
Citation: Ryzhkov, F.V.; Ryzhkova,

Y.E.; Elinson, M.N. Python in

Chemistry: Physicochemical Tools.

Processes 2023, 11, 2897. https://

doi.org/10.3390/pr11102897

Academic Editor: Alexander

S. Novikov

Received: 10 September 2023

Revised: 27 September 2023

Accepted: 28 September 2023

Published: 30 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Review

Python in Chemistry: Physicochemical Tools
Fedor V. Ryzhkov * , Yuliya E. Ryzhkova and Michail N. Elinson

N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospekt,
119991 Moscow, Russia; yu_ryzhkova@ioc.ac.ru (Y.E.R.); elinson@ioc.ac.ru (M.N.E.)
* Correspondence: ryzhkovfv@ioc.ac.ru

Abstract: The popularity of the Python programming language in chemistry is growing every year.
Python provides versatility, simplicity, and a rich ecosystem of libraries, making it the preferred
choice for solving chemical problems. It is widely used for kinetic and thermodynamic calculations,
as well as in quantum chemistry and molecular mechanics. Python is used extensively for laboratory
automation and software development. Data analysis and visualization in chemistry have also
become easier with the libraries available in Python. The evolution of theoretical and computational
chemistry is expected in the future, especially at intersections with other fields such as machine
learning. This review presents tools developed for applications in kinetic, thermodynamic, and
quantum chemistry, instruments for molecular mechanics, and laboratory equipment. Online courses
that help scientists without programming experience adapt Python to their chemical problems are
also listed.

Keywords: Python; computational chemistry; thermodynamics; kinetics; quantum chemistry;
molecular mechanics; material science; automation with Python; Python courses

1. Introduction

Python is a powerful general-purpose programming language that is widely used in
Internet applications, software development, data science, machine learning, and natural
science. It was implemented by Guido van Rossum in 1989. Python is classified as an
interpreted programming language that automates most of the fundamental operations
(such as memory management) performed at the processor level (“machine code”). Python
is considered a higher-level language than, for example, C++, because of its expressive
syntax (which is close to natural language in many cases) and its rich variety of built-in
data structures such as lists, tuples, sets, and dictionaries.

The Python philosophy is based on open source and an evolving community. Its
syntax is simple and easy to learn, and the written code runs on any platform (PC, servers,
clusters, mobile phones, and even IoT devices). Among the available libraries are many
packages for almost any task, and these packages can often be downloaded for free (as well as
Python itself). All this increases the speed of development and the popularity of this language.

However, the intensity of Python’s development has a downside. Constant devel-
opment has created problems with version compatibility. Python, being an interpretable
high-level language, cannot be as fast and efficient as C++. In scientific tasks, it is leveled
by the fact that some of the libraries used by Python are written in C++ and pre-compiled.
In this case, Python acts as a scripting language that organizes the efficient operation of
code compiled in C++.

The programming initially originated in science. Scientists wrote programs to simplify
and automate scientific tasks. Today, scientific programming still allows to automate labor-
intensive tasks, modify and update research results, ensure collaboration, and create and
compare models. Thanks to the speed of calculations and computations, the intensive
development of which is especially noticeable in 2000–2020, the development in science is
sufficiently accelerated.

Processes 2023, 11, 2897. https://doi.org/10.3390/pr11102897 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11102897
https://doi.org/10.3390/pr11102897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0002-5844-6019
https://orcid.org/0000-0002-5826-2279
https://orcid.org/0000-0002-4647-5410
https://doi.org/10.3390/pr11102897
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11102897?type=check_update&version=3

Processes 2023, 11, 2897 2 of 24

As programming evolved, new tasks and opportunities emerged, and programming
became a separate industry. Then, after the formation of the industry of commercial
software products, programming returned to science in a new form. Such a long and
complex way has given rise to a wide variety of languages. Below are the languages that
are often used in scientific works.

Fortran. In the 1950s, a team from International Business Machines Inc. (Armonk,
NY, USA) led by John Backus created the Fortran language. Fortran was the first high-
level language to become popular, especially in the domain of numerical and scientific
computing. It was widely adopted due to its increased level of abstraction, which made it
orders of magnitude more compact than assembly programs. This popularity encouraged
the development of excellent optimizing compilers, making Fortran the language of choice
for many demanding scientific applications. It has a large body of tested Fortran routines
and good support for modular programming [1].

MATLAB. It is a scripting language developed by a computer science professor to save
students from learning Fortran. MATLAB excels at linear algebra and has many scientific
and engineering tools, such as simulations and controls. It is fairly ‘mathematical’ in its
syntax, making it easier to learn if already immersed in the subject. It provides an IDE to
smooth over some of the difficulties of introductory programming, but it is expensive and
limited outside of math and engineering subject areas. MATLAB isn’t free.

Wolfram Language (Mathematica). Mathematica is a popular programming tool in
chemical engineering that was developed to solve complex mathematical problems with as
little coding as possible. It has nearly 5000 built-in functions covering all areas of technical
computing and is integrated into the fully integrated Mathematica system. The Wolfram
Language is uniquely easy to read, write, and learn, but it requires a license and is more
expensive than MATLAB.

C and C++. Even for a simple job, writing C code involves high time and effort costs.
C was designed to allow a programmer to control computer hardware at a very low level.
Traditionally, Fortran and MATLAB [2] have been the languages of choice for scientific
computing applications. Developing object-oriented code for complex mathematical mod-
els, such as biology, finance, and materials science, requires parallel computing and the
development of a graduate-level course in C++ for Scientific Computing.

Julia. It is a high-level and simultaneously high-performance free programming
language designed for mathematical computations. It is also effective for writing general-
purpose programs. Thanks to JIT (just-in-time) compilation and built-in support for multi-
threading and distributed computing, programs written with Julia are almost as efficient
as applications written in compiled languages. Julia can call and use functions from other
languages, such as C, Python, and Java.

R. This is a highly specialized language, which is great for statistical tasks. Often,
there is a need not only to get data but also to transform that data or to interact with
other external interfaces. Such tasks are difficult to implement using R. It has many great
data visualization packages, including those that are publication-quality by default and
powerful for developing custom displays of data. However, it is less developed in terms of
engineering tools and more geared towards statistics.

BASIC (Beginners’ All-purpose Symbolic Instruction Code), Visual Basic (VB), Visual
Basic for Application (VBA). BASIC is a family of general-purpose programming languages
designed for ease of use. It was created in 1963. Visual Basic is a third-generation event-
driven programming language from Microsoft, first released in 1991 and declared a legacy
in 2008.

Today, many calculations proceed in Microsoft Excel. Chemical engineers frequently
use MS Excel in experiments [3] and calculations as it is ubiquitous, easy to use, contains
all the experimental data, and displays them clearly within Excel. VBA brings to Excel
extensibility and flexibility [4]; it can be plugged in as the calculations are needed, e.g., for
linear algebra, ordinary differential equations, regression analysis, partial differential equations,
mathematical programming methods, and the connection to external devices or interfaces.

Processes 2023, 11, 2897 3 of 24

Pascal. Pascal grew out of ALGOL, a programming language intended for scientific
computing. In the 1960s, Dr. Niklaus Wirth of the Swiss Federal Institute of Technology
published his specification for a highly structured language that resembled ALGOL in
many ways. Pascal is free-flowing, unlike FORTRAN, and reads like a natural language,
making it easy to understand the code written in it. Pascal became widely accepted at
universities due to two events: the Educational Testing Service’s addition of a Computer
Science exam and the release of the Turbo Pascal compiler for the IBM Personal Computer.
Pascal became the de facto standard for programming on the PC, with advanced features
such as DPMI, Turbo Vision, and object-oriented extensions.

Java. In 1995, Java gained widespread popularity with the inclusion of the Java Virtual
Machine (JVM). In Science, BioJava [5] has become popular. The project aims to facilitate
bioinformatics analysis by providing parsers, data structures, and algorithms to address
common challenges in genomics, structural biology, ontologies, phylogenetics, and other
areas.

This review is focused specifically on Python, as this language has become incredibly
popular in the scientific community. The reasons for its popularity are described above,
and if we evaluate it in numbers, it is growing exponentially. Figure 1 shows the explosive
growth in the number of articles on topics related to chemistry and program development in
Python (the main literature search for the review is collected by querying through SciFinder
using these keywords). The decrease in the number of Python publications in 2023 is due
to the incomplete year at the time of writing the review.

Processes 2023, 11, 2897 3 of 24

linear algebra, ordinary differential equations, regression analysis, partial differential
equations, mathematical programming methods, and the connection to external devices
or interfaces.

Pascal. Pascal grew out of ALGOL, a programming language intended for scientific
computing. In the 1960s, Dr. Niklaus Wirth of the Swiss Federal Institute of Technology
published his specification for a highly structured language that resembled ALGOL in
many ways. Pascal is free-flowing, unlike FORTRAN, and reads like a natural language,
making it easy to understand the code written in it. Pascal became widely accepted at
universities due to two events: the Educational Testing Service’s addition of a Computer
Science exam and the release of the Turbo Pascal compiler for the IBM Personal Computer.
Pascal became the de facto standard for programming on the PC, with advanced features
such as DPMI, Turbo Vision, and object-oriented extensions.

Java. In 1995, Java gained widespread popularity with the inclusion of the Java Vir-
tual Machine (JVM). In Science, BioJava [5] has become popular. The project aims to facil-
itate bioinformatics analysis by providing parsers, data structures, and algorithms to ad-
dress common challenges in genomics, structural biology, ontologies, phylogenetics, and
other areas.

This review is focused specifically on Python, as this language has become incredibly
popular in the scientific community. The reasons for its popularity are described above,
and if we evaluate it in numbers, it is growing exponentially. Figure 1 shows the explosive
growth in the number of articles on topics related to chemistry and program development
in Python (the main literature search for the review is collected by querying through
SciFinder using these keywords). The decrease in the number of Python publications in
2023 is due to the incomplete year at the time of writing the review.

Figure 1. Growing interest in Python in chemistry publications. (SciFinder search, keywords “Py-
thon AND chemistry NOT fat NOT snake NOT reptiles”, early 2023).

In chemistry, Python solves a lot of tasks, and the range of tasks is expanding every
day. By categorizing these tasks into groups, it has been possible to identify a few sections,
as follows: Physical chemistry tasks include thermodynamics, kinetic models, quantum
chemistry, and molecular mechanics tools. Python has solutions for spectroscopic prob-
lems and is also used for solving problems related to material science. There are a number
of chemoinformatics and medical problems (to be covered in another review).

Machine learning and data analysis are increasingly being integrated into chemistry
research, and robust ML-based models are becoming more and more in demand [6]. The
scope of ML is expanding, and known approaches are well described [7–12].

Many of these tools are available for free download and are designed as Python li-
braries or customized tools. There are also free educational courses that help enrich scien-
tific projects available on the Internet.

It is to be expected that the science at the interface between programming and chem-
istry will continue its intensive development. The current state of development in Python
for chemistry is discussed below.

Figure 1. Growing interest in Python in chemistry publications. (SciFinder search, keywords “Python
AND chemistry NOT fat NOT snake NOT reptiles”, early 2023).

In chemistry, Python solves a lot of tasks, and the range of tasks is expanding every
day. By categorizing these tasks into groups, it has been possible to identify a few sections,
as follows: Physical chemistry tasks include thermodynamics, kinetic models, quantum
chemistry, and molecular mechanics tools. Python has solutions for spectroscopic problems
and is also used for solving problems related to material science. There are a number of
chemoinformatics and medical problems (to be covered in another review).

Machine learning and data analysis are increasingly being integrated into chemistry
research, and robust ML-based models are becoming more and more in demand [6]. The
scope of ML is expanding, and known approaches are well described [7–12].

Many of these tools are available for free download and are designed as Python
libraries or customized tools. There are also free educational courses that help enrich
scientific projects available on the Internet.

It is to be expected that the science at the interface between programming and chem-
istry will continue its intensive development. The current state of development in Python
for chemistry is discussed below.

2. Classical Physical Chemistry

Python is most widely used in various areas of physical chemistry. Theoretical physical
chemistry requires many computational operations in any of its sections. Applications

Processes 2023, 11, 2897 4 of 24

of Python in physical chemistry include thermodynamic and kinetic models, tools for
quantum mechanical calculations and molecular mechanical modeling, as well as tools for
solving spectroscopic problems.

2.1. Kinetic Models Based on Transition State Theory

The task of kinetics in physical chemistry is to determine the rate of reactions. The
Arrhenius equation is widely known in kinetic chemistry. According to the Arrhenius
equation, the rate constant of a chemical reaction depends on the absolute temperature, as
follows:

k = Ae
−Ea

RT
where k—the rate constant, T—the absolute temperature, A—preexponential factor, Ea—the
activation energy, and R—the universal gas constant.

There are some limitations to accurate calculations using kinetic equations. In the
low-temperature range, the temperature dependence of the rate of processes often deviates
from the linearity of Arrhenius plots, and statistical approaches are used to describe
such processes—the theory of transition state (TST) [13–23]. TST is an excellent basis for
understanding and predicting a wide range of kinetic processes with significant molecular
complexity and deviation from the Arrhenius law. In this theory, the rate constant is defined
as follows:

k =
kBT

h
e
−∆G‡

RT

where G—the Gibbs energy of activation, kB—the Boltzmann constant, and h—Planck’s constant.
Transition state theory (TST) involves two steps: the electronic structure characteriza-

tion of stationary points on the potential energy surface (PES), followed by the calculation
of the rate constants. Obviously, the accuracy of the resulting rate constants depends on
the quality of the electronic structure results and the kinetic theory assumptions used to
estimate them. Despite this, TST is widely used to calculate rate constants for a wide range
of chemical reactions, both in the gas phase and in solution, due to its simplicity and limited
PES requirements [13].

There are various programs available for determining reaction kinetics using TST and
its variants, including Transitivity, TAMkin, Eyringpy, RMG, Micki, and TUMME. They
are presented in Table 1. These programs are designed to calculate the kinetics of chemical
reactions and are based on Python. The first six software packages in Table 1 rely heavily
on transition state theory (TST). However, all have their own features or specializations for
specific tasks.

Table 1. Python programs for the kinetics.

Library Kinetic Theory Tunnel Effect Phase Molecularity

Transitivity
[13]

TST
CKT 1 d-TST

Gas
Solution,

Surface reactions,
Enzyme-catalyzed reactions

Uni/bi

Eyringpy [14]
TST
MT

CKT

Wigner
Eckart

Gas
Solution Uni/bi

Micki [15] TST Wigner Gas Uni/bi
RMG [16–18]

(Arkane)
TST (RRKM)

CKT
Wigner
Eckart

Gas
Solution Uni/bi

TAMkin [19] TST (RRKM),
VTST

Wigner
Eckart Gas Uni/bi

TUMME [20] TST (RRKM),
VTST

Wigner
Eckart

Gas
Surface reactions on catalyst Uni/bi

Pilgrim [21] VTST, SCT SCT
Gas

Solution
Condensed phases

Uni/bi

Processes 2023, 11, 2897 5 of 24

Table 1. Cont.

Library Kinetic Theory Tunnel Effect Phase Molecularity

Polymatter
[22] TST, VTST, other – Gas

Plasma Uni/bi

Vulcan [23] TST (RRKM),
VTST

Small-curvature
tunneling

Exoplanetary
reactions Uni/bi

RPMDrate [24] Polymer molecular
Dynamics RPMDrate Gas Uni/bi

MORESIM
[25]

REMD(H-RE,
resRE) – Gas Uni/bi

CKBIT [26] – –
Gas

Solution
Solid

Uni/bi

pyJac [27] – – Gas
Solution Uni/bi

SIR model [28] Virus spread
analog – – –

1 CKT—Collins–Kimbal Theory. VTST—Variational Transition State Theory; d-TST—deformed-TST;
RMG –Reaction mechanism generator (Arkane package); RRKM—Rice-Ramsperger-Kassel-Marcus theory;
Uni—unimolecular reactions; bi—bimolecular reactions; REMD—Replica Exchange Molecular Dynamics;
H-RE—Hamiltonian Replica Exchange; resRE—Reservoir Replica.

In [13], the original TST theory is supplemented with a special function of ‘Transitivity’.
This makes it possible to determine the tendency of a reaction to proceed in terms of the
inverse of the apparent activation energy.

It takes into account experimental and theoretical rate processes such as quantum
tunneling, transport properties, and diffusion in the vicinity of phase transitions [13]. The
activation energy is determined by the following formula:

Ea = −kB
dlnk(T)

d
(

1
T

) = −dlnk(β)

d(β)

The Transitivity function is defined as follows:

γ(β) =
1

Ea(β)

the function γ(β) (Transitivity function = 1/Ea(β), where β = 1/kBT, kB—Boltzmann constant,
T—absolute temperature).

Transition state-based speed calculation (TST) is also possible based on the variational
theory of transition state (VTST) [19–21] and Rice–Ramsperger–Kassel–Marcus theory
(RRKM) [19–21]. The rate coefficient k(T) of the bimolecular reaction A + B + C + D is
calculated as follows [19]:

k(T) = K
kBT

h
q†/V

(qa/V)(qb/V)
= e

−∆E‡
0

kBT

where K is the tunneling coefficient, q†, qa, and qb refer to the partition function without
energy and zero oscillatory contribution, ∆E‡

0 is the reaction barrier including zero-point
corrections, and V is the reference volume used to estimate the translational part of the
partition function.

In the simple case, it is possible to calculate the rate constants of reactions in the gas
phase [14,19] and in solution [14] on the basis of TST. However, advanced Transitivity [13]
supports homogeneous [13], heterogeneous [13], and enzyme-catalyzed reactions [13].

The programs [13] rely on Collins-Kimball theory to account for diffusion limitations.
The consideration of electron transfer processes is based on the Marcus theory [14].

Microkinetic modeling is a method used in chemical kinetics that takes into account all
possible reaction pathways. In this approach, molecules are modeled as individual objects,

Processes 2023, 11, 2897 6 of 24

and their behavior is described by considering their motion, interactions, and reactions
with each other [15–17]. The microkinetic approach requires working with whole systems
of reactions, which, on the one hand, increases the scale of application of the program but,
on the other hand, increases the computational load. It allows solving kinetic problems of a
wide range [16,17] and heterogeneous catalysis in particular [15].

To use TST [15], the reaction network (including intermediates) and reaction pathways
must be determined. This is followed by the calculation of energy barriers using electronic
structure calculations. The result of the calculation is used to determine rate constants
using TST and the Eckart correction [15].

The tunneling correction in transition state theory (TST) is a factor that accounts for
the quantum mechanical tunneling effect of reactions occurring even at activation energies
below the energy barrier. Traditional transition state theory accounts for the Wigner [14–19]
and Eckart [14,16–19] theorems of adjusting the rate constant by relating it to the statistical
sum of the activated complex (including the rotational quantum numbers of reactants and
products as well as the angular momentum). The recalculation of the reaction rate constant
is performed by calculating the partition function for the reactants and transition state, as
well as the effective height of the energy barrier.

Wigner’s tunneling correction theory assumes tunneling to occur mostly at the top of
the reaction barrier and requires information on the imaginary frequency at the transition
state. The Wigner transmission coefficient is obtained through the following equation [14]:

kWig(T) = 1 +
1

24

(
h
∣∣ν‡
∣∣

kB T

)2

where kB—Boltzmann constant, T—temperature, h—Planck’s constant, ν‡—imaginary
frequency at the transition state.

The unsymmetrical Eckart potential [14] provides an accurate representation of the
barrier shape and is used to calculate the probability of tunneling, P(E), which is determined
by the energy E of the reactants passing through the barrier.

P(E) = 1 − cosh2π(a1 − a2) + cosh2π(d)
cosh2π(a1 + a2) + cosh2π(d)

Here, a1, a2, and d are calculated from relationships proposed by Johnston and He-
icklen and Brown, and described in the article [14].

Deformed Transition-State Theory (d-TST) shows better results [13] than Wigner-
Eckart. Therefore, the deformed Bell 35, Bell 58, and Skodje–Truhlar corrections are used to
account for tunneling. These corrections are described in [13].

When other methods of correcting rate constants are not quite accurate or applicable,
the Monte Carlo kinetic method is often used. It works by randomly selecting a reac-
tion from a network of reactions and calculating its rate constant using TST or another
method [15,19]. In this case, the probability of each reaction is calculated, taking into
consideration the rate constant and reactant concentrations. It is used to model both homo-
geneous and heterogeneous reactions, including gas-phase reactions, surface reactions, and
enzyme-catalyzed reactions [15].

The use of third-party code and interaction with other programs are both an ad-
vantage (speeding up code development, focusing on certain tasks, universality due to
well-known libraries) and a disadvantage (dependence on other code). For the structures
in the transition state, the kinetic approaches require the electronic structure output files
from quantum chemistry programs (Gaussian [13,14,19], Molpro, ORCA, NWChem [14],
Q-Chem [14,19], PySCF [14], VASP [15,19], ASE [15], ADF, CHARMM, CPMD, CP2K [19]).
RMG (Arkane) [16–18] requires converged electronic structure computations performed by
the user with a variety of supported software packages such as Gaussian, Molpro, Orca,
TeraChem, Q-Chem, and Psi4.

Processes 2023, 11, 2897 7 of 24

The opposite situation also occurs; the code of these programs [13,19] is often used
by other projects. FRIGUS [29] provides interfaces for solving the rate equations using the
Transitivity code [13], while pMuTT [30] uses the TAMkin code [19] for some other tasks.

As part of the discussion of TST, VTST, and RRKM, it is worth mentioning the VULCAN
project. This is an open-source project written in Python. VULCAN is specifically designed to
model the kinetics and chemical composition of the atmosphere of exoplanets [23].

2.2. Other Kinetic Approaches

Besides classical TST, there are VTST, RRKM, REMD, and approaches based on
datasets. [20–28]. The program packages considered above relied on different variants of
the TST in their calculations. A number of programs [24–28] use their own approaches to
calculate kinetics.

A modernization of TST is the variational transition state theory—VTST. This is
another widely used method in computational chemistry, that offers a more accurate
representation of chemical reactions compared to TST, including by taking into account
quantum-mechanical tunnel effects. The main difference between TST and VTST is that TST
assumes that the reaction proceeds along a single reaction coordinate, while VTST takes into
account the possibility of multiple reaction coordinates. VTST can be complemented by SCT
(Small Curvative Tunneling) [20,21], which takes into account the effect of tunneling. The
corresponding equations are solved either by the CSE (chemically significant eigenmodes)
method based on the analysis of the eigenvalues of the transition matrix, which describes
the change in the probability of finding the system in each of its states within a certain time
interval [20], or analytically [21].

Modeling of chemical kinetics is possible by generating analytic Jacobians [27] without
reference to specific kinetic theories. Estimation of kinetic parameters is also possible using
modern Bayesian inference methods [26] (a statistical measure), as well as by applying
Markov chain Monte Carlo [21,26].

The described projects use different methods to account for tunneling effects in chemi-
cal reactions. The Eckart correction [20] assumes a one-dimensional reaction coordinate
and uses a semi-classical approximation to calculate the tunneling correction factor. The
Wigner correction [20] uses a more accurate quantum mechanical approach to calculate the
tunneling correction factor. A combination of SCT [21] and VTST [21] is also used to account
for quantum mechanical tunneling effects. For polymers, tunneling effects are taken into
account through the ring polymer transmission coefficient, which is a dynamic factor in the
Bennett-Chandler factorization [24]. It is possible that the use of the Hamiltonian-reservoir
Replica Exchange indirectly accounts for tunneling effects [25].

Kinetic programs are not stand-alone projects. They rely on Gaussian [20,21,24],
Orca [21], Polyrate [20], Molpro [24], and MOPAC [24] modules and use the compiled libraries
Numpy, Numba, and MSTor [20]. MPI [20] is used to implement multiprocessor computing.

An online database of radical polymerization rate coefficients is available online [22],
which provides reliable kinetic data. It has a wide range of chemical reactions, including
ion-molecular, neutral, and electron-molecular reactions.

The least standard approach is used in the development of the SIR (susceptible-
infected-removed) model [28]. Using the analogy of virus spread, the use of kinetic models
is explained. In this case, they used a second-order autocatalytic process and a SIR model
to illustrate the dynamics of infection.

Summarizing the kinetic models, it can be concluded that the main emphasis is on
the transition state theory. However, projects using their own approaches have also been
developed. Kinetic projects rely extensively on already-written libraries, and their work
often requires input data on electronic structures from other programs. Dependence on
other libraries and programs increases the speed of development; the use of already-
known program codes promotes wide distribution and rapid adaptation of these programs,
although at the expense of their independence. Some programs lack a graphical interface,

Processes 2023, 11, 2897 8 of 24

which is not a problem for experienced users but makes it difficult for scientists unfamiliar
with programming.

2.3. Thermodynamic Models

Thermodynamic models are also common among Python developments. Table 2
shows some software packages that can provide various calculations of the thermodynamic
properties of individual systems, individual system components (substances), or reaction
characteristics.

Table 2. Python programs for thermodynamics.

Library Approach DFT Phase Scope

pMuTT [30] Statistical mechanics GROMACS, Gaussian,
Cantera Gases, liquids, solids Systems/

Reactions/Components

Pasta [31] Statistical mechanics
(pMuTT)

Quantum Espresso,
SIESTA, VASP – Transition states

ASE 1 [32] Statistical mechanics

ABINIT, CASTEP, CP2K,
FHI-aims, Gaussian,
GPAW, NWChem,

Octopus, Quantum
Espresso, VASP

Gases, liquids, solids Systems/
Reactions/Components

TAMkin [19]
Statistical mechanics

based on NMA
(MBH, PHVA, MC)

Gaussian, Q-Chem Gas Systems/
Reactions/Components

AFLOW-CCE
[33]

Statistical mechanics
based on CCE

(NMA—
quasiharmonic
Debye model)

VASP (LDA, PBE, SCAN),
QUANTUM ESPRESSO,

AIMS, ABINIT, ELK, CIF,
Ionic liquids or solids Systems/

Reactions/Components

Pymatgen [34] Internal library VASP, ABINIT, Gaussian – Systems/
Reactions/Components

OC2020 [35] 2 Machine learning
model/Dataset

VASP, RPBE,
Bader/LOBSTER Solids Systems

RMG [16–18]
Machine learning

model (parameters
dataset)

– Gas,
Solution Components

pGrAdd [36] Dataset of group
additivity – Gas Systems/

Reactions/Components
PYroMat [37] Models Dataset – Gas, liquids Components/Systems

ETM [38] UNIFAC, SRK – Gas-liquid Systems
IFG [39] Fermi–Dirac statistics – Gas Systems/Components

The First Law
[40]

The First law of
thermodynamics – Gas Systems

1 ASE—The atomic simulation environment—A Python library for working with atoms; 2 OC2020—The Open
Catalyst 2020 (OC20) dataset; NMA—Normal mode analysis; MC—Monte Carlo; MBH—Mobile Block Hessian;
PHVA—Partial Hessian Vibrational; IFG—Thermodynamic coefficients of ideal Fermi gas; CCE—coordination
corrected enthalpies; LDA—Local Density Approximation, PBE—Perdew-Burke-Ernzerhof; SCAN—Strongly
Constrained and Appropriately Normed; VASP—Vienna ab initio simulation package; UNIFAC—universal
functional activity coefficient; SRK—Soave-Redlich-Kwong; ETM—Enhanced thermodynamic modeling for
hydrothermal liquefaction.

Many projects for calculating thermodynamic quantities are based on density-functional
theory (DFT) [30–34]. DFT is a quantum mechanical method that is used to predict the
electronic structure and energy of molecules and materials. DFT uses electron density
instead of a wave function to describe the state of the system. This reduces the number
of coordinates calculated; instead of 3N coordinates (3 spatial coordinates for each of the
N electrons), only three spatial coordinates of the electron density function are calculated.
Obviously, this reduces the requirements for computational resources. This method is often
used to calculate the electronic structures of molecules, binding energies, and molecular
properties, which is useful in solid-state physics or chemistry.

The results of DFT calculations allow for the calculation of thermodynamic quantities
such as energy, enthalpy, and heat capacity by methods of statistical mechanics [19,30–33].
Basically, statistical mechanics uses partition functions (q) to compute such quantities,
which can be expressed as follows [30]:

q = ∑i e
−εi
kT ,

where εi is the energy of state i, k is the Boltzmann constant, and T is the temperature.

Processes 2023, 11, 2897 9 of 24

For indistinguishable systems, Q(T, V, N) = qN/N! and energy (U), enthalpy (H), and
heat capacity (Cv, constant volume) are expressed as follows [30]:

U = kT2
(

∂lnQ
∂T

)
V,N

;

H = kT2
(

∂lnQ
∂T

)
V,N

+ kTV
(

∂lnQ
∂T

)
T,N

;

Cv = 2kT
(

∂lnQ
∂T

)
V,N

+ kT2
(

∂2lnQ
∂T2

)
T,N

.

The rest are semi-empirical/empirical methods (including UNIFAC and SRK) [38]
and approaches based on machine learning models and datasets [16–18,35], which are
essentially state-of-the-art tools in empirical data processing. The list of programs based on
DFT is shown in Table 2.

In theoretical approaches, thermochemical properties are mainly obtained by calculat-
ing the molecular partition function. The calculation of this function is based on the results
of energy and electronic configuration calculations by the DFT method. Based on DFT
calculations, thermochemical properties (heat of bond formation and dissociation energy)
are calculated [19]. In some cases, DFT calculations are run in the program itself [32].

The calculation of the molecular partition function can be complemented by the cal-
culation of vibrational frequencies and modes [19,30,33]. NMA (normal mode analysis)
allows for the determination of vibrational frequencies [19,30], which opens up the possi-
bility of analyzing vibrational spectra. The quasiharmonic Debye model [33] allows for the
calculation of thermal contributions to the formation enthalpy.

The calculation of the energy barrier and search for the transition state of the reaction
can be carried out by the method of “elastic tape with friction” (NEB) [31]. There are three
implementations: NEB, CI-NEB, and AutoNEB [31]. These implementations do not require
significant computational resources but can easily interface with any DFT code. The DFT is
only required to calculate the total energy and forces acting on the system of atoms. NEB
then assumes an initial path and converges to a “test” path in the potential energy in the
neighborhood of the initial path.

TAMkin, pMuTT, Pasta, ASE, and AFLOW-CCE [19,30–33] are purely theoretical—ab
initio approaches. They allow one to calculate the electronic configurations and thermody-
namic properties of molecules. However, they require the results of DFT calculations, which
require significant computational resources. A set of publicly available databases with the
results of DFT calculations (OC20 Dataset and Community Challenges [35], RMG [16–18],
pGrAdd [36], PYroMat [37], ETM [38]) allows to economize resources and use these calcula-
tions by many scientists. Additionally, the availability of a large amount of experimental data
obtained using the ab initio approach allows for analyzing these data and identifying patterns.
If the results are formed on the basis of the DFT method, then the search for formulas or other
ways to reflect the patterns found in these data is similar to the empirical approach, but with
the difference that the data are formed on the basis of theoretical calculations.

In contrast to the model-based projects discussed below, OC20 [35] presents a dataset
(1.3 million) with over one million results from DFT calculations covering a variety of
materials, surfaces, and adsorbates. It is not a model but is intended to provide data for
machine learning models to help in the search and optimization of catalysts.

Instead of DFT, experimental data sets can be used [16–18,36,37]. Eigendata sets
include kinetic and thermodynamic parameters obtained from real experimental data
(including group values). The parameters and data are used for extrapolation or summa-
rization (pGrAdd) to obtain the desired thermodynamic value. In the case of PYroMat [37],
the dataset consists of 1000 models, each of which describes the thermodynamic properties
and equilibria of a known compound (mainly gases).

Processes 2023, 11, 2897 10 of 24

Some approaches to calculating thermodynamic properties are based on the known
UNIFAC and SRK models to describe the state of matter [38]. These models are part of
the open-source Thermo library. UNIFAC and SRK are empirical approaches designed to
predict the properties of substances based on empirical correlations and statistical data
obtained from experiments. These methods take into account the chemical and physical
features of substances and their interactions. As a result, empirical methods can provide
good results in describing and predicting the behavior of mixtures, but their accuracy
may be limited, especially in cases where there is significant variability and inaccuracy in
experimental data. To calculate thermodynamics (critical temperatures, critical pressures,
acentric factors, formation enthalpies, and standard Gibbs free energies), the program
connects to online databases such as Dortmund Data Bank [41] and Chemeo [42], where
the properties are estimated.

There are theoretical approaches in the literature that use neither DFT nor the empirical
approach (IFG [39] and The First Law [40]). Thermodynamic coefficients of ideal Fermi gas
(IFG) mode [39] use analytical formulae (which have been expressed through the first and
second derivatives of the Helmholtz free energy) for the thermodynamic description of the
non-relativistic Fermi ideal gas. Another approach is based on the direct application of the
first law of thermodynamics [40].

Obviously, the described programs are not completely independent. Almost all
projects based on ab initio calculations require as input files the results of DFT calcu-
lations (e.g., Gaussian or Q-Chem [19]). Third-party programs used for calculations are
shown in Table 2.

In addition to DFT, these projects interact with other projects or among themselves.
pMuTT [30] uses TAMkin [19] to calculate kinetics. PGrAdd [36] uses pMuTT [30] for
unit conversion, SMILES code, inference to empirical relations, and calculation of the
microkinetic model. PGrAdd also includes RDKit code, iPython, NumPy, and other
libraries [36].

Thus, to date, programs of this type can be divided into two groups—theoretical and
empirical. Theoretical approaches based on statistical mechanics use partition functions
derived from the electronic configuration of molecules. It can be improved by normal
mode analysis. Empirical ones are based on classical (UNIFAC, SRK) and modern methods
(machine learning and datasets) of predicting the behavior of systems. Many programs
focus on the gas phase and catalysts; some are able to predict interphase behavior.

Thermodynamic projects are quite firmly linked to kinetic ones. They can use each
other’s code. In addition, they often use already-known libraries to convert values or
files. DFT calculations obtained in other programs are, in many cases, necessary for
thermodynamic calculations.

3. Quantum Chemistry
3.1. Quantum Chemistry

Quantum chemistry allows ab initio calculations, i.e., purely theoretical calculations
without reliance on experimental data. This is their undeniable advantage, as it eliminates
the need for research design, conducting experiments with expensive reagents and equip-
ment, collecting and accumulating data, analyzing these data, and then searching for or
confirming a pattern. The main applications of Python are summarized in Figure 2.

Processes 2023, 11, 2897 11 of 24

Processes 2023, 11, 2897 11 of 24

(e.g., Gaussian or Q-Chem [19]). Third-party programs used for calculations are shown in
Table 2.

In addition to DFT, these projects interact with other projects or among themselves.
pMuTT [30] uses TAMkin [19] to calculate kinetics. PGrAdd [36] uses pMuTT [30] for unit
conversion, SMILES code, inference to empirical relations, and calculation of the microki-
netic model. PGrAdd also includes RDKit code, iPython, NumPy, and other libraries [36].

Thus, to date, programs of this type can be divided into two groups—theoretical and
empirical. Theoretical approaches based on statistical mechanics use partition functions
derived from the electronic configuration of molecules. It can be improved by normal
mode analysis. Empirical ones are based on classical (UNIFAC, SRK) and modern meth-
ods (machine learning and datasets) of predicting the behavior of systems. Many pro-
grams focus on the gas phase and catalysts; some are able to predict interphase behavior.

Thermodynamic projects are quite firmly linked to kinetic ones. They can use each
other’s code. In addition, they often use already-known libraries to convert values or files.
DFT calculations obtained in other programs are, in many cases, necessary for thermody-
namic calculations.

3. Quantum Chemistry
3.1. Quantum Chemistry

Quantum chemistry allows ab initio calculations, i.e., purely theoretical calculations
without reliance on experimental data. This is their undeniable advantage, as it eliminates
the need for research design, conducting experiments with expensive reagents and equip-
ment, collecting and accumulating data, analyzing these data, and then searching for or
confirming a pattern. The main applications of Python are summarized in Figure 2.

Figure 2. Categories of projects in quantum chemistry.

On the other hand, theoretical procedures require significant computational re-
sources. In this regard, many program projects based on Python use this language for
high-level tasks, otherwise as a scripting language. For repeatedly performed and prac-
ticed mathematical operations, libraries written in the productive and efficient C++ lan-
guage are used. The inclusion of C++ libraries is “seamless” with the help of translation
libraries [43]. For example, QFORTE [44] and PyBEST [45] rely on Pybind11, while
Psi4NumPy uses NumPy [46]. In addition, Psi4 [47–49] includes the LIBMINTS library for
computing tensors and matrices, which also opens the way to parallel computation.

Among the problems to be solved by the projects under consideration is the calcula-
tion of the molecular electronic structure. This mainly requires the result of DFT calcula-
tions (PySCF [50], dftatom [51], PSI4 [46,47,52], Molpro [53]). In this regard, several theo-
ries have been implemented in Python. The Self-Consistent Field (SCF) method is intro-
duced for efficient Hartree-Fock [53] and Kohn–Sham DFT (KS-DFT) calculations with

Figure 2. Categories of projects in quantum chemistry.

On the other hand, theoretical procedures require significant computational resources.
In this regard, many program projects based on Python use this language for high-level
tasks, otherwise as a scripting language. For repeatedly performed and practiced math-
ematical operations, libraries written in the productive and efficient C++ language are
used. The inclusion of C++ libraries is “seamless” with the help of translation libraries [43].
For example, QFORTE [44] and PyBEST [45] rely on Pybind11, while Psi4NumPy uses
NumPy [46]. In addition, Psi4 [47–49] includes the LIBMINTS library for computing tensors
and matrices, which also opens the way to parallel computation.

Among the problems to be solved by the projects under consideration is the calculation
of the molecular electronic structure. This mainly requires the result of DFT calculations
(PySCF [50], dftatom [51], PSI4 [46,47,52], Molpro [53]). In this regard, several theories
have been implemented in Python. The Self-Consistent Field (SCF) method is introduced
for efficient Hartree-Fock [53] and Kohn–Sham DFT (KS-DFT) calculations with high
performance in various chemical and electronic environments [46,47,52]. The density
cumulant functional theory (DCFT) [46,47,52] is also presented.

In both HF and KS-DFT, the ground-state wavefunction is given as a single Slater
determinant Φ0 of molecular orbitals ψ [46,47] with total electronic energy E:

Φ0 = A| ψ1(1) ψ2(2) . . . ψN(N)|

E = 〈 Ψ0 | Ĥ | Ψ0 〉

The E energy should be minimized, subject to orbital orthogonality. This is equivalent
to suggesting that electrons are independent particles that only interact with each other’s
mean fields.

The minimization of the total energy within a given basis set leads to the following equation:

FC = SCE

where C, E, and S are the matrices of the molecular orbital coefficients, a diagonal matrix of
the corresponding eigenergies, and the atomic orbital overlap matrix, respectively.

Then, the Fock matrix is defined as follows:

F = T + V + J + K

where T, V, J, and K are the kinetic energy matrix, the external potential, the Coulomb
matrix, and the exchange matrix, respectively.

DCFT [46,47,52] provides a direct route to the calculation of molecular properties
without the use of a wave function [46,47,52]. The energy is expressed in terms of the one-
and two-particle density matrices (γ1 and γ2):

E = hg
pγ

p
q +

1
2

grs
pgγ

pq
rs

Processes 2023, 11, 2897 12 of 24

where hg
p and grs

pg are the standard one- and two-electron integrals, γ
p
q and γ

pq
rs are the

elements of γ1 and γ2, respectively.
To minimize the energy (EDCFT) [47], the equation needs to meet the N-representability

conditions. γ2 is replaced in favor of its two-particle density cumulant with idempotent
part k and a correction τ:

EDCT =
1
2

(
hg

p + f g
p

)
γ

p
q +

1
4

grs
pgλ

pq
rs

λ
pq
rs = γ

pq
rs − γr

pγs
q + γs

qγr
p

γ
p
q = kp

q + τ
p
q

grs
pg = grs

pg − gsr
pg

f g
p = hg

p + gqs
prγr

p

Molecular electronic structure can also be calculated without DFT based on unconven-
tional wavefunction models with the pair Coupled-Cluster Doubles ansatz (pCCD) [45]
or multideterminant wavefunction model [54]. The molecular electronic structure can
also be calculated without DFT through variational and projection quantum eigensolvers,
adaptive eigensolvers, quantum evolution of imaginary time, quantum Krylov methods,
and quantum phase estimation [44].

Neural networks are already used in quantum chemistry. Similar to DFT, neural
networks help solve the problem of fast and accurate prediction of the electronic properties
of drug compounds [55]. They solve quantum problems such as computing the potential
energy surface [56,57].

The development of computing power has opened new opportunities for resource-
intensive computations. Today’s computational power allows us to perform much larger-
scale computations and solve much more complex problems. As a result, there is a huge
amount of data that needs to be processed. Routine processing of quantum-chemical
calculation files requires thoroughness, considerable time, and attention. In this connection,
various tools appear to facilitate the work. There appeared tools for working with the
mathematical part [58–60], parsing the Gaussian outfile [61], calculating optimal scaling
factors for the calculation of harmonic vibrational frequencies, fundamental vibrational
frequencies, and zero vibrational energies from electronic structure calculations [62], and of
eigenvalues of electronic symmetry [63]. A number of tools (FragBuilder [64] QMflow [65],
QCforever [66], Dalton [67], PyADF [68]) are designed to configure, automate, and start
calculations and can serve as independent calculation programs and as tool for launching
more developed programs.

QChASM makes it possible to construct and manipulate complex molecular struc-
tures, perform routine tasks, and predict the results of selective homogeneous catalytic
reactions [69].

Tools have been developed [61,70,71] for post-processing files of performed calcula-
tions of electronic structure and properties after the programs Gaussian, Molpro, Turbomole,
Q-Chem, ORCA, NWChem, GAMESS-US, PSI4, and Tonto. In addition to tools, there are
algorithms for extracting features from quantum computations and performing correlation
analysis [72], and algorithms are presented for performing a topological analysis of an
arbitrary function evaluated on an arbitrary grid of points [73].

There are online projects based on Python. WebProp was implemented as a web-based
interface for assessing one-electron ab initio quality attributes [74]. The QCArchive (Quan-
tum Chemistry Archive was created [75]) provides automatic computation and storage of
quantum chemistry results. It provides free access to tens of millions of quantum chemistry

Processes 2023, 11, 2897 13 of 24

calculations for machine learning, method validation, and force field fitting. QCARCHIVE
realizes two goals: to generate reference results of calculations and to compute a stan-
dard set of DFT and MP2 methods using different basis sets, which can then be used for
validation and comparison.

In assessing the level of sophistication of quantum chemistry applications developed
in Python, we can conclude that they have evolved from single or few calculations to more
complex workflows in which a number of interrelated computational tasks are performed.
Today, this multi-scale modeling, combining different levels of accuracy, typically requires
a large number of individual computations that depend on each other.

3.2. Spectroscopic Application

In analytical chemistry, it is often necessary to solve spectroscopic problems. Analysis
and prediction of spectra simplifies the solution of analytical problems. The prediction
of spectra is based on quantum mechanical or other theoretical calculations. The fields of
Python application in spectroscopy are presented in Figure 3.

Processes 2023, 11, 2897 13 of 24

The development of computing power has opened new opportunities for resource-
intensive computations. Today’s computational power allows us to perform much larger-
scale computations and solve much more complex problems. As a result, there is a huge
amount of data that needs to be processed. Routine processing of quantum-chemical cal-
culation files requires thoroughness, considerable time, and attention. In this connection,
various tools appear to facilitate the work. There appeared tools for working with the
mathematical part [58–60], parsing the Gaussian outfile [61], calculating optimal scaling
factors for the calculation of harmonic vibrational frequencies, fundamental vibrational
frequencies, and zero vibrational energies from electronic structure calculations [62], and
of eigenvalues of electronic symmetry [63]. A number of tools (FragBuilder [64] QMflow
[65], QCforever [66], Dalton [67], PyADF [68]) are designed to configure, automate, and
start calculations and can serve as independent calculation programs and as tool for
launching more developed programs.

QChASM makes it possible to construct and manipulate complex molecular struc-
tures, perform routine tasks, and predict the results of selective homogeneous catalytic
reactions [69].

Tools have been developed [61,70,71] for post-processing files of performed calcula-
tions of electronic structure and properties after the programs Gaussian, Molpro, Turbo-
mole, Q-Chem, ORCA, NWChem, GAMESS-US, PSI4, and Tonto. In addition to tools,
there are algorithms for extracting features from quantum computations and performing
correlation analysis [72], and algorithms are presented for performing a topological anal-
ysis of an arbitrary function evaluated on an arbitrary grid of points [73].

There are online projects based on Python. WebProp was implemented as a web-
based interface for assessing one-electron ab initio quality attributes [74]. The QCArchive
(Quantum Chemistry Archive was created [75]) provides automatic computation and stor-
age of quantum chemistry results. It provides free access to tens of millions of quantum
chemistry calculations for machine learning, method validation, and force field fitting.
QCARCHIVE realizes two goals: to generate reference results of calculations and to com-
pute a standard set of DFT and MP2 methods using different basis sets, which can then be
used for validation and comparison.

In assessing the level of sophistication of quantum chemistry applications developed
in Python, we can conclude that they have evolved from single or few calculations to more
complex workflows in which a number of interrelated computational tasks are performed.
Today, this multi-scale modeling, combining different levels of accuracy, typically re-
quires a large number of individual computations that depend on each other.

3.2. Spectroscopic Application
In analytical chemistry, it is often necessary to solve spectroscopic problems. Analysis

and prediction of spectra simplifies the solution of analytical problems. The prediction of
spectra is based on quantum mechanical or other theoretical calculations. The fields of
Python application in spectroscopy are presented in Figure 3.

Figure 3. Categories of projects in Spectroscopy.

The most popular application of Python in this field is nuclear magnetic resonance
spectra. Python has been used to develop chemistry modules for accurate and automatic
calculation of NMR chemical shifts of small organic molecules using quantum chemical
calculations [76] and prediction of amino acid type and secondary structure from correlated
chemistry shifts [77].

There is a library based on machine learning for automatic identification of molecules
from their NMR spectra [76]. A machine learning-based approach for analyzing several 2D
HSQC (heteronuclear single quantum coherence) spectra [78] and their simulation based on
the BMRB (Biological Magnetic Resonance Bank) database [79] has also been implemented.

The intersection of Python and NMR also finds application in biochemistry for de-
termining local protein structure using NMR chemical shifts. In addition, Python has
been used in optimizing protein structure studies [80–82] and RNA structure estimation in
13C [83].

Python also has applications in mass spectrometry [84], allowing peak matching [85],
and MALDI-TOF MS [86]. Mass spectrometry adduct calculator to identify some adduct
ions was created [87].

In vibrational spectroscopy, Python allows the prediction of IR spectra [88] and analysis
of vibrational spectra [19] based on Normal Mode Analysis (NMA) quantum chemical
calculations (Partial Hessian Vibrational).

The Gator [89] and VeloxChem [90] programs can simulate various types of spec-
tra, including absorption spectra, X-ray spectra, etc. Python has applications in Raman
spectroscopy [91] and UV spectra modeling [92].

3.3. Molecular Mechanics

The method known as molecular mechanics uses the principles of classical mechanics
to calculate the forces and energies present in molecular systems. Although molecules

Processes 2023, 11, 2897 14 of 24

truly follow the rules of quantum mechanics, molecular mechanics allows the structure
and relative energy of molecules to be accurately reproduced using the classical method.
Molecular mechanics calculations are much faster than more complex ab initio calculations,
so we can analyze larger molecular systems or large numbers of molecules. Moreover,
molecular mechanics requires fewer computational resources to handle larger systems.
Hybrid quantum-chemical and molecular-mechanical potentials can be used in the pro-
grams [93–95].

Machine learning is gradually being introduced into molecular mechanics projects.
Models [96] based on neural networks and long-range forces (electrostatic and Van der
waals forces) are emerging. ParFit [97] allows parameters for molecular mechanical calcula-
tions to be fitted with a neural network to match ab initio calculations.

Although molecular modeling methods are mature, they may not be optimal for
complex systems and long timescales. Grand canonical methods [98] are integrated with
OpenMM and provide optimized calculations at long times of molecular dynamics simulations,
taking into account water molecules, which play a critical role in protein-drug interactions.

Rare events, whose probability of occurrence is low, are poorly handled by standard
algorithms and require a huge amount of simulation time. To handle such events, GRO-
MACS and CP2K need to be tuned to model rare events with unbiased dynamics [99],
providing transition interface sampling and replica exchange transition interface sampling
(RETIS). This approach allows one to study the chemical reactions and structural changes
of compounds [99].

Similar to quantum-mechanical projects, a large amount of accumulated data re-
quires preparation and further processing. There is a library [100] to set up the GRO-
MACS/PLUMED input files for the calculation of dissociation-free energy. MDTraj [101],
Wordom [102], and Pytim [103] allow one to work with trajectory data from molecular dy-
namics simulations. They work with GROMACS files, OpenMM, CHARMM, AMBER, etc.
Pytim is mainly focused on the analysis of interfacial properties in molecular simulations.

4. Material Science

Materials science is an interdisciplinary science that studies the properties of materials
in solid and liquid states. It includes the structure, electronic, thermal, chemical, magnetic,
and optical properties of materials.

Computer modeling in materials science opens up the possibility of understanding
the properties of materials at the molecular level. This allows scientists to predict material
properties and optimize the structure of materials to obtain the desired properties. Often,
materials are modeled with molecular dynamics [104].

Among the modeled properties are mechanical (strength, elasticity, plasticity, defor-
mation characteristics), tribological properties (friction coefficients [104], adhesion [104]
in lubricating monolayer films), thermodynamic properties (phase transitions, thermal
conductivity, heat capacity, and temperature dependence of properties) [105–107], elec-
tronic properties (electrical conductivity, electropolarization, dielectric constant, and optical
properties of materials) [106,107], and kinetic properties (diffusion).

Among semiconductor and insulating materials, the prediction of the thermodynamic
properties of point defects has been widely developed. DFT calculations [107] and the
supercell approach [106] are used to study such defects. Since these are resource-intensive
problems, optimized approaches have emerged [106].

The properties of defects under study also include chemical potential [106], charge
levels and electrostatic corrections [107], charged defect calculations with electrostatic
correction, calculation of formation energies, and stability of point defects [107]. Such
calculations can be performed for any materials [107] or specialized for specific ones, e.g.,
calculations of electrostatic potentials and fields of germanium detectors [108].

The range of applications in materials science is quite broad. Combined SCM (surface
complexation models), DLVO (DLVO theory, named after Boris Derjaguin and Lev Landau,
Evert Verwey, and Theodoor Overbeek) [109], and phase diagram calculations [34] can be

Processes 2023, 11, 2897 15 of 24

performed. Application of Python in materials science allows screening in the chemical
space of substances with required properties [104] and modeling of the properties of
materials with different compositions [110]. It is possible to simulate the dynamics of
chemical reactions and model the self-assembly of molecules into complex structures on
surfaces [111].

In addition to calculations, tools have been developed to accelerate the setup, exe-
cution, post-processing, and analysis of calculations [107]. Tools have been developed to
build structures [34,112], visualize, perform model calculations, and analyze simulated
data [112], as well as analyze crystal structures [34].

Projects can both be quite independent as well as fully self-sufficient [109] and require
libraries or output files. The RDKit library [104,111] is used for working with chemical
structures, and the machine learning library scikit-learn [104,110] is used for data anal-
ysis. In some cases (DJMol [112]), the thermodynamic package discussed in Section 2
(Pymatgen [34]) is used for materials science modeling. The modeling may also require
GROMACS [104] or VASP/Gaussian [34] molecular dynamics calculations, and results
include the determination of friction coefficient, cohesive force, and nematic material [104].

5. Python in Software and Hardware

First of all, we should mention large-scale, multi-year projects that use Python. The
well-known Avogadro project allows Python scripting [113]. Python in Avogadro is based
on PyQt, which is a powerful and flexible tool for building graphical user interfaces. This
means that users can write Python scripts to automate tasks, customize the interface, or
add new features. Avogadro provides a set of ready-made Python plug-ins that allow users
to interact with the Avogadro API and extend the functionality of the program.

Python plugins have been developed for reading and writing molecular data files,
converting file formats, processing and matching molecular fingerprints, and working with
SMARTS queries [114,115]. This opens up opportunities for integration with the OpenBabel
toolkit, which facilitates chemoinformatics and provides a high-level Python interface for
fast and efficient molecular data processing [114].

A Python tool called AutoVis [116,117] allows automatic color tracking and colori-
metric titration with a webcam [118]. In some cases, the titration device is augmented
with automatic pumps for pumping liquids, and the titration unit can be remotely con-
trolled [119]. Similarly, the potentiometric instrument is for pH determination [120].

Python opens up possibilities for interfacing with single-board microcontrollers and
microcomputers such as Arduino [121,122], Teensy [122], Raspberry Pi [123,124], or Bea-
gleBone [122]. These devices are used to sub-connect to analytical equipment and read
and process data. Arduino Uno [121] allows connecting USB devices to PC to collect data
from various instruments: GC [125], capillary electrophoresis-UV, photometer, automated
burettes, thermometers, pH meters, and thermocyclers for PCR [121]. A Raspberry Pi-based
device with a connection to a spectrophotometer is assembled [123].

Data collection from the device and processing together with Arduino [125] are also
carried out in gas chromatography [126]. In the case of thin-layer chromatography, a photo
of the plate is taken using a smartphone. Then, based on a Python script, the analysis is
performed in a three-dimensional space where red, green, and green colors are set to detect
the pigment [127].

6. Educational Projects

With the development of digital technologies, students have the opportunity to acquire
specific skills. These skills are in demand today and are likely to be an integral part of
every advanced scientist’s education in the future. These are skills that combine the work
of various disciplines at the interface of basic and practical sciences with the possibilities of
computer technology.

Today, there are many courses that help to master such skills and familiarize chemistry
students with the computer language Python. It is useful to list them.

Processes 2023, 11, 2897 16 of 24

Available courses include ways to predict physicochemical quantities (solubility, titra-
tion curves, calculation of distillation diagrams [128], calculation of entropy of a substance
from specific heat and enthalpy data [129]), handling datasets [128], Fourier transform
infrared spectroscopy [128], and NMR [128]. Courses teach modeling of first-order radioac-
tive decay kinetics [129] using random number generators. They show calculations of the
entropy of matter from specific heat capacity and enthalpy data and a nonlinear curve
fitting to real gas data [129].

Python-based machine learning is gaining popularity in analytical chemistry, and
many training courses in this direction are appearing. Machine learning is used in courses
on NMR [130], visible spectrum spectrometry (Raspberry Pi-based spectrometer [131]),
vibrational [132], and microwave [133,134] spectroscopy. The courses include training
in obtaining and processing signals from analytical instruments [130–132,135], visualiza-
tion [130], plotting, and linear approximation by the least-squares method. From the data
obtained, one learns to calculate reaction rates [131], perform multiclass classification to
determine functional groups (based on infrared absorption spectra [132]), and process test
data [132].

In the last few decades, various aspects of quantum chemistry and molecular dynamics
have been studied with the help of computer technology, in contrast to many other applied
areas of chemistry. Therefore, this field has been described quite extensively, including in
terms of educational projects. A training program for the solution of the Schrödinger equa-
tion has appeared: a three-point finite-difference numerical method to find the solutions
and plot the results (wave functions or probability densities) for a particle in an infinite,
finite, double finite, harmonic, Morse, or Kronig-Penney model [136]. There is a tutorial on
estimating key parameters in the fitting procedure in the expression of the Slater orbital
function in terms of a linear combination of Gaussian-type orbital functions [137]. Tutorials
have been created on the iterative nature of the Hartree-Fock Procedure [133,134], deter-
mining structure from microwave spectroscopy, the calculation of accurate energies, and
other aspects of theoretical chemistry [133,134], and Lennard-Jones fluid modeling [138].
Exercises in modeling and analyzing the dynamics of protein conformation under changes
in temperature, solvation, and phosphorylation [139,140] to master the kinematic equations
are provided.

Students are taught to solve mathematical problems in physical and analytical chem-
istry [141], including solving equations, Fourier transforms, calculating differentials and
integrals, optimizing functions, working with complex numbers, vectors, matrices, and
eigenvalues [141], as well as studying various aspects of the Boltzmann distribution [142].
An introduction to stochastic modeling of chemical and physical processes is presented [143]
with detailed examples of stochastic modeling (Brownian motion, diffusion, chemical ki-
netics, and polymerization with chain growth).

Many training projects work with tools that have a web interface. For simplicity,
they use Jupyter Notebooks [128,129,133,134,138,141,143–145]. Jupyter Notebook is an
interactive, integrated development environment that provides the ability to create, execute,
and document code, as well as share work results. It also includes functionality for quickly
creating and displaying graphs, charts, and data visualizations. In addition, Jupyter
Notebook provides the flexibility to modify and add code cells, text boxes, and images at
any time. This allows the user to run code in real time and instantly view the results of the
work. Jupyter Notebooks are popular in their use for teaching, but in addition to them,
Excel is described in the courses [128].

Almost all Python projects use the external libraries NumPy [141,143], Scipy [130,141],
Matplotlib [141], Sympy [141], and Pandas [128,130] for computation. Accordingly, these
courses include descriptions of how to interact with them.

The TeachOpenCADD learning platform is implemented to teach Python in chemistry.
It teaches how to use open-source chemoinformatics and structural bioinformatics to
explore key issues in computer-aided drug design (CADD) [144,145].

Processes 2023, 11, 2897 17 of 24

7. Conclusions

Today, we are witnessing the rise of Python in the field of chemistry. Due to its simplic-
ity and flexibility, Python is widely used for various computer tasks related to chemistry.
Python is especially used for kinetic and thermodynamic calculations in physical chemistry.
In kinetic physical chemistry, the emphasis on transition state theory is predominant, but
projects have also been developed that use their own approaches. Kinetic packages often
require input data on electronic structures from other programs. Thermodynamic projects
are quite firmly linked to kinetic projects. Thermodynamic projects often require DFT
calculations from other programs.

Python has many applications in quantum chemistry and molecular mechanics; it
is one of the most growing areas of theoretical chemistry. In recent decades, research in
quantum chemistry and molecular mechanics has been conducted mostly on computers,
without real experiments. This is due to both the theoretical nature of the field and its
increasing computational capabilities. Python itself is a scripting language that is often
used for computations in conjunction with high-performing C++ libraries.

Python is actively used for laboratory automation, software development, and in-
terfaces for laboratory equipment and instruments. It allows for simplified experiments,
data collection, and instrument calibration. However, the application of the Python pro-
gramming language itself for laboratory purposes is in its early stages at the level of trial
projects. Obviously, this is due to the availability of ready-made commercial solutions,
which are easier to purchase with a warranty, which eliminates the need for maintenance
and responsibility on the part of the user. However, in areas that require a customized
approach (e.g., high-cost equipment) and constant flexibility in equipment customization,
hardware and software automation approaches may become in demand. In this case, it is
desirable to create widely recognized standards and ready-made frameworks.

The Python programming language is becoming increasingly popular in the field of
chemistry. This is due to its versatility, simplicity, and rich ecosystem of libraries and tools.
Due to its accessibility and community support, Python is the preferred choice for solving a
variety of chemistry problems and facilitating scientific research. However, dependence on
other libraries and programs can both increase the speed of development, facilitate the use
of existing code, and reduce the independence of those programs. In quantum chemistry,
Python interacts with programs such as Gaussian, GAMESS, NWChem, and others to
facilitate the automation of calculations, analysis of results, and complex simulations. It
also opens the way to the use of DFT in physical chemistry for calculating the electron
structure of a molecule and simulating spectra.

Data analysis and visualization is another area where Python has great potential.
Libraries such as NumPy, Pandas, and Matplotlib allow one to efficiently process and
analyze large amounts of data in chemistry. Working with such libraries is abundantly
described in the many tutorials that currently exist. It is not appropriate to analyze these
courses, but their availability allows everyone to find solutions to enrich their chemical
research.

Undoubtedly, the development of theoretical and computational chemistry will con-
tinue in the future. Interesting intersections at the borders of different fields of chemistry
are to be expected. Emerging combinations such as quantum chemistry and machine
learning will be increasingly used in physical quantum chemistry, materials science, and
other fields.

It is impossible to predict for sure which field will advance faster and more quickly
and attract more research attention. These fields are all rapidly evolving in a variety
of directions. We should anticipate the development of widespread, broadly accepted
standards as the diversity of approaches increases.

Author Contributions: Conceptualization, F.V.R.; methodology, F.V.R.; validation, Y.E.R. and M.N.E.;
formal analysis, F.V.R.; investigation, F.V.R.; data curation, Y.E.R. and M.N.E.; writing—original draft

Processes 2023, 11, 2897 18 of 24

preparation, F.V.R.; writing—review and editing, Y.E.R. and M.N.E.; visualization, Y.E.R.; supervision,
M.N.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data are available from the authors on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chirila, D.B.; Lohmann, G. Introduction to Modern FORTRAN for the Earth System Sciences; Springer: Berlin/Heidelberg, Germany,

2015; ISBN 9783642370083.
2. Pitt-Francis, J.; Whiteley, J. Guide to Scientific Computing in C++; Springer International Publishing: Cham, Switzerland, 2017; ISBN

9783319731315.
3. Wong, K.W.W.; Barford, J.P. Teaching Excel VBA as a Problem Solving Tool for Chemical Engineering Core Courses. Educ. Chem.

Eng. 2010, 5, e72–e77. [CrossRef]
4. Kaess, M.; Easter, J.; Cohn, K. Visual Basic and Excel in Chemical Modeling. J. Chem. Educ. 1998, 75, 642. [CrossRef]
5. Lafita, A.; Bliven, S.; Prlić, A.; Guzenko, D.; Rose, P.W.; Bradley, A.; Pavan, P.; Myers-Turnbull, D.; Valasatava, Y.; Heuer, M.;

et al. BioJava 5: A Community Driven Open-Source Bioinformatics Library. PLoS Comput. Biol. 2019, 15, e1006791. [CrossRef]
[PubMed]

6. Artrith, N.; Butler, K.T.; Coudert, F.-X.; Han, S.; Isayev, O.; Jain, A.; Walsh, A. Best Practices in Machine Learning for Chemistry.
Nat. Chem. 2021, 13, 505–508. [CrossRef] [PubMed]

7. McKinney, W. Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Ipython, 2nd ed.; O’Reilly Media: Sebastopol, CA,
USA, 2018.

8. McKinney, W. Data structures for statistical computing in python. In Proceedings of the 9th Python in Science Conference, Austin,
TX, USA, 28 June–3 July 2010; Volume 445, pp. 51–56.

9. Pérez, F.; Granger, B.E. IPython: A system for interactive scientific computing. Comput. Sci. Eng. 2007, 9, 21–29. [CrossRef]
10. Perkel, J.M. Programming: Pick up Python. Nature 2015, 518, 125–126. [CrossRef] [PubMed]
11. Rossant, C. Learning Ipython for Interactive Computing and Data Visualization; Createspace: Scotts Valley, CA, USA, 2015; ISBN

9781508599432.
12. Morita, S. Chemometrics and Related Fields in Python. Anal. Sci. 2020, 36, 107–111. [CrossRef] [PubMed]
13. Machado, H.G.; Sanches-Neto, F.O.; Coutinho, N.D.; Mundim, K.C.; Palazzetti, F.; Carvalho-Silva, V.H. “Transitivity”: A Code for

Computing Kinetic and Related Parameters in Chemical Transformations and Transport Phenomena. Molecules 2019, 24, 3478.
[CrossRef]

14. Dzib, E.; Cabellos, J.L.; Ortíz-Chi, F.; Pan, S.; Galano, A.; Merino, G. Eyringpy: A Program for Computing Rate Constants in the Gas
Phase and in Solution. Int. J. Quantum Chem. 2019, 119, e25686. Available online: https://www.theochemmerida.org/eyringpy
(accessed on 25 September 2023). [CrossRef]

15. Hermes, E.D.; Janes, A.N.; Schmidt, J.R. Micki: A Python-Based Object-Oriented Microkinetic Modeling Code. J. Chem. Phys.
2019, 151, 014112. [CrossRef]

16. Gao, C.W.; Allen, J.W.; Green, W.H.; West, R.H. Reaction Mechanism Generator: Automatic Construction of Chemical Kinetic
Mechanisms. Comput. Phys. Commun. 2016, 203, 212–225. [CrossRef]

17. Dana, A.G.; Johnson, M.S.; Allen, J.W.; Sharma, S.; Raman, S.; Liu, M.; Gao, C.W.; Grambow, C.A.; Goldman, M.J.; Ranasinghe,
D.S.; et al. Automated Reaction Kinetics and Network Exploration (Arkane): A Statistical Mechanics, Thermodynamics, Transition
State Theory, and Master Equation Software. Int. J. Chem. Kinet. 2023, 55, 300–323. [CrossRef]

18. Liu, M.; Grinberg Dana, A.; Johnson, M.S.; Goldman, M.J.; Jocher, A.; Payne, A.M.; Grambow, C.A.; Han, K.; Yee, N.W.; Mazeau,
E.J.; et al. Reaction Mechanism Generator v3.0: Advances in Automatic Mechanism Generation. J. Chem. Inf. Model. 2021, 61,
2686–2696. [CrossRef] [PubMed]

19. Ghysels, A.; Verstraelen, T.; Hemelsoet, K.; Waroquier, M.; Van Speybroeck, V. TAMkin: A Versatile Package for Vibrational
Analysis and Chemical Kinetics. J. Chem. Inf. Model. 2010, 50, 1736–1750. Available online: https://molmod.github.io/tamkin/
(accessed on 25 September 2023). [CrossRef] [PubMed]

20. Zhang, R.M.; Xu, X.; Truhlar, D.G. TUMME: Tsinghua University Minnesota Master Equation Program. Comput. Phys. Commun.
2022, 270, 108140. [CrossRef]

21. Ferro-Costas, D.; Truhlar, D.G.; Fernández-Ramos, A. Pilgrim: A Thermal Rate Constant Calculator and a Chemical Kinetics
Simulator. Comput. Phys. Commun. 2020, 256, 107457. Available online: https://comp.chem.umn.edu/pilgrim/ (accessed on 25
September 2023). [CrossRef]

22. Van Herck, J.; Harrisson, S.; Hutchinson, R.A.; Russell, G.T.; Junkers, T. A Machine-Readable Online Database for Rate Coefficients
in Radical Polymerization. Polym. Chem. 2021, 12, 3688–3692. [CrossRef]

23. Tsai, S.-M.; Lyons, J.R.; Grosheintz, L.; Rimmer, P.B.; Kitzmann, D.; Heng, K. VULCAN: An Open-Source, Validated Chemical
Kinetics Python Code for Exoplanetary Atmospheres. Astrophys. J. Suppl. Ser. 2017, 228, 20. [CrossRef]

https://doi.org/10.1016/j.ece.2010.07.002
https://doi.org/10.1021/ed075p642
https://doi.org/10.1371/journal.pcbi.1006791
https://www.ncbi.nlm.nih.gov/pubmed/30735498
https://doi.org/10.1038/s41557-021-00716-z
https://www.ncbi.nlm.nih.gov/pubmed/34059804
https://doi.org/10.1109/MCSE.2007.53
https://doi.org/10.1038/518125a
https://www.ncbi.nlm.nih.gov/pubmed/25653001
https://doi.org/10.2116/analsci.19R006
https://www.ncbi.nlm.nih.gov/pubmed/31735763
https://doi.org/10.3390/molecules24193478
https://www.theochemmerida.org/eyringpy
https://doi.org/10.1002/qua.25686
https://doi.org/10.1063/1.5109116
https://doi.org/10.1016/j.cpc.2016.02.013
https://doi.org/10.1002/kin.21637
https://doi.org/10.1021/acs.jcim.0c01480
https://www.ncbi.nlm.nih.gov/pubmed/34048230
https://molmod.github.io/tamkin/
https://doi.org/10.1021/ci100099g
https://www.ncbi.nlm.nih.gov/pubmed/20738140
https://doi.org/10.1016/j.cpc.2021.108140
https://comp.chem.umn.edu/pilgrim/
https://doi.org/10.1016/j.cpc.2020.107457
https://doi.org/10.1039/D1PY00544H
https://doi.org/10.3847/1538-4365/228/2/20

Processes 2023, 11, 2897 19 of 24

24. Suleimanov, Y.V.; Allen, J.W.; Green, W.H. RPMDrate: Bimolecular Chemical Reaction Rates from Ring Polymer Molecular
Dynamics. Comput. Phys. Commun. 2013, 184, 833–840. Available online: https://greengroup.mit.edu/rpmdrate (accessed on 25
September 2023). [CrossRef]

25. Fabregat, R.; Fabrizio, A.; Meyer, B.; Hollas, D.; Corminboeuf, C. Hamiltonian-Reservoir Replica Exchange and Machine Learning
Potentials for Computational Organic Chemistry. J. Chem. Theory Comput. 2020, 16, 3084–3094. [CrossRef]

26. Cohen, M.; Vlachos, D.G. Chemical Kinetics Bayesian Inference Toolbox (CKBIT). Comput. Phys. Commun. 2021, 265, 107989.
[CrossRef]

27. Niemeyer, K.E.; Curtis, N.J.; Sung, C.-J. PyJac: Analytical Jacobian Generator for Chemical Kinetics. Comput. Phys. Commun. 2017,
215, 188–203. Available online: https://slackha.github.io/pyJac/ (accessed on 25 September 2023). [CrossRef]

28. Sucre-Rosales, E.; Fernández-Terán, R.; Carvajal, D.; Echevarría, L.; Hernández, F.E. Experience-Based Learning Approach to
Chemical Kinetics: Learning from the COVID-19 Pandemic. J. Chem. Educ. 2020, 97, 2598–2605. [CrossRef]

29. Coppola, C.M.; Kazandjian, M.V. Matrix Formulation of the Energy Exchange Problem of Multi-Level Systems and the Code
FRIGUS. Rend. Lincei Sci. Fis. Nat. 2019, 30, 707–714. [CrossRef]

30. Lym, J.; Wittreich, G.R.; Vlachos, D.G. A Python Multiscale Thermochemistry Toolbox (PMuTT) for Thermochemical and Kinetic
Parameter Estimation. Comput. Phys. Commun. 2020, 247, 106864. Available online: https://vlachosgroup.github.io/pMuTT/
(accessed on 25 September 2023). [CrossRef]

31. Kundu, S.; Bhattacharjee, S.; Lee, S.-C.; Jain, M. PASTA: Python Algorithms for Searching Transition StAtes. Comput. Phys.
Commun. 2018, 233, 261–268. [CrossRef]

32. Hjorth Larsen, A.; Jørgen Mortensen, J.; Blomqvist, J.; Castelli, I.E.; Christensen, R.; Dułak, M.; Friis, J.; Groves, M.N.; Hammer, B.;
Hargus, C.; et al. The Atomic Simulation Environment—A Python Library for Working with Atoms. J. Phys. Condens. Matter 2017,
29, 273002. Available online: https://wiki.fysik.dtu.dk/ase/ (accessed on 25 September 2023). [CrossRef] [PubMed]

33. Friedrich, R.; Esters, M.; Oses, C.; Ki, S.; Brenner, M.J.; Hicks, D.; Mehl, M.J.; Toher, C.; Curtarolo, S. Automated Coordination
Corrected Enthalpies with AFLOW-CCE. Phys. Rev. Mater. 2021, 5, 043803. [CrossRef]

34. Ong, S.P.; Richards, W.D.; Jain, A.; Hautier, G.; Kocher, M.; Cholia, S.; Gunter, D.; Chevrier, V.L.; Persson, K.A.; Ceder, G. Python
Materials Genomics (Pymatgen): A Robust, Open-Source Python Library for Materials Analysis. Comput. Mater. Sci. 2013, 68,
314–319. Available online: https://pymatgen.org/ (accessed on 25 September 2023). [CrossRef]

35. Chanussot, L.; Das, A.; Goyal, S.; Lavril, T.; Shuaibi, M.; Riviere, M.; Tran, K.; Heras-Domingo, J.; Ho, C.; Hu, W.; et al. Open
Catalyst 2020 (OC20) Dataset and Community Challenges. ACS Catal. 2021, 11, 6059–6072. [CrossRef]

36. Wittreich, G.R.; Vlachos, D.G. Python Group Additivity (PGrAdd) Software for Estimating Species Thermochemical Properties.
Comput. Phys. Commun. 2022, 273, 108277. Available online: https://pypi.org/project/pgradd/ (accessed on 25 September 2023).
[CrossRef]

37. Martin, C.; Ranalli, J.; Moore, J. PYroMat: A Python Package for Thermodynamic Properties. J. Open Source Softw. 2022, 7, 4757.
Available online: http://pyromat.org/ (accessed on 25 September 2023). [CrossRef]

38. Cascioli, A.; Baratieri, M. Enhanced Thermodynamic Modelling for Hydrothermal Liquefaction. Fuel 2021, 298, 120796. [CrossRef]
39. Kozharin, A.S.; Levashov, P.R. Thermodynamic Coefficients of Ideal Fermi Gas. Contrib. Plasma Phys. 2021, 61, e202100139.

[CrossRef]
40. Gajula, K.; Sharma, V.; Mishra, D.R.; Dumka, P. First Law of Thermodynamics for Closed System: A Python Approach. Res. Appl.

Therm. Eng. 2022, 5, 1–10.
41. DDBST—DDBST GmbH. Available online: http://www.ddbst.com (accessed on 16 August 2023).
42. Cheméo. Available online: https://www.chemeo.com/ (accessed on 16 August 2023).
43. Sun, Q.; Berkelbach, T.C.; Blunt, N.S.; Booth, G.H.; Guo, S.; Li, Z.; Liu, J.; McClain, J.D.; Sayfutyarova, E.R.; Sharma, S.; et al. Py

SCF: The Python-based Simulations of Chemistry Framework. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8, e1340. Available
online: https://pyscf.org/ (accessed on 25 September 2023). [CrossRef]

44. Stair, N.H.; Evangelista, F.A. QForte: An Efficient State-Vector Emulator and Quantum Algorithms Library for Molecular
Electronic Structure. J. Chem. Theory Comput. 2022, 18, 1555–1568. Available online: https://github.com/evangelistalab/qforte
(accessed on 25 September 2023). [CrossRef]

45. Boguslawski, K.; Leszczyk, A.; Nowak, A.; Brzęk, F.; Żuchowski, P.S.; Kędziera, D.; Tecmer, P. Pythonic Black-Box Electronic
Structure Tool (PyBEST). An Open-Source Python Platform for Electronic Structure Calculations at the Interface between
Chemistry and Physics. Comput. Phys. Commun. 2021, 264, 107933. Available online: http://pybest.fizyka.umk.pl/ (accessed on
25 September 2023). [CrossRef]

46. Smith, D.G.A.; Burns, L.A.; Sirianni, D.A.; Nascimento, D.R.; Kumar, A.; James, A.M.; Schriber, J.B.; Zhang, T.; Zhang, B.; Abbott,
A.S.; et al. Psi4NumPy: An Interactive Quantum Chemistry Programming Environment for Reference Implementations and
Rapid Development. J. Chem. Theory Comput. 2018, 14, 3504–3511. Available online: https://github.com/psi4/psi4numpy
(accessed on 25 September 2023). [CrossRef]

47. Turney, J.M.; Simmonett, A.C.; Parrish, R.M.; Hohenstein, E.G.; Evangelista, F.A.; Fermann, J.T.; Mintz, B.J.; Burns, L.A.; Wilke,
J.J.; Abrams, M.L.; et al. Psi4: An Open-Source Ab Initio Electronic Structure Program: Psi4: An Electronic Structure Program.
Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2, 556–565. Available online: https://psicode.org/ (accessed on 25 September 2023).
[CrossRef]

https://greengroup.mit.edu/rpmdrate
https://doi.org/10.1016/j.cpc.2012.10.017
https://doi.org/10.1021/acs.jctc.0c00100
https://doi.org/10.1016/j.cpc.2021.107989
https://slackha.github.io/pyJac/
https://doi.org/10.1016/j.cpc.2017.02.004
https://doi.org/10.1021/acs.jchemed.0c00698
https://doi.org/10.1007/s12210-019-00849-x
https://vlachosgroup.github.io/pMuTT/
https://doi.org/10.1016/j.cpc.2019.106864
https://doi.org/10.1016/j.cpc.2018.06.026
https://wiki.fysik.dtu.dk/ase/
https://doi.org/10.1088/1361-648X/aa680e
https://www.ncbi.nlm.nih.gov/pubmed/28323250
https://doi.org/10.1103/PhysRevMaterials.5.043803
https://pymatgen.org/
https://doi.org/10.1016/j.commatsci.2012.10.028
https://doi.org/10.1021/acscatal.0c04525
https://pypi.org/project/pgradd/
https://doi.org/10.1016/j.cpc.2021.108277
http://pyromat.org/
https://doi.org/10.21105/joss.04757
https://doi.org/10.1016/j.fuel.2021.120796
https://doi.org/10.1002/ctpp.202100139
http://www.ddbst.com
https://www.chemeo.com/
https://pyscf.org/
https://doi.org/10.1002/wcms.1340
https://github.com/evangelistalab/qforte
https://doi.org/10.1021/acs.jctc.1c01155
http://pybest.fizyka.umk.pl/
https://doi.org/10.1016/j.cpc.2021.107933
https://github.com/psi4/psi4numpy
https://doi.org/10.1021/acs.jctc.8b00286
https://psicode.org/
https://doi.org/10.1002/wcms.93

Processes 2023, 11, 2897 20 of 24

48. Parrish, R.M.; Burns, L.A.; Smith, D.G.A.; Simmonett, A.C.; DePrince, A.E., III.; Hohenstein, E.G.; Bozkaya, U.; Sokolov, A.Y.; Di
Remigio, R.; Richard, R.M.; et al. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced
Libraries, and Interoperability. J. Chem. Theory Comput. 2017, 13, 3185–3197. [CrossRef] [PubMed]

49. Smith, D.G.A.; Burns, L.A.; Simmonett, A.C.; Parrish, R.M.; Schieber, M.C.; Galvelis, R.; Kraus, P.; Kruse, H.; Di Remigio, R.;
Alenaizan, A.; et al. PSI4 1.4: Open-Source Software for High-Throughput Quantum Chemistry. J. Chem. Phys. 2020, 152, 184108.
[CrossRef] [PubMed]

50. Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.S.; Bogdanov, N.A.; Booth, G.H.; Chen, J.; Cui, Z.-H.; et al. Recent
Developments in the PySCF Program Package. J. Chem. Phys. 2020, 153, 024109. [CrossRef] [PubMed]

51. Čertík, O.; Pask, J.E.; Vackář, J. Dftatom: A Robust and General Schrödinger and Dirac Solver for Atomic Structure Calculations.
Comput. Phys. Commun. 2013, 184, 1777–1791. [CrossRef]

52. Mei, Y.; Yu, J.; Chen, Z.; Su, N.Q.; Yang, W. LibSC: Library for Scaling Correction Methods in Density Functional Theory. J. Chem.
Theory Comput. 2022, 18, 840–850. [CrossRef] [PubMed]

53. Werner, H.-J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Heßelmann, A.; Kats, D.; Köhn, A.; Korona, T.; Kreplin, D.A.;
et al. The Molpro Quantum Chemistry Package. J. Chem. Phys. 2020, 152, 144107. Available online: https://www.molpro.net/
(accessed on 25 September 2023). [CrossRef] [PubMed]

54. Kim, T.D.; Richer, M.; Sánchez-Díaz, G.; Miranda-Quintana, R.A.; Verstraelen, T.; Heidar-Zadeh, F.; Ayers, P.W. Fanpy: A
Python Library for Prototyping Multideterminant Methods in Ab Initio Quantum Chemistry. J. Comput. Chem. 2023, 44, 697–709.
[CrossRef]

55. Atz, K.; Isert, C.; Böcker, M.N.A.; Jiménez-Luna, J.; Schneider, G. ∆-Quantum Machine-Learning for Medicinal Chemistry. Phys.
Chem. Chem. Phys. 2022, 24, 10775–10783. [CrossRef]

56. Khorshidi, A.; Peterson, A.A. Amp: A Modular Approach to Machine Learning in Atomistic Simulations. Comput. Phys. Commun.
2016, 207, 310–324. [CrossRef]

57. Dral, P.O. MLatom: A Program Package for Quantum Chemical Research Assisted by Machine Learning. J. Comput. Chem. 2019,
40, 2339–2347. [CrossRef]

58. Tamayo-Mendoza, T.; Kreisbeck, C.; Lindh, R.; Aspuru-Guzik, A. Automatic Differentiation in Quantum Chemistry with
Applications to Fully Variational Hartree–Fock. ACS Cent. Sci. 2018, 4, 559–566. [CrossRef] [PubMed]

59. Kasim, M.F.; Lehtola, S.; Vinko, S.M. DQC: A Python Program Package for Differentiable Quantum Chemistry. J. Chem. Phys.
2022, 156, 084801. [CrossRef] [PubMed]

60. Rubin, N.C.; DePrince, A.E., III. P†q: A Tool for Prototyping Many-Body Methods for Quantum Chemistry. Mol. Phys. 2021, 119,
e1954709. [CrossRef]

61. Nath, S.R.; Kurup, S.S.; Joshi, K.A. PyGlobal: A Toolkit for Automated Compilation of DFT-Based Descriptors: Software News
and Updates. J. Comput. Chem. 2016, 37, 1505–1510. [CrossRef] [PubMed]

62. Yu, H.S.; Fiedler, L.J.; Alecu, I.M.; Truhlar, D.G. Computational Thermochemistry: Automated Generation of Scale Factors for
Vibrational Frequencies Calculated by Electronic Structure Model Chemistries. Comput. Phys. Commun. 2017, 210, 132–138.
[CrossRef]

63. Iraola, M.; Mañes, J.L.; Bradlyn, B.; Horton, M.K.; Neupert, T.; Vergniory, M.G.; Tsirkin, S.S. IrRep: Symmetry Eigenvalues and
Irreducible Representations of Ab Initio Band Structures. Comput. Phys. Commun. 2022, 272, 108226. [CrossRef]

64. Christensen, A.S.; Hamelryck, T.; Jensen, J.H. FragBuilder: An Efficient Python Library to Setup Quantum Chemistry Calculations
on Peptides Models. PeerJ 2014, 2, e277. [CrossRef]

65. Zapata, F.; Ridder, L.; Hidding, J.; Jacob, C.R.; Infante, I.; Visscher, L. QMflows: A Tool Kit for Interoperable Parallel Workflows in
Quantum Chemistry. J. Chem. Inf. Model. 2019, 59, 3191–3197. [CrossRef]

66. Sumita, M.; Terayama, K.; Tamura, R.; Tsuda, K. QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box
Optimization. J. Chem. Inf. Model. 2022, 62, 4427–4434. [CrossRef]

67. Olsen, J.M.H.; Reine, S.; Vahtras, O.; Kjellgren, E.; Reinholdt, P.; Hjorth Dundas, K.O.; Li, X.; Cukras, J.; Ringholm, M.; Hedegård,
E.D.; et al. Dalton Project: A Python Platform for Molecular- and Electronic-Structure Simulations of Complex Systems. J. Chem.
Phys. 2020, 152, 214115. [CrossRef]

68. Jacob, C.R.; Beyhan, S.M.; Bulo, R.E.; Gomes, A.S.P.; Götz, A.W.; Kiewisch, K.; Sikkema, J.; Visscher, L. PyADF—A Scripting
Framework for Multiscale Quantum Chemistry. J. Comput. Chem. 2011, 32, 2328–2338. [CrossRef] [PubMed]

69. Ingman, V.M.; Schaefer, A.J.; Andreola, L.R.; Wheeler, S.E. QChASM: Quantum Chemistry Automation and Structure Manipula-
tion. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2021, 11, e1510. [CrossRef]

70. Hermann, G.; Pohl, V.; Tremblay, J.C.; Paulus, B.; Hege, H.-C.; Schild, A. ORBKIT: A Modular Python Toolbox for Cross-Platform
Postprocessing of Quantum Chemical Wavefunction Data. J. Comput. Chem. 2016, 37, 1511–1520. [CrossRef] [PubMed]

71. Hermann, G.; Pohl, V.; Tremblay, J.C. An Open-Source Framework for Analyzing N -Electron Dynamics. II. Hybrid Density
Functional Theory/Configuration Interaction Methodology. J. Comput. Chem. 2017, 38, 2378–2387. [CrossRef] [PubMed]

72. Mucelini, J.; Quiles, M.G.; Prati, R.C.; Da Silva, J.L.F. Correlation-Based Framework for Extraction of Insights from Quantum
Chemistry Databases: Applications for Nanoclusters. J. Chem. Inf. Model. 2021, 61, 1125–1135. [CrossRef] [PubMed]

73. Hutcheon, M.J.; Teale, A.M. Topological Analysis of Functions on Arbitrary Grids: Applications to Quantum Chemistry. J. Chem.
Theory Comput. 2022, 18, 6077–6091. [CrossRef] [PubMed]

https://doi.org/10.1021/acs.jctc.7b00174
https://www.ncbi.nlm.nih.gov/pubmed/28489372
https://doi.org/10.1063/5.0006002
https://www.ncbi.nlm.nih.gov/pubmed/32414239
https://doi.org/10.1063/5.0006074
https://www.ncbi.nlm.nih.gov/pubmed/32668948
https://doi.org/10.1016/j.cpc.2013.02.014
https://doi.org/10.1021/acs.jctc.1c01058
https://www.ncbi.nlm.nih.gov/pubmed/35060732
https://www.molpro.net/
https://doi.org/10.1063/5.0005081
https://www.ncbi.nlm.nih.gov/pubmed/32295355
https://doi.org/10.1002/jcc.27034
https://doi.org/10.1039/D2CP00834C
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1002/jcc.26004
https://doi.org/10.1021/acscentsci.7b00586
https://www.ncbi.nlm.nih.gov/pubmed/29806002
https://doi.org/10.1063/5.0076202
https://www.ncbi.nlm.nih.gov/pubmed/35232182
https://doi.org/10.1080/00268976.2021.1954709
https://doi.org/10.1002/jcc.24356
https://www.ncbi.nlm.nih.gov/pubmed/26990776
https://doi.org/10.1016/j.cpc.2016.09.004
https://doi.org/10.1016/j.cpc.2021.108226
https://doi.org/10.7717/peerj.277
https://doi.org/10.1021/acs.jcim.9b00384
https://doi.org/10.1021/acs.jcim.2c00812
https://doi.org/10.1063/1.5144298
https://doi.org/10.1002/jcc.21810
https://www.ncbi.nlm.nih.gov/pubmed/21541961
https://doi.org/10.1002/wcms.1510
https://doi.org/10.1002/jcc.24358
https://www.ncbi.nlm.nih.gov/pubmed/27043934
https://doi.org/10.1002/jcc.24896
https://www.ncbi.nlm.nih.gov/pubmed/28766794
https://doi.org/10.1021/acs.jcim.0c01267
https://www.ncbi.nlm.nih.gov/pubmed/33685128
https://doi.org/10.1021/acs.jctc.2c00649
https://www.ncbi.nlm.nih.gov/pubmed/36070593

Processes 2023, 11, 2897 21 of 24

74. Ganesh, V.; Kavathekar, R.; Rahalkar, A.; Gadre, S.R. WebProp: Web Interface Forab Initio Calculation of Molecular One-Electron
Properties. J. Comput. Chem. 2008, 29, 488–495. [CrossRef] [PubMed]

75. Smith, D.G.A.; Altarawy, D.; Burns, L.A.; Welborn, M.; Naden, L.N.; Ward, L.; Ellis, S.; Pritchard, B.P.; Crawford, T.D. The MolSSI
QCA Rchive Project: An Open-source Platform to Compute, Organize, and Share Quantum Chemistry Data. Wiley Interdiscip.
Rev. Comput. Mol. Sci. 2021, 11, e1491. [CrossRef]

76. Yesiltepe, Y.; Nuñez, J.R.; Colby, S.M.; Thomas, D.G.; Borkum, M.I.; Reardon, P.N.; Washton, N.M.; Metz, T.O.; Teeguarden, J.G.;
Govind, N.; et al. An Automated Framework for NMR Chemical Shift Calculations of Small Organic Molecules. J. Cheminform.
2018, 10, 52. [CrossRef]

77. Fritzsching, K.J.; Yang, Y.; Schmidt-Rohr, K.; Hong, M. Practical Use of Chemical Shift Databases for Protein Solid-State NMR: 2D
Chemical Shift Maps and Amino-Acid Assignment with Secondary-Structure Information. J. Biomol. NMR 2013, 56, 155–167.
[CrossRef]

78. Fino, R.; Byrne, R.; Softley, C.A.; Sattler, M.; Schneider, G.; Popowicz, G.M. Introducing the CSP Analyzer: A Novel Machine
Learning-Based Application for Automated Analysis of Two-Dimensional NMR Spectra in NMR Fragment-Based Screening.
Comput. Struct. Biotechnol. J. 2020, 18, 603–611. [CrossRef] [PubMed]

79. Fucci, I.J.; Byrd, R.A. Nightshift: A Python Program for Plotting Simulated NMR Spectra from Assigned Chemical Shifts from the
Biological Magnetic Resonance Data Bank. Protein Sci. 2022, 31, 63–74. [CrossRef] [PubMed]

80. Fossi, M.; Linge, J.; Labudde, D.; Leitner, D.; Nilges, M.; Oschkinat, H. Influence of Chemical Shift Tolerances on NMR Structure
Calculations Using ARIA Protocols for Assigning NOE Data. J. Biomol. NMR 2005, 31, 21–34. [CrossRef] [PubMed]

81. Xiong, F.; Pandurangan, G.; Bailey-Kellogg, C. Contact Replacement for NMR Resonance Assignment. Bioinformatics 2008, 24,
i205–i213. [CrossRef] [PubMed]

82. Bhandari Neupane, J.; Neupane, R.P.; Luo, Y.; Yoshida, W.Y.; Sun, R.; Williams, P.G. Characterization of Leptazolines A–D, Polar
Oxazolines from the Cyanobacterium Leptolyngbya Sp., Reveals a Glitch with the “Willoughby–Hoye” Scripts for Calculating
NMR Chemical Shifts. Org. Lett. 2019, 21, 8449–8453. [CrossRef] [PubMed]

83. Icazatti, A.A.; Martin, O.A.; Villegas, M.; Szleifer, I.; Vila, J.A. 13Check_RNA: A Tool to Evaluate 13C Chemical Shift Assignments
of RNA. Bioinformatics 2018, 34, 4124–4126. [CrossRef]

84. Ciach, M.A.; Miasojedow, B.; Skoraczyński, G.; Majewski, S.; Startek, M.; Valkenborg, D.; Gambin, A. Masserstein: Linear
Regression of Mass Spectra by Optimal Transport. Rapid Commun. Mass Spectrom. 2021, e8956. [CrossRef] [PubMed]

85. Letourneau, D.R.; Volmer, D.A. Constellation: An Open-Source Web Application for Unsupervised Systematic Trend Detection in
High-Resolution Mass Spectrometry Data. J. Am. Soc. Mass Spectrom. 2022, 33, 382–389. [CrossRef]

86. Parsons, L.M.; Cipollo, J.F. Assign-MALDI—A Free Software for Assignment of MALDI-TOF MS Spectra of Glycans Derivatized
Using Common and Novel Labeling Strategies. Proteomics 2023, 23, 2200320. [CrossRef]

87. Blumer, M.R.; Chang, C.H.; Brayfindley, E.; Nunez, J.R.; Colby, S.M.; Renslow, R.S.; Metz, T.O. Mass Spectrometry Adduct
Calculator. J. Chem. Inf. Model. 2021, 61, 5721–5725. [CrossRef]

88. Sibaev, M.; Crittenden, D.L. PyVCI: A Flexible Open-Source Code for Calculating Accurate Molecular Infrared Spectra. Comput.
Phys. Commun. 2016, 203, 290–297. Available online: https://github.com/dlc62/pyvci (accessed on 25 September 2023).
[CrossRef]

89. Rehn, D.R.; Rinkevicius, Z.; Herbst, M.F.; Li, X.; Scheurer, M.; Brand, M.; Dempwolff, A.L.; Brumboiu, I.E.; Fransson, T.; Dreuw,
A.; et al. Gator: A Python-driven Program for Spectroscopy Simulations Using Correlated Wave Functions. Wiley Interdiscip. Rev.
Comput. Mol. Sci. 2021, 11, e1528. [CrossRef]

90. Rinkevicius, Z.; Li, X.; Vahtras, O.; Ahmadzadeh, K.; Brand, M.; Ringholm, M.; List, N.H.; Scheurer, M.; Scott, M.; Dreuw, A.; et al.
VeloxChem: A Python-driven Density-functional Theory Program for Spectroscopy Simulations in High-performance Computing
Environments. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1457. [CrossRef]

91. Lukin, S.; Užarević, K.; Halasz, I. Raman Spectroscopy for Real-Time and in Situ Monitoring of Mechanochemical Milling
Reactions. Nat. Protoc. 2021, 16, 3492–3521. [CrossRef] [PubMed]

92. Scheurer, M.; Reinholdt, P.; Kjellgren, E.R.; Haugaard Olsen, J.M.; Dreuw, A.; Kongsted, J. CPPE: An Open-Source C++ and
Python Library for Polarizable Embedding. J. Chem. Theory Comput. 2019, 15, 6154–6163. [CrossRef] [PubMed]

93. Field, M.J. The PDynamo Program for Molecular Simulations Using Hybrid Quantum Chemical and Molecular Mechanical
Potentials. J. Chem. Theory Comput. 2008, 4, 1151–1161. Available online: https://www.pdynamo.org/ (accessed on 25 September
2023). [CrossRef] [PubMed]

94. Martí, S. QMCube (QM 3): An All-purpose Suite for Multiscale QM/MM Calculations. J. Comput. Chem. 2021, 42, 447–457.
Available online: https://github.com/sergio-marti/qm3 (accessed on 25 September 2023). [CrossRef]

95. Lu, Y.; Farrow, M.R.; Fayon, P.; Logsdail, A.J.; Sokol, A.A.; Catlow, C.R.A.; Sherwood, P.; Keal, T.W. Open-Source, Python-Based
Redevelopment of the ChemShell Multiscale QM/MM Environment. J. Chem. Theory Comput. 2019, 15, 1317–1328. [CrossRef]

96. Yao, K.; Herr, J.E.; Toth, D.W.; Mckintyre, R.; Parkhill, J. The TensorMol-0.1 Model Chemistry: A Neural Network Augmented
with Long-Range Physics. Chem. Sci. 2018, 9, 2261–2269. [CrossRef] [PubMed]

97. Zahariev, F.; De Silva, N.; Gordon, M.S.; Windus, T.L.; Pérez García, M. ParFit: A Python-Based Object-Oriented Program for
Fitting Molecular Mechanics Parameters to Ab Initio Data. J. Chem. Inf. Model. 2017, 57, 391–396. [CrossRef]

https://doi.org/10.1002/jcc.20802
https://www.ncbi.nlm.nih.gov/pubmed/17654647
https://doi.org/10.1002/wcms.1491
https://doi.org/10.1186/s13321-018-0305-8
https://doi.org/10.1007/s10858-013-9732-z
https://doi.org/10.1016/j.csbj.2020.02.015
https://www.ncbi.nlm.nih.gov/pubmed/32257044
https://doi.org/10.1002/pro.4181
https://www.ncbi.nlm.nih.gov/pubmed/34516045
https://doi.org/10.1007/s10858-004-5359-4
https://www.ncbi.nlm.nih.gov/pubmed/15692736
https://doi.org/10.1093/bioinformatics/btn167
https://www.ncbi.nlm.nih.gov/pubmed/18586716
https://doi.org/10.1021/acs.orglett.9b03216
https://www.ncbi.nlm.nih.gov/pubmed/31591889
https://doi.org/10.1093/bioinformatics/bty470
https://doi.org/10.1002/rcm.8956
https://www.ncbi.nlm.nih.gov/pubmed/32996651
https://doi.org/10.1021/jasms.1c00371
https://doi.org/10.1002/pmic.202200320
https://doi.org/10.1021/acs.jcim.1c00579
https://github.com/dlc62/pyvci
https://doi.org/10.1016/j.cpc.2016.02.026
https://doi.org/10.1002/wcms.1528
https://doi.org/10.1002/wcms.1457
https://doi.org/10.1038/s41596-021-00545-x
https://www.ncbi.nlm.nih.gov/pubmed/34089023
https://doi.org/10.1021/acs.jctc.9b00758
https://www.ncbi.nlm.nih.gov/pubmed/31580670
https://www.pdynamo.org/
https://doi.org/10.1021/ct800092p
https://www.ncbi.nlm.nih.gov/pubmed/26636368
https://github.com/sergio-marti/qm3
https://doi.org/10.1002/jcc.26465
https://doi.org/10.1021/acs.jctc.8b01036
https://doi.org/10.1039/C7SC04934J
https://www.ncbi.nlm.nih.gov/pubmed/29719699
https://doi.org/10.1021/acs.jcim.6b00654

Processes 2023, 11, 2897 22 of 24

98. Samways, M.L.; Bruce Macdonald, H.E.; Essex, J.W. Grand: A Python Module for Grand Canonical Water Sampling in OpenMM.
J. Chem. Inf. Model. 2020, 60, 4436–4441. Available online: https://github.com/essex-lab/grand (accessed on 25 September 2023).
[CrossRef] [PubMed]

99. Lervik, A.; Riccardi, E.; van Erp, T.S. PyRETIS: A Well-Done, Medium-Sized Python Library for Rare Events. J. Comput. Chem.
2017, 38, 2439–2451. [CrossRef]

100. Macchiagodena, M.; Karrenbrock, M.; Pagliai, M.; Procacci, P. Virtual Double-System Single-Box for Absolute Dissociation Free
Energy Calculations in GROMACS. J. Chem. Inf. Model. 2021, 61, 5320–5326. [CrossRef] [PubMed]

101. McGibbon, R.T.; Beauchamp, K.A.; Harrigan, M.P.; Klein, C.; Swails, J.M.; Hernández, C.X.; Schwantes, C.R.; Wang, L.-P.; Lane,
T.J.; Pande, V.S. MDTraj: A Modern Open Library for the Analysis of Molecular Dynamics Trajectories. Biophys. J. 2015, 109,
1528–1532. Available online: https://www.mdtraj.org/ (accessed on 25 September 2023). [CrossRef] [PubMed]

102. Seeber, M.; Felline, A.; Raimondi, F.; Muff, S.; Friedman, R.; Rao, F.; Caflisch, A.; Fanelli, F. Wordom: A User-Friendly Program for
the Analysis of Molecular Structures, Trajectories, and Free Energy Surfaces. J. Comput. Chem. 2011, 32, 1183–1194. [CrossRef]
[PubMed]

103. Sega, M.; Hantal, G.; Fábián, B.; Jedlovszky, P. Pytim: A Python Package for the Interfacial Analysis of Molecular Simulations. J.
Comput. Chem. 2018, 39, 2118–2125. [CrossRef] [PubMed]

104. Summers, A.Z.; Gilmer, J.B.; Iacovella, C.R.; Cummings, P.T.; MCabe, C. MoSDeF, a Python Framework Enabling Large-Scale
Computational Screening of Soft Matter: Application to Chemistry-Property Relationships in Lubricating Monolayer Films. J.
Chem. Theory Comput. 2020, 16, 1779–1793. [CrossRef] [PubMed]

105. Nkhwashu, M.I.; Moropeng, M.L.; Agboola, O.; Mavhungu, A.; Moropeng, R.C.; Fayomi, O.S.I. Modelling and Simulation of the
Volume Flow of NH3, K2CO3 and MEA for the Carbon Dioxide Absorption from Coal. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1107,
012060. [CrossRef]

106. Arrigoni, M.; Madsen, G.K.H. Spinney: Post-Processing of First-Principles Calculations of Point Defects in Semiconductors with
Python. Comput. Phys. Commun. 2021, 264, 107946. Available online: https://spinney.readthedocs.io/ (accessed on 25 September
2023). [CrossRef]

107. Broberg, D.; Medasani, B.; Zimmermann, N.E.R.; Yu, G.; Canning, A.; Haranczyk, M.; Asta, M.; Hautier, G. PyCDT: A Python
Toolkit for Modeling Point Defects in Semiconductors and Insulators. Comput. Phys. Commun. 2018, 226, 165–179. Available
online: https://github.com/mbkumar/pycdt (accessed on 25 September 2023). [CrossRef]

108. Li, J.; Liu, J.; Kooi, K. HPGe Detector Field Calculation Methods Demonstrated with an Educational Program, GeFiCa. Eur. Phys.
J. C Part. Fields 2020, 80, 230. [CrossRef]

109. Gil-Díaz, T.; Jara-Heredia, D.; Heberling, F.; Lützenkirchen, J.; Link, J.; Sowoidnich, T.; Ludwig, H.-M.; Haist, M.; Schäfer,
T. Charge Regulated Solid-Liquid Interfaces Interacting on the Nanoscale: Benchmarking of a Generalized Speciation Code
(SINFONIA). Adv. Colloid Interface Sci. 2021, 294, 102469. [CrossRef] [PubMed]

110. Limami, H.; Guettioui, D.; Dahi, O.; Mehdi El Boustani, E.; Manssouri, I.; El Alami, A.; Khaldoun, A. Machine Learning
Forecasting of Thermal, Mechanical and Physicochemical Properties of Unfired Clay Bricks with Plastic Waste Additives. Mater.
Today 2023, 72, 3509–3513. [CrossRef]

111. Clamons, S.; Qian, L.; Winfree, E. Programming and Simulating Chemical Reaction Networks on a Surface. J. R. Soc. Interface
2020, 17, 20190790. [CrossRef] [PubMed]

112. Prasanna, K.G.; Sunil, R.; Gupta, K.; Lee, S.-C. DJMol: An Open-source Modeling Platform for Computational Chemistry and
Materials Science with a Python Interpreter. J. Comput. Chem. 2021, 42, 2116–2129. Available online: https://djmolprogram.
github.io/ (accessed on 25 September 2023). [CrossRef]

113. Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic
Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. Available online: https://avogadro.cc/
(accessed on 25 September 2023). [CrossRef] [PubMed]

114. O’Boyle, N.M.; Morley, C.; Hutchison, G.R. Pybel: A Python Wrapper for the OpenBabel Cheminformatics Toolkit. Chem. Cent. J.
2008, 2, 5. Available online: https://openbabel.org/ (accessed on 25 September 2023). [CrossRef]

115. Verstraelen, T.; Adams, W.; Pujal, L.; Tehrani, A.; Kelly, B.D.; Macaya, L.; Meng, F.; Richer, M.; Hernández-Esparza, R.; Yang, X.D.;
et al. IOData: A Python Library for Reading, Writing, and Converting Computational Chemistry File Formats and Generating
Input Files. J. Comput. Chem. 2021, 42, 458–464. Available online: https://pypi.org/project/iodata/ (accessed on 25 September
2023). [CrossRef]

116. Vargas, S.; Zamirpour, S.; Menon, S.; Rothman, A.; Häse, F.; Tamayo-Mendoza, T.; Romero, J.; Sim, S.; Menke, T.; Aspuru-Guzik,
A. Team-Based Learning for Scientific Computing and Automated Experimentation: Visualization of Colored Reactions. J. Chem.
Educ. 2020, 97, 689–694. [CrossRef]

117. Duvvuri, H.; Wheeler, L.C.; Harms, M.J. Pytc: Open-Source Python Software for Global Analyses of Isothermal Titration
Calorimetry Data. Biochemistry 2018, 57, 2578–2583. Available online: https://github.com/harmslab/pytc (accessed on 25
September 2023). [CrossRef]

118. Tan, S.W.B.; Naraharisetti, P.K.; Chin, S.K.; Lee, L.Y. Simple Visual-Aided Automated Titration Using the Python Programming
Language. J. Chem. Educ. 2020, 97, 850–854. [CrossRef]

119. Yang, F.; Lai, V.; Legard, K.; Kozdras, S.; Prieto, P.L.; Grunert, S.; Hein, J.E. Augmented Titration Setup for Future Teaching
Laboratories. J. Chem. Educ. 2021, 98, 876–881. [CrossRef]

https://github.com/essex-lab/grand
https://doi.org/10.1021/acs.jcim.0c00648
https://www.ncbi.nlm.nih.gov/pubmed/32835483
https://doi.org/10.1002/jcc.24900
https://doi.org/10.1021/acs.jcim.1c00909
https://www.ncbi.nlm.nih.gov/pubmed/34723516
https://www.mdtraj.org/
https://doi.org/10.1016/j.bpj.2015.08.015
https://www.ncbi.nlm.nih.gov/pubmed/26488642
https://doi.org/10.1002/jcc.21688
https://www.ncbi.nlm.nih.gov/pubmed/21387345
https://doi.org/10.1002/jcc.25384
https://www.ncbi.nlm.nih.gov/pubmed/30306571
https://doi.org/10.1021/acs.jctc.9b01183
https://www.ncbi.nlm.nih.gov/pubmed/32004433
https://doi.org/10.1088/1757-899X/1107/1/012060
https://spinney.readthedocs.io/
https://doi.org/10.1016/j.cpc.2021.107946
https://github.com/mbkumar/pycdt
https://doi.org/10.1016/j.cpc.2018.01.004
https://doi.org/10.1140/epjc/s10052-020-7786-0
https://doi.org/10.1016/j.cis.2021.102469
https://www.ncbi.nlm.nih.gov/pubmed/34252719
https://doi.org/10.1016/j.matpr.2022.08.218
https://doi.org/10.1098/rsif.2019.0790
https://www.ncbi.nlm.nih.gov/pubmed/32453979
https://djmolprogram.github.io/
https://djmolprogram.github.io/
https://doi.org/10.1002/jcc.26740
https://avogadro.cc/
https://doi.org/10.1186/1758-2946-4-17
https://www.ncbi.nlm.nih.gov/pubmed/22889332
https://openbabel.org/
https://doi.org/10.1186/1752-153X-2-5
https://pypi.org/project/iodata/
https://doi.org/10.1002/jcc.26468
https://doi.org/10.1021/acs.jchemed.9b00603
https://github.com/harmslab/pytc
https://doi.org/10.1021/acs.biochem.7b01264
https://doi.org/10.1021/acs.jchemed.9b00802
https://doi.org/10.1021/acs.jchemed.0c01394

Processes 2023, 11, 2897 23 of 24

120. Jin, H.; Qin, Y.; Pan, S.; Alam, A.U.; Dong, S.; Ghosh, R.; Deen, M.J. Open-Source Low-Cost Wireless Potentiometric Instrument
for PH Determination Experiments. J. Chem. Educ. 2018, 95, 326–330. [CrossRef]

121. Grinias, J.P.; Whitfield, J.T.; Guetschow, E.D.; Kennedy, R.T. An Inexpensive, Open-Source USB Arduino Data Acquisition Device
for Chemical Instrumentation. J. Chem. Educ. 2016, 93, 1316–1319. [CrossRef] [PubMed]

122. Urban, P.L. Universal Electronics for Miniature and Automated Chemical Assays. Analyst 2015, 140, 963–975. [CrossRef]
[PubMed]

123. Chng, J.J.K.; Patuwo, M.Y. Building a Raspberry Pi Spectrophotometer for Undergraduate Chemistry Classes. J. Chem. Educ. 2021,
98, 682–688. [CrossRef]

124. Navarre, E.C. Extensible Interface for a Compact Spectrophotometer for Teaching Molecular Absorption in the Undergraduate
Laboratory. J. Chem. Educ. 2020, 97, 1500–1503. [CrossRef]

125. Hinterberger, E.; Ackerly, E.; Chen, Y.; Li, Y.C. Development of a Low-Cost and Versatile Gas Chromatography System for
Teaching Analytical Chemistry. J. Chem. Educ. 2021, 98, 4074–4077. [CrossRef]

126. Green, M.; Chen, X. Data Functionalization for Gas Chromatography in Python. J. Chem. Educ. 2020, 97, 1172–1175. [CrossRef]
127. Saldaña, M.; Valenzuela, S.A.; Moor, S.R.; Metola, P.; Anslyn, E.V. K-5 Thin-Layer Chromatography: Three-Dimensional Analysis

of Pigments from Plant Materials Using an Interlocking Building-Block Photography Box. J. Chem. Educ. 2020, 97, 4414–4419.
[CrossRef]

128. Menke, E.J. Series of Jupyter Notebooks Using Python for an Analytical Chemistry Course. J. Chem. Educ. 2020, 97, 3899–3903.
Available online: https://github.com/erik-menke/AnalyticalProjects (accessed on 25 September 2023). [CrossRef]

129. Weiss, C.J.; Klose, A. Introducing Students to Scientific Computing in the Laboratory through Python and Jupyter Notebooks. In
ACS Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA,
2021; pp. 57–67. ISBN 9780841298194.

130. Weiss, C.J. A Creative Commons Textbook for Teaching Scientific Computing to Chemistry Students with Python and Jupyter
Notebooks. J. Chem. Educ. 2021, 98, 489–494. [CrossRef]

131. Bougot-Robin, K.; Paget, J.; Atkins, S.C.; Edel, J.B. Optimization and Design of an Absorbance Spectrometer Controlled Using a
Raspberry Pi to Improve Analytical Skills. J. Chem. Educ. 2016, 93, 1232–1240. [CrossRef]

132. Thrall, E.S.; Lee, S.E.; Schrier, J.; Zhao, Y. Machine Learning for Functional Group Identification in Vibrational Spectroscopy: A
Pedagogical Lab for Undergraduate Chemistry Students. J. Chem. Educ. 2021, 98, 3269–3276. [CrossRef]

133. Fortenberry, R.C.; McDonald, A.R.; Shepherd, T.D.; Kennedy, M.; Sherrill, C.D. PSI4Education: Computational Chemistry Labs
Using Free Software. In The Promise of Chemical Education: Addressing our Students’ Needs; American Chemical Society: Washington,
DC, USA, 2015; pp. 85–98; ISBN 9780841230927. Available online: https://psicode.org/posts/psi4education/ (accessed on 25
September 2023).

134. Magers, D.B.; Chávez, V.H.; Peyton, B.G.; Sirianni, D.A.; Fortenberry, R.C.; Ringer McDonald, A. PSI4EDUCATION: Free and
Open-Source Programing Activities for Chemical Education with Free and Open-Source Software. In ACS Symposium Series:
Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 107–122.
ISBN 9780841298194.

135. van Staveren, M. Integrating Python into a Physical Chemistry Lab. J. Chem. Educ. 2022, 99, 2604–2609. [CrossRef]
136. Srnec, M.N.; Upadhyay, S.; Madura, J.D. A Python Program for Solving Schrödinger’s Equation in Undergraduate Physical

Chemistry. J. Chem. Educ. 2017, 94, 813–815. [CrossRef]
137. Stewart, B.; Hylton, D.J.; Ravi, N. A Systematic Approach for Understanding Slater–Gaussian Functions in Computational

Chemistry. J. Chem. Educ. 2013, 90, 609–612. [CrossRef]
138. Grazioli, G.; Ingwerson, A.; Santiago, D., Jr.; Regan, P.; Cho, H. Foregrounding the Code: Computational Chemistry Instructional

Activities Using a Highly Readable Fluid Simulation Code. J. Chem. Educ. 2023, 100, 1155–1163. [CrossRef]
139. Spitznagel, B.; Pritchett, P.R.; Messina, T.C.; Goadrich, M.; Rodriguez, J. An Undergraduate Laboratory Activity on Molecular

Dynamics Simulations: Undergraduate Lab Activity on MD Simulations. Biochem. Mol. Biol. Educ. 2016, 44, 130–139. [CrossRef]
140. Miller, B.T.; Singh, R.P.; Schalk, V.; Pevzner, Y.; Sun, J.; Miller, C.S.; Boresch, S.; Ichiye, T.; Brooks, B.R.; Woodcock, H.L. Web-

Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial. PLoS Comput. Biol. 2014, 10, e1003719.
[CrossRef]

141. Hutchison, G.R. Integrating Python into an Undergraduate Mathematics for Chemists Course. In ACS Symposium Series: Teaching
Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021; pp. 123–134; ISBN
9780841298194. Available online: https://github.com/ghutchis/chem1000 (accessed on 25 September 2023).

142. Jameson, G.; Brüschweiler, R. Active Learning Approach for an Intuitive Understanding of the Boltzmann Distribution by Basic
Computer Simulations. J. Chem. Educ. 2020, 97, 3910–3913. Available online: https://github.com/active-learning-boltzmann/
boltzmann (accessed on 25 September 2023). [CrossRef]

143. Weiss, C.J. Introduction to Stochastic Simulations for Chemical and Physical Processes: Principles and Applications. J. Chem.
Educ. 2017, 94, 1904–1910. [CrossRef]

https://doi.org/10.1021/acs.jchemed.7b00479
https://doi.org/10.1021/acs.jchemed.6b00262
https://www.ncbi.nlm.nih.gov/pubmed/27453587
https://doi.org/10.1039/C4AN02013H
https://www.ncbi.nlm.nih.gov/pubmed/25535820
https://doi.org/10.1021/acs.jchemed.0c00987
https://doi.org/10.1021/acs.jchemed.9b01023
https://doi.org/10.1021/acs.jchemed.1c00868
https://doi.org/10.1021/acs.jchemed.9b00818
https://doi.org/10.1021/acs.jchemed.0c00625
https://github.com/erik-menke/AnalyticalProjects
https://doi.org/10.1021/acs.jchemed.9b01131
https://doi.org/10.1021/acs.jchemed.0c01071
https://doi.org/10.1021/acs.jchemed.5b01006
https://doi.org/10.1021/acs.jchemed.1c00693
https://psicode.org/posts/psi4education/
https://doi.org/10.1021/acs.jchemed.2c00193
https://doi.org/10.1021/acs.jchemed.7b00003
https://doi.org/10.1021/ed300807y
https://doi.org/10.1021/acs.jchemed.2c00838
https://doi.org/10.1002/bmb.20939
https://doi.org/10.1371/journal.pcbi.1003719
https://github.com/ghutchis/chem1000
https://github.com/active-learning-boltzmann/boltzmann
https://github.com/active-learning-boltzmann/boltzmann
https://doi.org/10.1021/acs.jchemed.0c00559
https://doi.org/10.1021/acs.jchemed.7b00395

Processes 2023, 11, 2897 24 of 24

144. Sydow, D.; Rodríguez-Guerra, J.; Volkamer, A. Teaching Computer-Aided Drug Design Using TeachOpenCADD. In ACS
Symposium Series: Teaching Programming across the Chemistry Curriculum; American Chemical Society: Washington, DC, USA, 2021;
pp. 135–158; ISBN 9780841298194.

145. Sydow, D.; Morger, A.; Driller, M.; Volkamer, A. TeachOpenCADD: A Teaching Platform for Computer-Aided Drug Design
Using Open Source Packages and Data. J. Cheminform. 2019, 11, 29. Available online: https://github.com/volkamerlab/
TeachOpenCADD (accessed on 25 September 2023). [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/volkamerlab/TeachOpenCADD
https://github.com/volkamerlab/TeachOpenCADD
https://doi.org/10.1186/s13321-019-0351-x

	Introduction
	Classical Physical Chemistry
	Kinetic Models Based on Transition State Theory
	Other Kinetic Approaches
	Thermodynamic Models

	Quantum Chemistry
	Quantum Chemistry
	Spectroscopic Application
	Molecular Mechanics

	Material Science
	Python in Software and Hardware
	Educational Projects
	Conclusions
	References

