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Abstract: Photovoltaic (PV) generation systems that are partially shaded have a non-linear operating
curve that is highly dependent on temperature and irradiance conditions. Shading from surrounding
objects like clouds, trees, and buildings creates partial shading conditions (PSC) that can cause hot
spot formation on PV panels. To prevent this, bypass diodes are installed in parallel across each
panel, resulting in a global maximum power point (GMPP) and multiple local maximum power
points (LMPPs) on the power-voltage (P-V) curve. Traditional methods for maximum power point
tracking (MPPT), such as perturb and observe (P&O) and incremental conductance (INC), converge
for LMPPs on the P-V curve, but metaheuristic algorithms can track the GMPP effectively. This paper
proposes a new, efficient, and robust GMPP tracking technique based on a nature-inspired algorithm
called Ali Baba and the Forty Thieves (AFT). Utilizing the AFT algorithm for MPPT in PV systems has
several novel features and advantages, including its adaptability, exploration-exploitation balance,
simplicity, efficiency, and innovative approach. These characteristics make AFT a promising choice for
enhancing the efficiency of PV systems under varied circumstances. The performance of the proposed
method in tracking the GMPP is evaluated using a simulation model under MATLAB/Simulink
environment, the achieved simulation results are compared to particle swarm optimization (PSO).
The proposed method is also tested in real-time using the Hardware-in-the-loop (HIL) emulator to
validate the achieved simulation results. The findings indicate that the proposed AFT-based GMPP
tracking method performs better under complex partial irradiance conditions than PSO.

Keywords: Ali Baba and the Forty Thieves algorithm; maximum power point tracking (MPPT);
metaheuristic algorithms; conventional algorithms; photovoltaic (PV)

1. Introduction

Solar energy receives special attention because of its long-term viability, abundant
supply, pollution-free nature, and lack of carbon emissions. Photovoltaic (PV) systems are
now used in over 100 nations for both independent and grid-connected applications. PV
power, which includes both off-grid remote power supply and grid-connected systems,
is the fastest-growing electricity-generating technology, with current annual growth rates
of approximately 40%. Numerous devices, including drones, cars, satellites, embedded
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systems, sensors, and residential and commercial buildings, employ the PV-based power
source [1]. The world installed an unprecedented 168 GW of power in 2021. Due to
technological advancements in PV cells [2,3], declining PV cell costs [4], and government
incentives [5,6], PV-based energy has recently gained popularity.

Several traditional single-stage algorithms have been developed, including hill climb-
ing (HC) [7], incremental conductance (InC) [8], and perturb and observe (P&O) [9]. Al-
though these algorithms successfully determine the maximum power point (MPP) of a
photovoltaic (PV) array under uniform irradiance conditions, they fail to converge to the
global maximum power point (GMPP) when the PV array is partially shaded (PSC). Fur-
thermore, in the perturb and observe (P&O) and hill climbing methods, the algorithms
exhibit oscillations around the MPP, resulting in power losses [10]. For maximum power
point tracking (MPPT), AI-based techniques [11–13] have been used to overcome these
problems. These soft computing techniques have demonstrated promising performance in
tracking the maximum power using prior experiences as the basis for the search criterion.
However, as more data are used, the complexity of these algorithms rises. The training
process can be hampered by the lack of previous data, and anomalies in the available data
could produce inaccurate findings. The storage demand is also increased by the substantial
amount of data that these algorithms require [14].

To resolve such problems researchers have suggested stochastic search-based meta-
heuristic algorithms for maximum power point tracking (MPPT). These algorithms take
their cues from natural occurrences like ant colonies, bird swarms, and flower pollination.
For instance, under partial shading conditions (PSCs), algorithms like cuckoo search [15],
grey wolf optimization [16], and the flower pollination algorithm [17] have shown the
capacity to precisely track the global maximum power point (GMPP). However, because
these algorithms use random elements in their search process, they often require significant
computational time. In recent years, the use of metaheuristic algorithms has increased in
solving various optimization problems due to their efficient convergence properties. These
algorithms mimic behaviors such as hunting, reproduction, food foraging, and breeding
found in plants and animals. There have been many different metaheuristic algorithms
proposed in the literature [9,14,17–22]. One of the key benefits of metaheuristic algorithms
is their exploratory nature, which enables them to cover the whole search space and locate
the best answer while avoiding local peaks. Additionally, because these algorithms do
not require specific training data, they are easier on processor memory. Not all meta-
heuristic algorithms, nevertheless, perform as well. They fluctuate based on a number
of performance factors, including the time required to reach the true maximum power
point, how often power fluctuates while tracking, the impact on processor memory, and
other factors. An ideal approach would therefore minimize CPU burden while maximizing
system performance based on the previously described parameters. In order to improve
existing MPPT systems and make them more cost-effective, metaheuristic algorithms with
improved performance and simplified structures are required.

The simplicity and exploratory capabilities of Particle Swarm Optimization (PSO) [23]
make it a popular swarm-intelligence metaheuristic algorithm. Various modifications have
been implemented to PSO over time to track the GMPP [20,24–26]. Being stochastic, PSO
relies on random coefficients to track the maximum power point (MPP) under various
shading conditions. When the algorithm looks for maxima, this stochasticity, however,
presents difficulties. Conventional PSO relies on random parameter selection and has slow
convergence rates, requiring more iterations to find the optimal point. Longer settling times
and higher fluctuations are caused by an increased iteration rate, which results in power
losses. PSO also faces challenges with premature convergence because of its stochastic
nature. An adaptive PSO was suggested by the authors of [27] as a solution to the problem of
becoming trapped in local peaks. However, because of the algorithm’s constrained capacity
for decision-making for convergence, the problem of power losses arising from steady-state
oscillations continued. The Jaya method, with its more straightforward structure, was
discovered to be suitable for tracking the MPP by the authors of [28,29]. This method



Processes 2023, 11, 2946 3 of 26

has two parts to its updating equation: a best-enhancing component (BEC) that moves it
toward the best value and a worst-avoiding component (WAC) that keeps it separate from
the worst options. However, the WAC becomes extremely large for lower values of the
global best, pushing the solution away from the real global best and increasing tracking
time and oscillations that result in power losses. In addition to these algorithms, authors
have employed several human-based algorithms in their works. In [30], the musical chairs
algorithm was presented, which produced significantly superior results when compared to
other algorithms.

In this article, we utilize a novel algorithm for MPPT known as the Ali Baba and the
Forty Thieves Algorithm (AFT) [31]. The AFT algorithm improves efficiency by addressing
the drawbacks of other metaheuristic algorithms, AI, and other conventional algorithms.

AFT, which takes its inspiration from the tale of Ali Baba and the Forty Thieves, is
categorized as a human-based algorithm. The thieves stand in for the search agents, the
environment is the search space, each town position is a potential solution, Ali Baba’s
house is the objective function, and Ali Baba is a metaphor for the global solution. The
story is search-based in nature involving a group of 40 thieves who pursue Ali Baba.
Their primary objective is to seek revenge and retrieve their stolen treasure by capturing
Ali Baba. The search conducted by the gang for Ali Baba follows an iterative approach,
consisting of multiple rounds that build upon the solutions found in previous iterations.
In the proposed algorithm, the population is a representation of the thieves’ collective
behavior, reflecting their search process. Throughout the tale, the main character, Marjaneh,
takes countermeasures to thwart the gang’s search mission at each iteration. Her actions
and strategies prevent the gang from accomplishing their objective, adding an element of
challenges and complexity to the search process.

The convergence process is aided by the inclusion of numerous factors in AFT that
facilitate exploration and exploitation. When looking for Ali Baba, the thieves (search
agents) in AFT modify their positions using a mathematical model and tuning criteria
while taking into account three potential scenarios.

The tracking range and perception potential are the two crucial parameters in AFT.
With the help of these factors, AFT may efficiently explore the search space and find optimal
or suboptimal solutions. AFT also uses clever deception techniques inspired by Marjaneh
(Ali Baba’s maid), which boosts the chance of finding better answers in potential areas
by encouraging the thieves to investigate other locations and directions. Across a variety
of test functions, AFT has high reliability and effectiveness in obtaining close to ideal or
optimal solutions.

The AFT algorithm for MPPT in PV systems appears to offer several novel features
and benefits compared to existing MPPT algorithms:

• Tracking Range and Perception Potential: AFT utilizes the tracking range and per-
ception potential as crucial parameters. This suggests that it has a dynamic approach
to exploring the search space and adapting to changing environmental conditions,
potentially making it more robust and adaptable than traditional MPPT algorithms.

• Clever Deception Techniques: AFT incorporates deception techniques inspired by
Marjaneh, which encourage the thieves (representing the algorithm) to investigate
other locations and directions. This implies that AFT can actively explore alternative
solutions, potentially leading to better MPPT results, even in challenging conditions.

• Balanced Exploration and Exploitation: AFT employs a random search strategy for
the thieves, striking a balance between exploration (diversifying the population) and
exploitation (converging toward optimal solutions). This balance can result in quicker
convergence while maintaining diversity, which is crucial for robust MPPT.

• Minimal Parameter Set: AFT uses a minimal set of parameters, indicating simplicity
in implementation and tuning. This simplicity can make it more accessible and easier
to deploy in practical PV systems.

Overall, the novelty and benefits of using the AFT algorithm for MPPT in PV systems
include its adaptability, exploration-exploitation balance, simplicity, efficiency, and inno-
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vative approach. These qualities position AFT as a promising option for optimizing the
performance of PV systems in various conditions.

The following is how the paper is set up: A summary of the PV cell’s single diode
model is given in Section 2. Section 3 elaborates on the metaheuristic algorithms utilized
in this research and their implementation. In Section 4, the obtained results from MAT-
LAB/Simulink simulations are evaluated and compared. Section 5 presents the outcomes
from the real-time Hardware-in-the-Loop (HIL) implementation of the proposed AFT algo-
rithm for MPPT. The paper is finally concluded in Section 6, which summarizes the study’s
major conclusions and contributions.

2. Modeling of the PV Cell

A parallel diode, a series resistance, and a current source that produces light comprise
a PV cell. Typically, PV modules made of a collection of PV cells are coupled in series and
parallel to produce the desired output power. Table 1 displays the specification of the PV
cell employed in the simulation and Figure 1 shows the single-diode model of the PV cell.

Table 1. Specifications of the photovoltaic (PV) cell.

Parameters Values

Number of PV modules in series 4
Number of series connected cells per module (N s) 72

The power rating of PV module
(

Ppv
)

21.837 W
Maximum operating power (P mp ) 87.348 W
Maximum operating current (I mp ) 5.02 A
Maximum operating voltage (V mp ) 17.4 V

Short circuit current (I sc) 5.34 A
Open circuit voltage (V oc) 21.7 V

Temperature coefficient of Isc (K i) 0.075%/◦C
Temperature coefficient of Voc (K v) −0.37501%/◦C

Photo-generated current (I ph ) 5.3624 A
Diode saturation current (I sat ) 3.052 × 10−10 A

Diode ideality factor (n) 0.12439
Series resistance (R s) 79.3172 Ω
Shunt resistance (Rsh) 0.081018 Ω
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The relationship between the output current and voltage can be stated using Ns and
Np to denote the number of PV cells arranged in series and parallel, respectively.

Ipv = Np Ig−Np IS

(
exp
[

q
AkTc

(
VPV
Ns

+
Rs Ipv

Np

)]
− 1
)
−

(
NpVpv

Ns
+ Rs Ipv

)
Rsh

(1)



Processes 2023, 11, 2946 5 of 26

The sun irradiation influences the produced photocurrent Ig in the manner described
below:

Ig =
(

Isc + ki

(
TC − Tre f

)) s
1000

(2)

Additionally, the saturation current of the PV cell fluctuates with temperature in
accordance with the following relationship:

Is = IRS

[
TC

Tre f

]3

exp

[
qEg

Ak

(
1

Tre f
− 1

TC

)]
(3)

According to Equations (1)–(3), the current produced by the PV array is simultaneously
dependent on temperature and solar irradiation.

Now, take into consideration the PV cell model, which has no series loss and no
leakage to ground, i.e., the cell’s series resistance Rs = 0, and the cell’s shunt resistance
RSH = ∞. The PV solar cell equivalent circuit mentioned above can be reduced to the
following:

IPV = NP Ig − Np Is

(
exp
[

qVpv

Ns AkTc

]
− 1
)

(4)

When all the parameters and voltage are known, Equation (4) transforms the output
current into an explicit equation that can be calculated directly.

3. Metaheuristic Optimization Algorithm Based MPPT

Metaheuristic algorithms have been used for MPPT in PV generation systems to cap-
ture the GMPP and move beyond the constraints of conventional approaches. Through
their exploitation skills, metaheuristic algorithms have the capacity to thoroughly explore
the search space and select the best local optimal solution from among the global optimal
solutions. Therefore, the optimization method is crucial to the MPPT controller’s effec-
tiveness. Certain characteristics must be taken into account while designing an MPPT
controller that is both cost- and power-efficient. These specifications include:

• Low failure rate: There should be very little chance of early convergence or failure for
the MPPT algorithm.

• Fast convergence: To reduce the number of computing iterations necessary for an
economical MPP tracker, the MPPT algorithm should reach the MPP quickly.

• Stable fluctuations: The MPPT algorithm needs to be capable of trustworthy ex-
ploration and exploitation in order to avoid needless search space traversal, which
minimizes power fluctuations and related losses.

4. Ali Baba and the Forty Thieves (AFT) Algorithm-Based MPPT

The proposed AFT algorithm, based on global maximum power point tracking in a
photovoltaic system, takes inspiration from the famous story of Ali Baba and the 40 thieves.
The aim of this study is to introduce a novel optimization technique that mimics the story of
Ali Baba and the 40 thieves, using a coordinated social behavior model to replicate human
behavior. The underlying presumptions of this algorithm are as follows:

• The 40 thieves work together in a bevy and receive directions from someone, or from
one of the thieves, to locate Ali Baba’s house. These directions may or may not be
accurate.

• The 40 thieves travel a certain distance from their starting point until they locate Ali
Baba’s house.

• Marjaneh can deceive the thieves several times with clever tactics to protect Ali Baba
by a certain percentage.

As mentioned above, the search for Ali Baba by the thieves can result in three funda-
mental scenarios. In each of these cases, it is assumed that the thieves are conducting an
efficient search of their surrounding environment, while also accounting for the proportion
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of the situation that is influenced by Marjaneh’s intelligence. This aspect forces the thieves
to look in unexpected places. By modeling the behaviors of the thieves and Marjaneh, they
can be related to an objective function that can be optimized.

4.1. Ali Baba and the Forty Thieves (AFT) Algorithm

The AFT algorithm encompasses several parameters that contribute to exploitation
and exploration, outlined below as:

• Tracking distance parameter (Td): As the iterations progress, the emphasis on explo-
ration diminishes while exploitation becomes more important. Lower values of Td
focus on localized searches in propitious regions of search space. Consequently, in
the later iterations, Td facilitates local search around the finest solution, resulting in
exploitation. This specification regulates the amount of exploration in AFT by deter-
mining how far the new locations of thieves are from Ali Baba’s house. Td is defined
using Equation (5) as:

Tdt = αo × exp−α1(t/tmax)
α1 (5)

• Perception potential parameter (Pp): The degree of exploitation is regulated by Pp,
which quantifies the amount of comprehensive search around the finest solution. As
iterations progress, the exploitation phase intensifies with comparatively larger values
of this parameter. This specification emphasizes the exploration capability of AFT,
particularly when it has comparatively small values. It is constantly increased during
the iterative operation of AFT to avert getting stuck in local optima and approach the
global optima. Pp is defined using Equation (6) as:

Ppt = βo × log (β1

(
t

tmax

)βo

) (6)

• sgn(rand − 0.5): This specification determines the direction of exploitation and explo-
ration in AFT. As rand follows a uniform distribution between 0 and 1, the likelihood
of obtaining positive and negative signs becomes equal.

• Marjaneh intelligence plans: This specification can directly enhance AFT exploration
ability. The searching behavior of AFT can be represented mathematically as given
below:

Case 1: If the thieves receive information from a source to help them locate Ali Baba,
then their new locations can be determined using Equation (7) as follows:

Di
t+1 = gbestt +

[
Tdt

(
pbesti

t − yi
t

)
× rand + Tdt

(
yi

t − ma(i)
t

)
× rand

]
sgn(rand − 0.5) (7)

where Di
t+1 stands for the position of ith thief at iteration (t + 1), yi

t is the position of Ali
Baba relative to the ith thief at iteration t, pbesti

t is the best position attained by the ith thief
up to iteration t, gbestt denotes the global best position obtained by any thief up to the tth

iteration, Tdt represents the tracking distance of the thieves at iteration t, and Ppt denotes
the perception potential of the thieves to Ali Baba at iteration t.

The level of Marjaneh intelligence (ma(i)
t ) used to camouflage the ith thief at iteration t

is calculated based on Equation (8).

m =


m1

1 · · · m1
j

...
. . .

...
mi

1 · · · mi
j

 (8)

where mi
j represents the wisdom of Marjaneh concerning the ith thief and the jth dimension,

and it is characterized as a randomly generated number falling within the range of 0 to 1.
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The parameter a in ma(i)
t can be characterized by Equation (9), given below.

a = [(n − 1)·rand(n, 1)] (9)

where rand(n, 1) denotes a vector comprising random numbers that are uniformly scattered
within the interval [0, 1], and n is the element number.

Case 2: If the thieves find out that they have been tricked, they may start exploring
the search space for Ali Baba in a random manner. In such a scenario, the new positions of
the thieves can be obtained using Equation (10), given below.

Di
t+1 = Tdt [(u j − lj ) rand + lj ] (10)

where lj and uj denote the lower and upper limits of the search space in the jth dimension,
respectively.

Case 3: To enhance the exploration and exploitation capabilities of the AFT algorithm, an
additional search strategy beyond the positions obtained through Equation (7) is employed.
In this case, new locations of the thieves can be acquired using Equation (11) as:

Di
t+1 = gbestt − [Tdt (pbesti

t − yi
t )× rand + Tdt (yi

t − ma(i)
t )× rand ]sgn (rand − 0.5 ) (11)

4.2. MPPT Using AFT Algorithm

The flowchart of the AFT algorithm-based MPPT method is presented in Figure 2. In
Figure 2, the duty ratio (D) sent to the DC-DC boost converter is analogous to the position
of the thief in the AFT algorithm. The duty ratio is updated iteratively in each iteration
using Equations (7), (9), and (10). The AFT algorithm implemented in the microcontroller
dynamically adjusts the duty ratio in each iteration, mirroring its approach to optimizing
the performance of each thief. Within each iteration, the algorithm assesses power levels
and stores the duty ratio associated with the higher power output. When the power
difference is less than 5% or the duty ratio difference is less than 2%, only the optimal duty
ratio is transmitted to the switch.

The global best duty ratio (DGbest) represents the duty ratio value that maximizes the
power output. Furthermore, variations in radiation levels over time can cause the GMPP to
fluctuate [32]. If the difference between the current power level and the previous one is less
than 1% (indicating a change in insolation), the system triggers a reinitialization of all duty
ratios and other relevant parameters.

The process of MPPT using AFT is detailed below:

1. Duty Ratio Initialization: The duty ratios within the AFT algorithm serve as control
signals to regulate the converter, drawing an analogy to the position of the thieves. To
initiate the optimization process, the duty ratios must be initialized within a predefined
search space, constrained by two critical values: a maximum value (Dmax = 0.9) and a
minimum value (Dmin = 0.1). These restrictions are imposed to confine the optimization
within a secure and operationally feasible range of duty ratios.

2. Iterative Optimization Process: The AFT algorithm unfolds through an iterative opti-
mization process inspired by the tale of Ali Baba and the 40 thieves. The search for
Ali Baba by the thieves can lead to three fundamental scenarios. In each scenario, the
thieves conduct an efficient search of their surroundings while considering the influ-
ence of Marjaneh’s intelligence, which compels them to explore unexpected locations.
By modeling the behaviors of both the thieves and Marjaneh, these behaviors can be
linked to an objective function that is amenable to optimization.

3. Obtaining the Optimum Duty Ratio: Through the iterative process, the AFT algorithm
continually updates the duty ratio positions until it converges to a point where
the optimal duty ratio, representing the global maximum power point (GMPP), is
determined. Subsequently, this optimal duty ratio is transmitted to the converter,
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facilitating the adjustment of power conversion to operate at the peak power output
of the PV system (Pmpp).
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The flowchart of the AFT algorithm-based MPPT method is presented in Figure 2.
In Figure 2, the duty ratio (D) sent to the DC-DC boost converter is analogous to the
position of the thief in AFT. The duty ratio is updated iteratively in each iteration using
Equations (7), (9), and (10). After that, from the updated duty ratio, the best duty ratio
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(DPbest) and the global best duty ratio (DGbest) are evaluated. The optimal answer to the
optimization problem is ultimately determined by the thieves’ best location.

5. Simulation and Analysis

For simulation analysis, the model of a photovoltaic system was developed, as given
in Figure 3. It was constructed of four modules that were linked in series to form an array.
A DC-DC boost converter then supplied power to the load. The PV module’s specifications
are given in Table 2. The parameters for the DC-DC boost converter were derived as
mentioned in [33–35]. The parameters used in different algorithms used in the paper are
shown in Table 3. In this section, the simulation analysis of the proposed AFT algorithm is
performed. The boost converter specifications were as follows: inductance (L) = 1.5 mH, load
resistance (R) = 10, input capacitance (C1) = 47 µF, and output capacitance (C2) = 470 µF.
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Table 2. Ratings of components used in the PV model simulation.

Components Values

Input capacitance (C1) 47 µF
Output capacitance (C2) 470 µF

Inductor (L) 1.478 mH
Switching frequency ( fs) 20 kHz

Load (RL) 10 Ω
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Table 3. Parameters values used in Particle Swarm Optimization (PSO), Adaptive Jaya (A-JAYA), and
Ali Baba and the Forty Thieves (AFT) MPPT algorithms.

Parameters PSO A-JAYA AFT

Number of particles
(
np
)

4 4 4
Maximum number of iterations (tmax) 100 100 100

Social parameter (c1) 1.2 – –
Cognitive parameter (c2) 1.6 – –

Inertia weight (w) 0.4 – –
Initial value of adaptive coefficient 1 (c1i) – 1 –
Final value of adaptive coefficient 1

(
c1 f

)
– 0.5 –

Initial value of adaptive coefficient 2 (c2i) – 1 –
Final value of adaptive coefficient 2

(
c2 f

)
– 0 –

Initial estimate (αo) – – 1
Final estimate (βo) – – 1

For analysis purposes, four alternative partial shading conditions (PSCs) were ana-
lyzed. For the first condition, a 1000 W/m2 of uniform insolation scenario was considered.
The panels received (1000, 1000, 1000, 400) W/m2 and (1000, 1000, 600, 200) W/m2 accord-
ingly for the second and third situations. Finally, a heavy shading scenario of (1000, 750,
400, 300) W/m2 was applied. The analysis of the performance of the three algorithms was
performed on the basis of the maximum power tracked (Ppv), the tracking time (ttr), and the
efficiency (η) of the power tracked. The efficiency was calculated based on Equation (12).

η(%) =
Pmpp

Prated
(12)

5.1. Static Shading Conditions
5.1.1. Condition 1

The panels were given a consistent insolation of 1000 W/m2 in the first scenario.
Figure 4 depicts the comparison results under this condition. The AFT tracking time for
the 86.60 W MPP in this insolation was 0.2353 s. In comparison to the other algorithms
with no steady-state oscillation, the suggested method’s tracking speed was also noticeably
faster for condition 1. A-JAYA, on the other hand, tracked the MPP of 85.96 W with a
0.70 s tracking time. PSO tracked the MPP of 85.57 W in 2.23 s. AFT, A-JAYA, and PSO had
efficiency rates of 99.15%, 98.4%, and 97.97%, respectively.

5.1.2. Condition 2

In this case, the panels received (1000, 1000, 1000, 400) W/m2 insolation. Whereas
PSO took longer to stabilize and caused steady-state oscillations even after the MPP had
finally converged, AFT outperformed different algorithms with regard to settling time and
efficiency. The tracking time of AFT, as seen from the result, was 0.25 s for tracking the
MPP of 61.72 W. On the other hand, the tracking time of A-JAYA and PSO was observed to
be 0.70 and 1.92 s for tracking the power of 61.68 W and 60.91 W, respectively. AFT was
also seen to have a better efficiency of 98.84% as compared to A-JAYA (98.78%) and PSO
(97.54%).

5.1.3. Condition 3

The panels were given an isolation of (1000, 1000, 600, 200) W/m2 in this situation.
Figure 5 depicts the comparison results under this condition. In every respect, including
settling time, oscillation, and frequency, AFT performed better compared to PSO and A-
JAYA. The MPP of 41.50 W could be tracked by AFT in 0.2171 s, whereas A-JAYA and PSO
needed 0.94 and 1.33 s, respectively, to track the MPP of 41.09 and 40.97 W. AFT’s efficiency
in this scenario was observed to be 99.73%, A-JAYA’s efficiency was observed to be 98.75%,
and PSO’s efficiency was observed to be 98.46%.
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ratio plots of Particle Swarm Optimization (PSO), Adaptive Jaya (A-JAYA), and Ali Baba and the
Forty Thieves (AFT) algorithm for (a–c) shading condition 1 and (d–f) shading condition 2.

5.1.4. Condition 4

In this case, a comparison among AFT, PSO, and A-JAYA was depicted for the heavy
shading scenario. The MPP was successfully traced by all three techniques, but the tracking
time of A-JAYA took 1.18 s to track the MPP of 29.01 W, and PSO took 2.29 s to track the
MPP of 28.91 W. On the other hand, AFT took just 0.2584 s for the MPP of 29.83 W. The
efficiency of A-JAYA was found to be 96.07%, and the efficiency of PSO was observed to
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be 96.41%, whereas AFT had a greater efficiency of 99.13%. In the case of PSO, higher
fluctuations and delayed convergence decisions led to decreased power efficiency.
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The tracking time obtained from the AFT algorithm (ttr(AFT)) was compared with
the tracking time obtained by applying the A-JAYA and PSO algorithms. The performance
improvement factor (PIF) is defined as Equation (13):

PIF =
ttr(alg)− ttr(AFT)

ttr(AFT)
× 100% (13)

where ttr(alg) is ttr(Ajaya) and ttr(PSO).
Table 4 presents a qualitative analysis of the results for four distinct insolation scenarios.

As can be seen, the AFT algorithm had a 99.2% average efficiency rating and an average
tracking time of 0.235 s. In contrast, the A-JAYA algorithm’s average tracking time and
efficiency was 0.88 s and 98.08%, respectively. The average tracking time and efficiency
reported by the PSO algorithm was 1.94 s and 97.5%, respectively.

Table 4. Quantitative analysis of simulation results.

Shading Condition (SC)
Insolation (W/m2)

Method
Prated
(W)

Pmpp
(W)

η
(%)

ttr
(s)S1 S2 S3 S4

1 1000 1000 1000 1000

AFT

87.34

86.60 99.15 0.23

A-JAYA 85.96 98.41 0.70

PSO 85.57 97.97 2.23

2 1000 1000 1000 400

AFT

62.44

61.72 98.84 0.25

A-JAYA 61.68 98.78 0.70

PSO 60.91 97.54 1.92

3 1000 1000 600 200

AFT

41.61

41.50 99.73 0.21

A-JAYA 41.09 98.75 0.94

PSO 40.97 98.46 1.33

4 1000 750 400 300

AFT

30.09

29.83 99.13 0.25

A-JAYA 29.01 96.41 1.18

PSO 28.91 96.07 2.29

Figure 6 graphically displays the PIF for the AFT algorithm in contrast to PSO and
A-JAYA as established by the simulation study. As determined by the simulation study,
Figure 7 graphically compares the efficiency of AFT to that of PSO and A-JAYA. The afore-
mentioned results demonstrate that the suggested AFT algorithm performs significantly
better than both the PSO and A-JAYA algorithms. This advantage is brought about by the
AFT algorithm’s ability to boost the PV system’s efficiency by promoting faster convergence
and minimizing fluctuations.

5.2. Dynamic Shading Conditions

In the practical scenarios, there is a dynamic change in insolation conditions. Hence,
this criterion was chosen to demonstrate the efficacy of the proposed method practical
scenario. The shade patterns were changed over time to reflect changes in the sun’s position
and cloud movement in order to imitate a dynamic setting. Every two seconds, the shade
pattern was modified. The two situations below are displayed in contrast. Both the first
and second cases were classified as dynamic insolation (varying insolation) and dynamic
insolation (PS attenuation), respectively. The following is a description of the outcomes
under both conditions. Figure 8 shows the irradiance profile under dynamic simulation.
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The code will re-initialize in the event of a power change brought on by an irradiance
change. Equation (14) mentions the condition for re-initialization.

i f

∣∣∣Ppvnew − Ppvold

∣∣∣
Ppvold

≥ Ppv(%) (14)

The outcome for AFT is displayed in Figure 9 under dynamic insolation with variation
in irradiance values in the range of (1000, 1000, 1000, 1000), (1000, 1000, 1000, 400), (1000,
1000, 600, 200), (1000, 750, 400, 300). It is clear from the observation that the AFT algorithm
tracked the MPP successfully for every instant. In AFT, each instant convergence time and
fluctuation count were significantly smaller. The time for convergence for AFT at different
insolations was 0.2353, 0.2502, 0.2171, and 0.2584 s, respectively. The advantage of change
is clearly demonstrated by the fact that the proposed method monitored the MPP under
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dynamic situations effectively with significantly less convergence time as compared to
other algorithms.
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5.3. Impact of Search Agent Count on AFT Algorithm Performance

In this section, simulations were conducted using different numbers of search agents
(3, 4, and 5) under consistent irradiance levels (1000, 900, 750, and 400 W/m2) applied to
four PV panels. As illustrated in Figure 10a, with three search agents, the AFT algorithm
achieved convergence to the MPP at 50.25 W within 0.20 s. The optimal duty ratio (Dbest)
sent to the converter stabilized at 0.4285 s throughout the runtime, and the total number
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of iterations was four. The initial significant fluctuation observed was attributed to the
initialization process and was not taken into account.
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Figure 10b demonstrates that with four search agents, the AFT algorithm converged to
the MPP of 50.26 W within 0.24 s. The Dbest value sent to the converter stabilized at 0.4277
for the entire runtime, and the total number of iterations remained four.

In Figure 10c, when employing five search agents, the AFT algorithm reached the MPP
of 50.27 W in 0.31 s. The Dbest value sent to the converter settled at 0.4264 for the duration
of the runtime, and the total number of iterations increased to five.
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As depicted in the figures, the iteration step varied for different swarm sizes, resulting
in a slightly delayed convergence time as the number of particles increased. However, it is
noteworthy that a smaller number of particles led to more frequent and larger fluctuations.
Overall, the maximum power tracking efficiency remained consistent across varying swarm
sizes. Therefore, the AFT algorithm demonstrates robust performance, capable of achieving
accurate MPP tracking regardless of the number of search agents utilized.

6. Comparative Analysis of Algorithm Convergence

Under partial irradiance conditions of 1000, 900, 750, and 400 W/m2, simulations
were conducted for the three algorithms: AFT (Figure 11a), A-JAYA (Figure 11b), and PSO
(Figure 11c).
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The AFT algorithm demonstrated rapid convergence to the MPP, achieving 50.26 W
within 0.25 s. The optimal duty ratio (Dbest) stabilized at 0.4277 throughout the runtime,
and the total number of iterations was four. AFT achieved an outstanding maximum power
tracking efficiency of 99.03% under these conditions.

In contrast, the A-JAYA algorithm also reached the MPP effectively, delivering
50.08 W within 0.76 s. The Dbest value stabilized at 0.4205, with a total of six iterations. The
maximum power tracking efficiency for A-JAYA was 98.67%.

The PSO algorithm exhibited slightly slower convergence, attaining 49.82 W in
2.24 s. The Dbest remained stable at 0.4259 over 17 iterations, resulting in a maximum
power tracking efficiency of 98.16%.

It is important to note that the number of steps corresponds to the number of iterations.
In each step, all three algorithms evaluated four particles. However, the iteration steps
varied between algorithms, as depicted in Figure 11. The duration of each step depended
on the specific characteristics of the algorithm. This led to variations in the performance of
the three algorithms, as detailed in Table 5.

Table 5. Convergence analysis of the AFT, A-JAYA, and PSO algorithms.

Algorithm Prated
(W)

Pmpp
(W)

η
(%)

ttr
(s) Duty Ratio (D) Number of

Iterations (t)

AFT

50.75

50.26 99.03 0.25 0.4277 4

A-JAYA 50.08 98.67 0.76 0.4205 6

PSO 49.82 98.16 2.24 0.4259 17

Due to the reduced number of fluctuations and shorter tracking times observed in AFT
when compared to A-JAYA and PSO, the overall system power losses were minimized in the
AFT algorithm. This highlights the superior performance of AFT in terms of convergence
time and efficiency under these conditions.

7. Implementation of the Proposed AFT Algorithm Using Real-Time HIL

Real-time HIL results are given in this section to validate the performance of AFT over
PSO and A-JAYA. The PV system requirements for HIL implementation were the same
as those specified in Table 2. The summary of insolation for the four PV panels is given
in Table 6. Figure 12 illustrates the circuit incorporating the boost converter and various
sensors interconnected within the circuit. Figure 13 portrays the Typhoon HIL emulation
setup. The AFT algorithm was integrated into the microcontroller, which subsequently
received input data in the form of voltage and current readings from the PV source. It then
calculated the appropriate duty ratio value.

The AFT algorithm, embedded within the microcontroller, iteratively updated the duty
ratio during its execution. During each iteration, the algorithm compared the power output
with its previous value and retained the duty ratio associated with the higher power output.
When the difference in power output was less than 5% or the difference in duty ratio was
less than 2%, only the optimal duty ratio was communicated to the switch. Figure 14 shows
the Input Power-Voltage (P-V) and Current-Voltage (I-V) plots of the photovoltaic (PV)
array for shading conditions 1–5.

7.1. Static Shading Conditions
7.1.1. Shading Condition 1

The comparison of AFT with A-JAYA and PSO for shading condition 1 is shown in
Figure 15a–c. Whereas A-JAYA and PSO tracked the MPP of 86.97 W and 86.60 W in 1.4 s
and 4.8 s, respectively, the suggested algorithm settled to the MPP of 87.08 W in less time
(0.9 s). Therefore, it is clear that the suggested AFT tracked the MPP faster. Additionally,
the suggested algorithm’s efficiency was observed to be 99.70%, compared to A-JAYA and
PSO’s 99.57% and 99.15%, respectively. Compared to when A-JAYA and PSO were used for
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MPP tracking, the shorter AFT reduced tracking time helped minimize power losses and
boost the efficiency of the system’s power output.

7.1.2. Shading Condition 2

Figure 15d–f illustrates the comparison results when one out of four PV modules
was shaded. Given that three PV modules received full insolation, this is a scenario with
light shading conditions. The suggests that the AFT method reached its maximum power
of 55.05 W in 0.9 s. A-JAYA and PSO reached their respective MPPs of 54.24 W and
45.32 W after 1.4 s and 4.0 s of convergence, respectively. In comparison to A-JAYA (98.03%)
and PSO (97.95%), the efficiency of the suggested method for this shading situation was
observed to be 99.49%. As a result, AFT followed a higher MPP value more quickly, and
there was no significant fluctuation seen. Conversely, PSO caused a number of significant
fluctuations that led to power losses.

7.1.3. Shading Condition 3

The comparative outcomes for shading condition 3 are displayed in Figure 15g–i. The
suggested method could track the MPP of 45.32 W under this situation in 0.6 s, whereas
A-JAYA and PSO settled for a lesser value of 44.83 W and 44.37 W, respectively, for the MPP.
In comparison to the AFT, A-JAYA and PSO had substantially longer settling times and larger
size variations. Again, for this circumstance, the combined impact of slower monitoring speed
and considerable size variations greatly lowered the PV system’s overall efficiency.
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7.1.4. Shading Condition 4

The comparison findings are shown in Figure 15j–l when three of the four PV modules
are shaded. Only one PV module received complete insolation, indicating heavy shading
conditions. For this circumstance, the suggested method could track the MPP of 61.22 W
in 0.9 s compared to A-JAYA’s 1.8 s for 60.91 W and PSO’s 4.6 s for 60.56 W. The three
algorithms under comparison were as follows in terms of efficiency: AFT (98.77%), A-JAYA
(98.27%), and PSO (97.70%).

7.1.5. Shading Condition 5

For shading condition 5, the results obtained are shown in Figure 15m–o. The proposed
algorithm tracked the MPP of 44.37 W in 0.8 s. A-JAYA tracked the MPP 44.22 W in
2.4 s, while PSO tracked the MPP 43.97 W in 3.6 s. The efficiency of AFT was observed to
be 98.90%, while A-JAYA and PSO had an efficiency of 98.57% and 98.01%, respectively.

A qualitative examination of the data for five different insolation conditions is pre-
sented in Table 5. The AFT algorithm had an average tracking time of 0.8 s and an average
efficiency rating of 99.2%, as shown. The average tracking time and average efficiency for
the A-JAYA algorithm, in contrast, were 1.68 s and 98.5%, respectively. The PSO algorithm,
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meanwhile, reported an average tracking time of 3.96 s with a corresponding average
efficiency of 98%.

The Performance Improvement Factor (PIF) for the AFT algorithm in comparison
to PSO and A-JAYA, as determined by Hardware-in-the-Loop (HIL) analysis, is shown
graphically in Figure 16. Figure 17 graphically illustrates the efficiency of the AFT algorithm
in comparison to PSO and A-JAYA as determined by Hardware-in-the-Loop (HIL) analysis.
The aforementioned findings make it clear that the proposed AFT algorithm greatly outper-
forms both PSO and A-JAYA algorithms in terms of performance. This superiority is due to
the AFT algorithm’s capacity to increase the PV system’s efficiency by facilitating faster
convergence and reducing fluctuations.
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Figure 15. Hardware-in-the-Loop (HIL) outcomes showing the output power and duty ratio for 
Particle Swarm Optimization (PSO), Adaptive Jaya (A-JAYA) and Ali Baba and the Forty Thieves 
(AFT) for (a–c) shading condition 1; (d–f) shading condition 2; (g–i) shading condition 3; (j–l) 
shading condition 4; and (m–o) shading condition 5. 

  

Figure 15. Hardware-in-the-Loop (HIL) outcomes showing the output power and duty ratio for
Particle Swarm Optimization (PSO), Adaptive Jaya (A-JAYA) and Ali Baba and the Forty Thieves
(AFT) for (a–c) shading condition 1; (d–f) shading condition 2; (g–i) shading condition 3; (j–l) shading
condition 4; and (m–o) shading condition 5.
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Table 6. Quantitative analysis of Hardware-in-the-Loop (HIL) outcomes.

Shading Condition (SC)
Insolation (W/m2)

Method
Prated
(W)

Pmpp
(W)

η
(%)

ttr
(s)S1 S2 S3 S4

1 1000 1000 1000 1000

AFT

87.34

87.08 99.70 0.9

A-JAYA 86.97 99.57 1.4

PSO 86.60 99.15 4.8

2 1000 1000 1000 550

AFT

55.33

55.05 99.49 0.9

A-JAYA 54.24 98.03 1.4

PSO 54.20 97.95 4.0

3 1000 1000 800 450

AFT

45.52

45.32 99.56 0.6

A-JAYA 44.83 98.48 1.4

PSO 44.37 97.47 2.8

4 1000 950 700 650

AFT

61.98

61.22 98.77 0.8

A-JATA 60.91 98.27 1.8

PSO 60.56 97.70 4.6

5 1000 800 650 450

AFT

44.86

44.37 98.90 0.8

A-JAYA 44.22 98.57 2.4

PSO 43.97 98.01 3.6
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Figure 16. Performance improvement factor (PIF) obtained from Hardware-in-the-Loop (HIL) analy-
sis for Ali Baba and the Forty Thieves (AFT) algorithm with respect to Particle Swarm Optimization
(PSO) and Adaptive Jaya (A-JAYA).

7.2. Dynamic Shading Conditions

The AFT algorithm’s adaptability to dynamically changing situations is shown in this
section to provide a more useful analysis after its performance has been validated. This
scenario depicts variations in shading patterns that could happen as a result of shifting
clouds or shifting sun position over time. Real-time results were generated using the HIL
emulator. Figure 18 displays the AFT performance curves under various shading scenarios.
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The figure depicts how dynamic insolation affected the PV array, simulating how a cloud
first partially shaded the array before dissipating over time to reveal or obscure the surface.
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Figure 18a shows the transition from condition 1, which was a light partial shading
condition with full insolation for Panels 1, 2, and 3, to condition 2, which was a full
insolation condition. For conditions 1 and 2, the AFT converged to the MPP in around 0.6
and 1.0 s, respectively. The MPPs being monitored had an efficiency of 98.58% and 99.70%,
and they were 44.73 W and 87.08 W, respectively.

The transition from condition 2, which was full insolation, to condition 3, which was
light shading (1000, 550, 1000, 1000), where panel 1, 3, and 4 received full insolation, is
shown in Figure 18b. For conditions 2 and 3, the AFT settled in 1.0 s for both conditions
However, the MPPs monitored under these circumstances were, respectively, 87.08 W and
55.05 W, with 99.70% and 99.49% efficiency.
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8. Conclusions

This study’s goal was to develop an MPPT controller for photovoltaic (PV) arrays that
is accurate, dependable, and minimizes fluctuations. To achieve this, a novel algorithm
called the Ali Baba and Forty Thieves (AFT) algorithm was implemented in the MPPT
controller using MATLAB/Simulink. The proposed AFT algorithm’s effectiveness was
compared with that of the A-JAYA and PSO algorithms. The results of the comparison
showed that the proposed AFT algorithm had many different types of advantages over
A-JAYA and PSO, including a greater MPP tracking accuracy, a faster convergence rate,
improved efficiency, and fewer fluctuations. Using Hardware-in-the-Loop (HIL) testing
conducted in real time, the simulation results were further confirmed. The HIL findings
showed that even in difficult situations, the proposed algorithm maintained reliable MPP
tracking with barely any variations between global and local optima. The average tracking
time for the AFT algorithm under the specified conditions was 0.82 s, and the average
efficiency was 99.28%. The A-JAYA algorithm, in contrast, had an average tracking time
and efficiency of 1.68 s and 98.5%, respectively. Meanwhile, the PSO algorithm estimated
an average tracking time of 3.96 s and an associated average efficiency of 98%. Additionally,
the effectiveness of the suggested algorithm was evaluated under static partial shade
conditions, and its practical applicability in adapting to dynamically changing conditions
was assessed. The findings suggest that the application of the AFT algorithm in the MPPT
controller offers an optimal approach for efficient MPP tracking in industrial, commercial,
and residential settings. Future studies can also investigate the creation of MPPT trackers
utilizing improved algorithms to simplify computations and boost convergence speeds.
This would aid in the development of MPPT technology moving forward.
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