent years, with the rapid development of industry, wastewater containing copper
has been discharged in metallurgy, electroplating, circuit board printing, and other industries.
At present, precipitation, chemical reduction, adsorption, flocculation, and other methods are
usually used to treat industrial wastewater containing copper. However, these traditional
methods are unable to recover copper directly and may also cause secondary pollution. MFCs
can be used to treat this type of wastewater and recover copper resources and electricity.
Heijne et al. directly used Cu(II) ions as the electron acceptors in a dual-chamber MFC, and
copper could be directly recovered on the cathode under a pH of 3 [41]. Due to the separation
between the cathode and anode chamber, the microbes’ activity on the bioanode was not
affected. Wang et al. [42] found that the addition of NO3

− and pH in the catholyte could
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also affect the Cu(II) recovery performance due to their effects on copper crystal growth. The
copper-reducing product was also affected by the anode substrate, because different substrates
may possess different potential for copper reduction.

Generally, anode substrates with lower oxidation potential may favor the production
of metal copper, while a higher oxidation potential may favor the production of Cu2O. It
was found that when excess sludge was used as the anode substrate, Cu(II) could be mainly
reduced to metal copper, while, when the sludge loading was low, Cu(II) could be mainly
reduced to Cu2O [43]. When glucose was used as the anode substrate, Cu(II) could be
reduced to metal copper completely, with a higher electrical power production [44]. For cop-
per wastewater treatment using MFCs, besides the substrate, the electrode material and cell
configuration also showed significant effects on the performance. For example, electrode
modification may enhance the charge transfer efficiency [45]; a suitable volume ratio be-
tween the cathode and anode chamber may result in high COD removal efficiency and high
Cu(II) reduction efficiency simultaneously, together with high coulombic efficiency [46,47].

The above-mentioned copper-polluted wastewater treatment in MFCs usually used a
dual-chamber configuration. This configuration can prevent the possible toxicity of copper
towards the microbes on the anode and gives a higher power output. Single-chamber
MFCs also have been developed to treat wastewater containing copper and the copper
concentration is usually as low as tens mg/L to avoid toxicity towards microbes [48].
In the single-chamber MFC, the microbe community can vary according to the Cu(II)
concentration, and it was generally found that proteus and bacteroides were important for
electricity generation, while actinomycetes and acidobacterium were important for copper
removal. Electrode modification by rGO can also enhance the electrode structure and
electron transfer performance [49]. In addition, when using a carbonized clay cup as a
cathode, the copper recovery and electricity generation could be greatly enhanced in a
single-chamber MFC [50].

2.5. Silver and Gold

Silver is a precious metal that is widely used in industrial sectors and in jewelry
making, and its recycling has been of concern. Wastewater containing silver usually comes
from the electronics, jewelry, and photography industries. Silver ions in wastewater can be
toxic towards animals and plants. MFCs have attracted much attention in recent years to
treat wastewater containing silver.

Choi et al. recovered metal silver on a cathode from wastewater containing free silver
ions, while organic wastewater was simultaneously treated on a bioanode in an MFC [51].
In this MFC, over 99% of silver ions were removed and recovered with a power output
over 5 W/m2. In addition, other types of silver ions, such as ammonia-chelated silver
ions, thiosulfate-chelated silver ions, and cyanide-chelated silver ions [52], could also be
recovered in such MFCs. However, chelated silver ions usually have a lower oxidation
potential; thus, chelated silver ions, as electron acceptors, generate a lower power output in
MFCs. When researchers characterized the recovered silver on the cathode, nanostructured
silver particles were usually observed [53]. Nanostructured silver particles have shown
more promising applications in catalysis, electronics, and sensors, etc. This may offer new
opportunities to recover high-value nanoparticles through MFCs.

As one of the precious metals, the recovery of gold is of high economic value, and it
has aroused widespread concern. Due to the high redox potential (1.002 V), Au (III) can be
directly reduced to metal gold on the MFC’s cathode. Choi et al. reported the reduction of
Au(III) to metal gold on an MFC’s cathode by using chloroauric acid as a gold source and
electron acceptor [54]. They found that almost all the gold ions could be reduced to metal
gold, with electricity produced. In some cases, nanostructured gold can also be produced,
and the generated gold nanoparticles can function as catalysts for other reactions [55].
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3. MFC–MEC Coupling System

In the treatment of metal-polluted wastewater, some metal ions, as shown in Table 1,
have high redox potentials, and can be used as electron acceptors of an MFC cathode to
drive the reaction to occur spontaneously and generate electric energy. However, for metal
ions with low redox potential (such as Pb(II), Ni(II), Zn(II) etc.), their redox potentials
are low, and the reaction cannot occur spontaneously. A bias voltage is usually required
to reduce and remove them on the cathode of the microbial electrochemical systems,
named the microbial electrolysis cell (MEC). Till now, MECs can be used to reduce metal
ions including Zn(II), Pb(II), and Ni(II) [56,57] by applying external voltage. Since MEC
operation requires a bias voltage, the electricity generated by a MFC can be used to drive
an MEC. Thus, an MFC–MEC coupling system, which uses the voltage generated from
an MFC to drive the reactions in an MEC, can be built to remove metal ions with high
redox potential from MFC and to remove metal ions with low redox potential from MEC,
respectively. Thus, the coupling system has the advantages of in situ utilization of the
electricity from the MFC and accelerating the metal ions’ reduction without an external
electricity input [58]. In the MFC–MEC coupling system, the MFC’s bioanode is usually
connected with the MEC’s cathode, while the MFC’s cathode is usually connected with the
MEC’s anode, as shown in Figure 3.
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In this MFC–MEC coupling system, the species including metal ions and oxygen with
higher oxidation potential are usually processed in the MFC, while the metal ions with
a lower oxidation potential are usually treated in the MEC. Both the MFC and MEC can
employ metal ions as the electron acceptors. Luo et al. constructed an MFC–MEC coupling
system, in which the MFC was used to reduce Cu(II) and generate a bias voltage, and the bias
voltage was applied directly to the MEC to reduce Ni(II) [59]. In Luo’s system, wastewater
containing copper and wastewater containing nickel could be simultaneously treated, with
efficient copper and nickel recovery, respectively. Huang et al. constructed an MFC–MEC
coupling system to recover cobalt [60]. The MFC was used to reduce Co(III) to Co(II) with
bias voltage generation, while the MEC was used to further reduce Co(II) to metal cobalt.
Thus, in this MFC–MEC coupling system, Co(III) in LiCoO2 can be recovered as metal cobalt,
and this system is promising for lithium battery recycling. Similar configurations were also
constructed to treat wastewater containing Cu(II)/Co(II) [61], Cr(VI)/Cu(II)/Cd(II) [62],
Cu(II)/Co(II)/Li(I) [63], Cu(II)/Cd(II) [64], and Cr(VI)/Pb(II) [65,66]. In these studies, the
reaction conditions and cathode materials could be optimized to improve the coupling
systems’ performance. In addition, there are also a few MFC–MEC coupling systems in
which the MFC employs oxygen as an electron acceptor while the MEC employs heavy
metal ions as the electron acceptor [67].
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4. Photo Fuel Cells

In the above microbial electrochemical technologies, due to the microbes’ metabolism,
the system can only be operated under normal temperature and pH conditions. An
overly low or high temperature or extreme pH may retard the microbes’ activity and
even damage the system. In addition, the microbes generally cannot tolerate the toxicity
of high concentrations of metal ions and a membrane needs to be used to separate the
metal-polluted wastewater from the microbes, which would inevitably cause high costs for
the technology.

In PFCs, a photoelectrode is usually employed to utilize photo energy to drive the
chemical reaction. The photo energy can help to overcome the thermal dynamic barrier
of the chemical reaction. As shown in Figure 4, the anode loaded with semiconductor
photocatalyst is inspired and generates electron-hole pairs under light illumination. The
positive holes with strong oxidation power can decompose most of organic wastes on the
anode, and photogenerated electrons are transferred to the cathode via an external circuit
and thereby current is formed. By varying the electron acceptors, this PFC can be used to
degrade organics, produce hydrogen, or recover metals from wastewater. Kaneko et al. [68]
first proposed a PFC using TiO2 as a photoanode, Pt as a cathode, and NH3 as an electron
donor. Under ultraviolet irradiation, the photodecomposition of NH3 was achieved on
the photoanode, and H2 was generated on the cathode. This design is likely to provide
alternative solutions to the global energy and environmental crisis. Liu et al. [69] proposed
a multifunctional PFC to reduce Cr(VI) and oxidize methylene blue with electricity gen-
eration. In Liu’s design, the photogenerated electrons were transferred to the cathode to
reduce Cr(VI); thus, the electron hole separation on the photoanode could be accelerated,
and the oxidation of organics by the holes could be enhanced. In 6 h, over 96.8% Cr(VI)
and almost all methylene blue was removed with a 1 W/m2 power output. The methylene
blue removal efficiency is obviously higher than in the traditional photocatalysis process.
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In order to further improve the PFCs’ efficiency for metal-polluted wastewater treat-
ment, researchers coupled the bioanode with the photo-cathode. Li et al. [70] introduced a
photo-cathode into the microbial electrochemical reactor to build a photocatalytic microbial
fuel cell. The anode was inoculated with anaerobic-activated sludge to cultivate exoelec-
trogens, and the cathode was composed of a TiO2 photocatalyst. Potassium dichromate
solution was used in the cathode chamber. After 26 h, over 97% Cr(VI) was reduced to
Cr(III), and the maximum current output was 235 mA/m3. The maximum output voltage
under light was 0.80 V, which was higher than that under dark conditions (0.55 V). More-
over, the reduction rate of Cr(VI) under light was 1.6 times faster than that in the dark. In
addition, they also compared the bioanode with an abiotic anode. They found that under
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the same conditions, the bioanode could increase the Cr(VI) reduction rate by 5 times. The
above comparisons indicated the synergetic effect of bioanode and photo-cathode coupling,
and the coupling system can improve both wastewater treatment and electricity generation
performance. A similar bioanode and photo-cathode coupling system was also employed
to treat Cr(VI) and organics in wastewater [71]. In this configuration, with the exception of
the Cr(VI) and oxygen reduction via the electrochemical process, the refractory organics
can be degraded simultaneously on the photo-cathode by the photocatalytic process, as
shown in Figure 5.
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In short, the above bioanode and photo-cathode coupling system can utilize solar
energy as an additional energy source to overcome the reaction’s thermal dynamic barrier
and achieve efficient power production spontaneously. However, one of the limitations
of this coupling system is that the photo-cathode may be contaminated by the metal ion-
reducing product. In addition, this coupling system is limited to biodegradable organic
wastewater in the anode chamber due to the bioanode.

5. Coupled Redox Fuel Cells

In CRFCs, as shown in Figure 6, the substances with low oxidation potential will
be oxidized on the anode to release electrons and protons, and the substances with high
oxidation potential will be reduced on the cathode, thus converting the chemical energy in
the fuel and oxidant into electrical energy. Usually, many organic pollutants in wastewater,
such as urea, phenol, ethanol, and formaldehyde, have a low oxidation potential and can
be used as fuels for CRFCs. O2, H2O2, or metal ions in wastewater have a high oxidation
potential and can be used as oxidants. Chemical energy contained in fuels and metal ions
was directly converted to electricity via electrocatalyst instead of bacteria, thus avoiding the
pH limitation. The power density achieved in coupled redox fuel cells usually surpassed
that of MFCs. Xu et al. designed a urea-Cr(VI) CRFC to oxidize urea on a Ni/C anode [72].
Urea could be oxidized completely with a maximum power output of 3.4 W/m2, while
Cr(VI) could be removed with a columbic efficiency of over 98%. However, different
fuels would need different anode catalysts. Zhang et al. [73] designed phenol-Cr(VI) and
urea-Cr(VI) CRFCs, employing Pt/C as anode catalyst, and found that over 99% Cr(VI)
could be removed together with phenol and urea degradation.

Methanol is widely used in traditional fuel cell technologies due to its high energy
density, ease of handling, and safety. Furthermore, electrocatalysts for methanol oxidation
are commercially available. Thus, the combination of methanol and metal ions has also
been employed to construct coupled redox fuel cells. Zhang et al. [74] designed an alkaline
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methanol fuel cell with Cr(VI) as the oxidant and over 96% Cr(VI) could be removed. When
the current density was 2.3 A/m2, the power density reached 1.9 W/m2. Chen et al. [75]
designed a methanol–Cr(VI) CRFC for Cr(VI) removal. Methanol could be oxidized on the
anode and Cr(VI) could be reduced on the cathode efficiently. It was also found that the
Cr(VI) removal efficiency and the power density output increased with the temperature.
At 45 ◦C, the maximum power output could reach as high as 903 W/m2, and the Cr
(VI) removal rate could reach 91%. This research indicated the coupled redox fuel cells’
applicability at higher temperatures.
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In CRFCs, due to its high oxidation potential and toxic properties in the environment,
Cr(VI) was mostly studied. In addition, other metals with higher oxidation potential
such as Au(III), Ag(I), Cu(II) and their chelated ions also showed promising recovery and
electricity generation performance. Though the publications in this field are relatively in
shortage, in order to compare the performance of different CRFCs, Table 2 was designed
and the corresponding data were shown. From Table 2, it can be roughly seen that the metal
removal efficiency and cathodic efficiency are usually high for different metals, though
these data may vary by using different reaction times. In addition, the open-circuit voltage
and the power output can be greatly varied by changing the reaction temperature, pH and
metal ions because these reactions are thermodynamically affected by these parameters.

Table 2. Performance comparison of different CRFCs.

System Power/W/m2 Metal
Removal/% OCV/V Cathodic

Efficiency/% Refs. No.

Phenol-Cr 0.18 99 1.06 >98 [76]
BPA-Cr 0.78 95 1.08 91 [77]
Urea-Cr 0.3 98.6 1.59 74.6 [78]
EtOH-Cr 1.9 96 1.46 63 [74]

MeOH-Ag 17.4 90 1.28 89 [79]
MeOH-Cr 903 91 1.70 / [75]
Urine-Cr 3.4 90 1.30 98 [72]
EtOH-Au 1.6 96.2 1.4 / [80]
EtOH-Cu 0.8 96.1 0.96 / [80]

EtOH-[Ag(NH3)2]+ 0.6 45.7 0.95 / [80]
EtOH-[Cu(NH3)4]2+ 0.5 55.8 0.92 / [80]

NaBH4-Cu 7.2 99.9 1.65 100 [81,82]
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However, in the above CRFCs, an ion exchange membrane is usually needed to
separate the anode and cathode chambers. After long-term operation, the fouling of the
membrane and the penetration of metal ions into the anode chamber may arise. Thus,
a high-quality ion exchange membrane is expected to be required for this technology’s
application. In addition, different fuels may need different anode catalysts; the development
of efficient anode catalysts for specific organics such as phenol and BPA is another challenge.

6. Conclusions

It is promising to recover metal resources and electricity from metal-polluted wastew-
ater treatment, especially under the present fossil fuel energy crisis and environmental
pressure. In this review, the principles involved in recovering metals and electricity from
metal-polluted wastewater treatment via microbial fuel cells, photo fuel cells, coupled
redox fuel cells, and their couplings were elaborated.

These technologies have led to significant research progress at the laboratory scale in
recent years. However, these studies have also faced different challenges. For microbial
electrochemical technologies, bacteria with a high activity and durability to temperature and
pH variations create challenges. For CRFCs, the acquisition of an active and stable catalyst
for various organic pollutants causes great challenges. For PFCs, the low light transmission
efficiency of wastewater may be a challenge. In general, these technologies usually employ
artificial wastewater; their applicability and long-term durability for real wastewater need
to be confirmed with further research efforts. These technologies’ costs are relatively higher
because expensive membranes and catalysts are usually needed, and this high cost would
inevitably slow down their development. These technologies’ characteristics determined their
limitations and applicability for different wastewater conditions.

With the development of molecular biology and materials science, research in cata-
lysts, ion exchange membranes, microbes screening, and structural design are expected to
advance rapidly and further promote these promising technologies’ development. Their
applications under proper conditions for metals recovery and wastewater treatment are
believed to be very promising.
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