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Abstract: Recently, the traditional transmission line fault diagnosis approaches cannot handle the
variables’ dynamic coupling properties, and they also ignore the local structure feature information
during the feature extraction. To figure out these issues, a novel enhanced feature extraction based
convolutional LSTM (ECLSTM) approach is developed to diagnose the transmission line fault in
this paper. Our work has three main contributions: (1) To tackle the dynamic coupling charac-
teristics of the process variables, the statistics analysis (SA) method is first employed to calculate
different statistical features of the transmission line’s original data, where the original datasets are
transformed into the subsequently used statistics datasets; (2) The statistics comprehensive feature
preserving (SCFP) is then proposed to maintain both the global and local structure features of the
constructed statistics datasets, where the locality structure preserving technique is incorporated into
the principal component analysis (PCA) model to extract the features from the statistics datasets;
(3) To effectively diagnose the transmission line’s fault, the SCFP based convolutional LSTM fault
diagnosis scheme is constructed to classify the global and local statistical structure features of fault
snapshot dataset, because of its ability to exploit the temporal dependencies and spatial correlations
of the extracted statistical features. Detailed experiments and comparisons on the datasets of the
simulated power system are performed to prove the excellent performance of the ECLSTM based
fault diagnosis scheme.

Keywords: fault diagnosis; transmission line; enhanced feature extraction; statistics analysis;
convolutional LSTM

1. Introduction
1.1. Motivation and Incitement

As an important component of the power system, the transmission line transmits the
power from the source area to the distribution network [1]. However, the transmission line’s
fault always affects the power supply and reliability of the power system [2]. Under this
background, efficient fault diagnosis schemes for the transmission line are urgently needed
to remove these faults and guarantee the power system is running safely [3]. For many
data-driven transmission line recognition models, the original datasets are often used as
the input. Thus, these models cannot cope with the dynamic coupling properties between
different original variables [4]. However, the effectiveness of fault diagnosis approaches for
the transmission line is seriously affected by the original variables’ dynamically correlated
natures [5].

To deal with the dynamic coupling characteristics contained in the original process
variables, some fault diagnosis methods based on mining the higher-order statistics of the
original process variables have been studied in recent years. For example, as an emerging

Processes 2023, 11, 2955. https://doi.org/10.3390/pr11102955 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11102955
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://doi.org/10.3390/pr11102955
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11102955?type=check_update&version=1


Processes 2023, 11, 2955 2 of 24

superior feature extraction technique, statistics analysis (SA) [6,7] has been developed to
calculate multiple different statistical indicators among different process variables for the
purpose of tackling coupling dynamics. The original variables’ interaction and relevance
can be sufficiently revealed and captured by calculating and grouping the multiple statistics
of the original process variables. Hence, in our work, the SA method is utilized to figure
out the dynamic interactions between the original variables of the transmission line.

Although the dynamic correlative properties among the original measured variables
can be successfully figured out by the SA, the redundant information between the calcu-
lated multiple statistics always leads to an adverse impact on the fault diagnosis of the
transmission line. In view of the PCAs superiority in removing redundant information
among the multiple statistics by preserving the main variance information, we intend
to apply the PCA to characterize the transmission line’s running state by retaining the
key latent statistics. However, the traditional PCA-based approach only mines the global
structure features and neglects the important local structure features [8]. Recently, locality-
preserving-based methods have been suggested to exploit the local neighbor structure of
the samples for feature extraction by considering the underlying geometrical manifold of
the dataset [9,10]. In our work, a novel dimension reduction technique, i.e., comprehensive
feature preservation (CFP), is proposed to mine the global and local data structures of
the different statistics by combining the advantages of the PCA and locality preservation
techniques together.

According to the above analysis, if the statistics analysis (SA) method is integrated
into the constructed CFP technique, the improved feature extraction model will capture the
dynamic interactions among the original variables as well as remove redundant correlation
information by preserving the data’s global and local structure. As a result, the transmis-
sion line’s fault diagnosis performance will be significantly improved by employing the
constructed feature extraction model to exploit the data features during the dimensionality
reduction. Inspired by the merits of the SA method and the CFP technique, we have
come up with an enhanced feature extraction strategy termed the statistics CFP (SCFP) by
combining the SA with the CFP in our work.

After the global and local statistical features of the fault snapshot dataset are extracted,
it is also very important to recognize the fault patterns of the transmission line. Although
long short-term memory (LSTM) [11,12] has been widely applied to recognize the fault
type in the fault diagnosis field, conventional LSTM only focuses on the data’s temporal
dependency information and ignores the spatial structure information. As an improved
version of the LSTM, the convolutional LSTM (CLSTM) owns the superiority to keep
the data’s temporal dependencies, such as the LSTM, and consider the data’s spatial
correlation, such as the CNN, which has been widely applied to perform the classification
tasks recently [13]. Because of the CLSTMs above merits in identifying the fault pattern, in
this paper, we adopt the CLSTM-based approach to recognize the reinforced data features
mined by the suggested SCFP model.

1.2. Literature Review

Modern power systems exhibit very rapid development in the complexity of power
transmission and supply to satisfy the increasing energy requirement [1]. However, faults
frequently occur in the transmission line, which impacts the power supply and degrades
the reliability of the power system [14]. Therefore, to maintain the damaged components
and reduce the downtime, it is crucial to accurately diagnose the transmission line faults
and rapidly eliminate the faults.

With the progress of data measurement and collection systems, massive transmission
line-running data becomes available. Based on the gathered running data, data-driven
approaches are gaining more and more attention to diagnose transmission line faults [15,16].
However, the most data-driven models cannot cope with the coupling dynamics of the
process data because their input datasets are directly collected from the original process
variables. In practice, the dynamic properties would lead the process variables to be
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interrelated and influenced, which always influences the fault identification accuracy of
the abovementioned methods.

Recently, by mining the higher-order statistics of original process variables, some fault
diagnosis methods have been discussed to handle the variables’ dynamic coupling charac-
teristics. For instance, the independent component analysis (ICA)-based fault diagnosis
approaches adopt higher-order statistical information to discover the independent and
non-Gaussian distributed latent features from the original measured variables, which can
reveal more useful fault information [17,18]. However, the ICA-based methods have the
limitation of dealing with the measurement noise hidden in the collected data. When the
gathered data are contaminated with measurement noise, the latent variables cannot be
precisely derived [19]. As an alternative way to tackle the coupling dynamics, statistics
analysis (SA) [6,7] has been reported to calculate the variables’ multiple different statistical
indicators. Another merit of the statistics analysis (SA) is that regardless of the original
variables’ non-Gaussian distribution, the computed statistics of the variables will follow the
Gaussian distribution [5]. Hence, the calculated statistical features are efficient in clearing
off the bad effect of the original variables’ interactional dynamics on the fault recognition
performance.

To further remove the redundant information between the calculated multiple statistics,
the principal component analysis (PCA) has been applied to extract the intrinsic latent
variables by preserving the main variance information recently [20,21]. In this way, the PCA
can capture the global structure of the process data for feature extraction. However, the
traditional PCA-based approach only mines the global structure features and neglects the
important local structure features for eliminating redundant features among the computed
statistics [8]. The local structure features are also significant for feature extraction because
they indicate the detailed neighbor relations of different samples [22]. The loss of this
crucial information in low-dimensional space may have a great impact on dimension
reduction performance.

As mentioned above, the local structure features are also significant for feature extrac-
tion and dimensionality reduction because they indicate the detailed neighbor relations
of different samples [22]. The missed local structure would result in the downside influ-
ence of eliminating the redundant information and extracting the key latent features. Re-
cently, locality-preserving-based methods have been suggested to exploit the local neighbor
structure of the samples for feature extraction by considering the underlying geometrical
manifold of the dataset [9,10]. However, without preserving the variance information, the
outer shape of the dataset may be broken after the dimension reduction procedure. Hence,
the performance of local feature extraction may be degraded if a dataset has significant
directions for variance information.

After the global and local statistical features of the process data are extracted, the next
work is to effectively analyze these mined fault features for the transmission line’s fault
pattern recognition. In recent years, deep neural network-based methods have displayed
superior capability to exploit the valuable information from the process data [23,24]. As a
classical deep learning method, long short-term memory (LSTM) [11,12] is widely applied
to recognize fault types in the fault diagnosis field. For instance, Sun et al. [25] combined the
LSTM model with Bayesian to perform the fault diagnosis task for the nonlinear dynamic
process. To monitor the milling process under different working conditions, Zheng et al.
discussed an attention mechanism-combined LSTM to estimate the tool wear value [26].
Zhou et al. combined the entropy-based sparsity measure with the LSTM to carry out the
bearing defect prognosis [27]. To carry out the fault classification and fault prediction of
the transmission line, Belagoune et al. [14] employed the LSTM-based approach to classify
and predict the multivariate temporal sequences. To acquire improved fault identification
results, Han et al. [28] discussed a modified memory-capable-based LSTM approach to
select the optimal hidden layer node number. However, the traditional LSTM merely
utilizes the previous samples’ useful information to derive the output at present. Thus,
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the conventional LSTM only focuses on the data’s temporal dependency information and
ignores the spatial structure information.

As an improved version of the LSTM, the convolutional LSTM (CLSTM) has been
proposed by displacing matrix multiplication in the traditional LSTM with a convolution
operation. The CLSTM has the superiority to keep the data’s temporal dependencies,
such as the LSTM, and consider the data’s spatial correlation, such as the CNN, which
has been widely applied to perform the classification tasks recently [26]. For example,
Nogas et al. [29] proposed CLSTM-based spatiotemporal autoencoders to implement the
fall detection task. To deal with the problem of deepfake video detection, Chen et al. [30]
suggested the Xception-LSTM algorithm to capture and enhance the frame spatial structure
features and temporal dependencies by combining the spatiotemporal attention mechanism
with the CLSTM. Based on a modified CLSTM, Yu et al. [31] proposed an improved
autoencoder network to effectively extract the key features of the measured data for
fault detection in industrial processes. Considering the CLSTMs merits, we adopt the
CLSTM-based approach to recognize the reinforced data features mined by the suggested
SCFP model.

1.3. Contributions and Paper Organization

To exploit much more comprehensive and detailed feature information from the
transmission line fault data, an effective combination of the SA method and the CFP
technique is proposed to mine the data features in our work. Furthermore, if the CLSTM
model is utilized to identify the enhanced data features, much better fault diagnosis
performance of the transmission line will be achieved. In short, this paper proposes an
enhanced feature extraction-based CLSTM method to identify the transmission line’s faults.
The main innovations and contributions are given out.

(1) To cope with the dynamic coupling properties hidden in the process variables,
the SA method is applied to calculate different statistical features of the transmission
line’s original data. In the SA, the behaviors of the transmission line are characterized by
computing the statistics pattern, which contains different order statistics with the help of
the moving window technique. The training statistics matrix is then built by gathering the
multiple computed statistics patterns from different moving windows, which is efficient to
clear off the bad effect of the original variables’ interactional dynamics on the subsequent
fault diagnosis.

(2) To further eliminate the redundant correlation information among the calculated
multiple statistics, a novel SCFP model is developed to carry out the feature extraction.
The SCFP model has the capability to mine the global and local structure features of the
constructed training statistics matrix during dimension reduction. Specifically, considering
the traditional PCA only maintains the global structure feature for dimensionality reduction,
the locality structure preservation is combined into the PCA to establish the SCFP model.

(3) To effectively diagnose the fault of the transmission line, the SCFP-based ECLSTM
fault identification is suggested to exploit the temporal dependencies and spatial correla-
tions of the mined global and local statistical features. Firstly, the fault samples are collected
to set up the snapshot dataset. Then, the SCFP model is employed to extract the global and
local statistical features of the current snapshot dataset. And, to train the fault diagnosis
model, the mined global and local statistical features of multiple historical fault datasets
are input to the CLSTM. At last, the ECLSTM diagnosis model is applied to classify the
snapshot dataset’s global and local statistical features to diagnose the fault.

(4) To fully verify the performance of the proposed ECLSTM-based transmission line
diagnosis scheme, the ECLSTM model is compared with some closely related diagnosis
models in terms of diagnosing the fault. The experiments of the suggested ECLSTM and
the comparisons with related approaches are carried out on the datasets of the simulated
power system. In comparison with the related methods, the fault diagnosis results display
the superior effectiveness of the ECLSTM-based recognition scheme.
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The other parts of this paper are given out. Section 2 introduces the transmission
line’s short circuit faults, the basic PCA, and the convolutional LSTM. The SCFP-based
feature extraction technique is developed in Section 3. The ECLSTM-based transmission
line fault diagnosis approach is established in Section 4. The case study on the datasets
of the simulated power system is implemented in Section 5. At last, the conclusion is
formulated in Section 6.

2. Preliminaries
2.1. The Short Circuit Faults of the Transmission Line

The transmission line usually experiences short circuit faults, which always lead to
residual life reduction, power loss increase, and so on [32]. Different short circuit faults
always arise during the transmission line’s daily running, which can be divided into asym-
metrical faults and symmetrical faults [14]. To be specific, the line-to-ground (LG) faults,
the line-to-line (LL) faults, and the double lines-to-ground (LLG) faults belong to the asym-
metrical faults, which possess a much higher occurrence probability compared with the
symmetrical faults [33]. On the other hand, the triple lines (LLL) faults and the triple lines
to ground (LLLG) faults remain with the symmetrical faults, which result in much greater
damage to the transmission line than the asymmetrical faults [33]. However, the occurrence
probability of these symmetrical faults is smaller than that of the asymmetrical faults.

The short circuit faults seriously influence the running status of the transmission
line; therefore, the rapid and accurate recognition of the short circuit faults is significant
and important to ensuring the safe and stable operation of the transmission line [34,35].
According to the specific fault pattern, the amplitude, phase, and frequency of the voltages
and currents for the short circuit faults would undergo obvious changes, and these changes
are unique to each fault pattern. In this way, we can capture the covariate features from the
short circuit faults’ temporal operation data to discern different fault patterns as well as
process disturbances.

2.2. The Basic PCA Method

The PCA possesses the ability to cope with highly redundant process data by mapping
the redundant data into a low-dimensional principal component subspace that contains
the most variations of the data [8,20,21]. Therefore, the PCA is widely used for data feature
extraction.

Suppose this X ∈ Rn×m is the original high-dimensional dataset, which contains
n samples, and each sample consists of m measured variables. After the dataset X is
scaled according to the normal operation dataset, the covariance S of the dataset X is first
computed

S =
1

n− 1
XTX (1)

Then, Equation (2) is carried out on the obtained covariance, which is given out as
follows:

S = VDVT (2)

where D represents a diagonal matrix, whose diagonal contains the decreasing-order
eigenvalues λ̃1 > λ̃2 > . . . > λ̃rank(X) of the matrix S. The l eigenvectors p̃1, p̃2, . . . , p̃l of the
matrix S corresponding to the first l largest eigenvalues λ̃1 > λ̃2 > . . . > λ̃l are retained to
construct the loading matrix P̃ = [p̃1, p̃2, . . . , p̃l ] ∈ Rm×l .

Based on the loading matrix P̃, the original dataset X is mapped into the principal
component and residual spaces.

X = TP̃
T
+ E = t1p̃1

T+t2p̃1
T+ · · ·+tlp̃l

T+E (3)
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where T indicates the score matrix T = [t1, t2, · · · , tl ], and ti ∈ Rn is the i-th score vector.
Note that, the vector p̃i is also called the i-th loading vector, and the l also represents the
principal component (PC) number retained in the principal space.

The residual matrix E in residual space is computed as

E = X− X̂ = X− TP̃
T

(4)

In the principle component space, the computed PCs can represent the main changes
of the process. While the latent variables in the residual space characterize the process
noise information.

2.3. The Basic Convolutional LSTM Network

The traditional LSTM network only maintains the data’s temporal dependencies and
omits the data’s spatial correlations. By incorporating the convolution operation into
the LSTM, Shi et al. [36] proposed the convolutional LSTM (CLSTM) to handle both the
temporal dependencies and the spatial correlations of video data.

The CLSTM adopts a convolutional structure to replace the fully connected layer in
the traditional LSTM; therefore, the CLSTM not only owns the LSTMs advantage to mine
the temporal relations of process data but also inherits the CNNs merit to exploit the local
spatial features. Figure 1 gives out the schematic diagram of the CLSTM. The input of the
CLSTM has three portions: the previous memory information, the previous unit’s output,
and the current input. As displayed in Figure 1, the CLSTM consists of an input gate, an
output gate, a forget gate, and a memory unit, which makes the CLSTM take advantage of
the spatiotemporal features of the process data effectively.
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Figure 1. The architecture of the CLSTM network [30,31].

The forget gate abandons unnecessary information selectively, which is formulated as

ft = σ(W f � [ct−1, ht−1, xt] + b f ) (5)

where σ indicates activation function, � is convolution operation, xt indicates input vector
at sample interval t, ct−1 indicates previous information, ht−1 represents previous output
of the CLSTM unit, and W f and b f are respectively the weight and bias of the forget gate.

In general, to selectively pass the information through, the activation function σ is
always chosen as the sigmoid function to convert the input xi into the range (0, 1).

σ(xi) = sigmoid(xi) =
1

1 + e−xi
(6)

The input gate adds new information to the memory unit, where the information is
first determined for updating, and then the alternative information is generated.

it = σ(Wi � [ct−1, ht−1, xt] + bi) (7)
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C̃t= tan h(Wc � [ht−1, xt] + bc) (8)

where it and C̃t are respectively the input gate’s output and the memory unit’s alternative
information, and tanh represents the tangent function.

The memory information Ct is updated as follows:

Ct = ft·Ct−1 + it·C̃t = ft·Ct−1 + it·tan h(Wc � [ht−1, xt] + bc) (9)

where the Ct integrates the previous Ct−1 and current states C̃t to construct the CLSTMs
memory state.

Based on the above computation, the output gate provides the final output.

ot = σ(Wo � [ct, ht−1, xt] + bo) (10)

ht = ot·tanh(Ct) (11)

where ot is the output gate’s output, and ht is the output of the CLSTM at sample interval t.

3. The Developed SCFP Based Feature Extraction Technique
3.1. The SA Method

To figure out the transmission line’s dynamic interactions among original process
variables, the statistics analysis (SA) approach is first employed to exploit the original
variables’ statistical features in the developed SCFP technique. To be specific, in the SA
method, the process operation state is characterized by variables’ different statistics.

For the normal operating dataset X, let the subset Xk indicate a window of samples,
which is formulated as

Xk =


x1(k− w + 1) x2(k− w + 1) · · · xm(k− w + 1)
x1(k− w + 2) x2(k− w + 2) · · · xm(k− w + 2)

...
...

. . .
...

x1(k) x2(k) · · · xm(k)

 (12)

where w represents the window width and k indicates the current time index. The SA
is indeed to calculate the statistics pattern (SP), which contains four statistics: mean,
variance, skewness, and kurtosis. To be specific, the mean of the original process variables
is calculated as

ui =
1
w

w−1

∑
l=0

xi(k− l), i = 1, 2, · · · , m (13)

The second-order statistic is the variance of the original process variables, which is
formulated as

vi =
1
w

w−1

∑
l=0

[xi(k− l)− ui]
2, i = 1, 2, · · · , m (14)

The skewness measures the nonlinearity of original variables, and the kurtosis evalu-
ates the non-Gaussianity of original variables. Specifically, the skewness and kurtosis are
respectively expressed as

γi =

1
w

w−1
∑

l=0
[xi(k− l)− ui]

3

(
1
w

w−1
∑

l=0
[xi(k− l)− ui]

2
)3/2 , i = 1, 2, · · · , m (15)
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κi =

1
w

w−1
∑

l=0
[xi(k− l)− ui]

4

(
1
w

w−1
∑

l=0
[xi(k− l)− ui]

2
)2 − 3, i = 1, 2, · · · , m (16)

In our work, the four statistics ui, vi, γi and κi are first derived from the original
process variables. Then, one SP is set up by arranging these four statistics into a vector, and
the training statistics matrix is finally established by putting together multiple SPs that are
computed from different windows.

3.2. The SCFP Technique

As introduced in Section 2, the PCA cannot grasp the local structure features of
the transmission line data. Motivated by this, to further remove redundant correlation
information from the constructed training statistics matrix, a novel statistics comprehensive
feature preserving (SCFP)-based dimension reduction technology is proposed to mine the
global and local data structure information of the different statistics, which incorporates
the locality structure preserving technique into the PCA model.

Given the transmission line’s normal operating dataset X, a window of samples is
denoted as the data subset Xk according to Equation (12). In our work, the samples in
the data subset Xk are used to calculate a statistics pattern (SP), x̃s(k) which contains four
statistics: mean (ui), variance (vi), skewness (γi), and kurtosis (κi), respectively, according
to the Equations (13)–(16). Based on the four statistics ui, vi, γi and κi calculated from the
data subset Xk of the normal operating dataset X, the SP x̃s(k) at the current time k is then
established by arranging these statistics into a vector, which is formulated as

x̃s(k) = [u1, u2, . . . , um, v1, v2, . . . , vm, γ1, γ2, . . . , γm, κ1, κ2, . . . , κm]
T ∈ Rms×1 (17)

where ms is the number of statistics in the k-th SP x̃s(k).
With the windows moving from the first sample to the last sample in the normal

operating dataset X, a number of ns data subsets Xi, i = 1, 2, . . . , ns are obtained. Through
computing the mean (ui), variance (vi), skewness (γi), and kurtosis (κi) statistics in each
data subset Xi and arranging them according to Equation (17), a number of ns SPs x̃s(i),
i = 1, 2, . . . , ns can be derived. These ns SPs are further normalized to have a zero mean
and a unit standard deviation. More specifically, the i-th SP x̃s(i) is normalized as

xs(i) =
x̃s(i)−mean(X̃S)

std(X̃S)
, i = 1, 2, . . . , ns (18)

where X̃S = [x̃s(1), x̃s(2), · · · , x̃s(ns)]
T indicates the original training statistics matrix,

mean(·) and std(·) respectively indicate the mean and standard deviation operators imple-
mented on the original training statistics matrix X̃S.

Finally, the training statistics matrix XS is constructed in Equation (19) by putting
together the ns normalized SPs computed from different windows.

XS = [xs(1), xs(2), · · · , xs(ns)]
T ∈ Rns×ms (19)

Based on the normalized statistics matrix XS, the PCA is indeed seeking a loading
vector p that can guarantee that the distance among all the data samples in the principal
component space is maximized.

J(p)PCA = max
1
ns

∑ns
i=1 pT(xs(i)−

¯
x s)(xs(i)−

¯
x s)

T
p = maxpTGp (20)

where
¯
xs =

1
ns

∑ns
i=1 xs(i) is the mean value of ns SPs, and G = 1

ns
∑ns

i=1 (xs(i)−
¯
xs)(xs(i)−

¯
xs)

T
.
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From Equation (20), it can be found that the PCA only preserves the global structure
features of the statistics matrix XS while clearing off the redundant correlations. Without
considering the local relationship between different data points, the PCA cannot preserve
the intrinsic geometrical structure of the dataset. For the k near points xs(1), xs(2), . . . , xs(k)
in the original space, the ordering of the corresponding points y(1), y(2), . . . , y(k) in the
low-dimensional space may be destroyed since the PCA ignores these neighborhood
relationships in the projection step. Therefore, to optimally keep the global and local
structure features of the statistics matrix XS, the local structure-preserving framework is
combined with the PCA model in our work.

For the i-th SP xs(i), its nearest neighbors xs(j), j = 1, 2, . . . , K are first searched
to construct the local neighborhood subset Xsub(i) by means of the k-nearest neighbor
approach. Therefore, the acquired neighbor matrix Xsub(i) has the ability to reveal if the
j-th SP xs(j) belongs to the local neighborhood of the xs(i). To be specific, the element Wij
of the similarity matrix W is determined as

Wij =

{
w{xs(i), xs(j)} = exp(−‖xs(i)− xs(j)‖2), i f xs(j) ∈ Xsub(i) or xs(i) ∈ Xsub(j)

0, otherwise
(21)

where w{xs(i), xs(j)} indicates the neighborhood relationship (the similarity) between the
two SPs, xs(i) and xs(j), thus the matrix W can represent the local neighbor relations of the
statistics matrix XS.

The local structure-preserving framework aims for the loading vector p to hold the
local neighbor relations of the statistics matrix XS by minimizing the distances of the
neighbor SPs in the low-dimensional space.

J(p)LSP = min 1
2 ∑ns

i=1 pT(xs(i)− xs(j))Wij(xs(i)− xs(j))Tp
= minpTXs(D−W)XT

s p = minpTXsLXs
Tp

(22)

where L = D−W represents the Laplacian matrix [9,10,21], and D denotes the diagonal

matrix with the i-th diagonal element as Dii =
ns
∑

j=1
Wji, i = 1, 2, · · · , ns.

To exploit the local and global structure features of the statistics matrix during the
dimensionality reduction, the optimization J(p)SCFP of the proposed SCFP technique is
constructed in Equation (23) to derive the optimal loading vector p, which simultane-
ously maximizes the PCAs objective function and minimizes the optimization of the local
structure preserving framework.

J(p)SCFP = max{η J(p)PCA − (1− η)J(p)LSP}
= maxpT{ηG− (1− η)XsLXs

T}p = max
a

pTQp

s. t. pTp = 1
(23)

where the J(p)PCA is utilized to keep the global structure features of the statistics matrix,
and the local structure features are remained by the J(p)LSP. The η tradeoff parameter is
used to balance the optimizations J(p)PCA and J(p)LSP. The matrix Q is calculated as

Q = ηG− (1− η)XsLXs
T (24)

The Equation (23) can be solved by computing the eigenvalue decomposition defined
in Equation (25).

Qp = λp (25)

Suppose p1, p2, · · · , pd are the eigenvectors of the first d largest eigenvalues λ1, λ2, · · · , λd.
Then, the loading matrix P of the SCFP is built by retaining these d eigenvectors
P = [p1, p2, · · · , pd] ∈ Rns×d. These loading vectors are mutually orthogonal, which
can effectively improve the discriminative ability of the SCFP-based dimension reduction
method.
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The number of retained loading vectors d in the PC space is determined based on the
cumulative contribution rate. Specifically, the cumulative contribution rate Rd represents
the ratio of the sum of the first d largest eigenvalues to the sum of all the ms eigenvalues,
which is given out as follows:

Rd =
d

∑
i=1

λi/
ms

∑
j=1

λj (26)

In this paper, the value of d in the SCFP model is selected by the 95% cumulative
contribution rate according to the references [37,38].

Based on the loading matrix P, the statistics matrix Xs is decomposed by the suggested
SCFP model.

Xs = YPT + X̃s (27)

where Y = XsP is the score matrix in the feature space, and X̃s = Xs − YPT indicates the
residual matrix.

When the fault samples become available, the window is shifted forward, and the
fault SP xs( f ) is calculated. The latent significant features yF of the xs( f ) are then extracted
by protecting the xs( f ) feature space.

yF = PTxs( f ) (28)

4. The Enhanced Convolutional LSTM (ECLSTM) Based Fault Diagnosis

Suppose that n f fault samples are gathered, and the snapshot dataset XF =

[xF(1), xF(2), . . . , xF(n f )]
T is set up by these samples. Then, the dataset XF is normal-

ized using the training data. The enhanced feature extraction-based CLSTM fault diagnosis
strategy for the transmission line is revealed in Figure 2. As shown in Figure 2, in the
modeling stage, the developed SCFP model is first established utilizing the normal operat-
ing dataset X, and then the built SCFP model is employed to extract the global and local
statistical features of the C classes historical fault datasets. Finally, the mined historical
global and local statistical features are imported to the ECLSTM network to train the fault
diagnosis model. In the fault diagnosis stage, the constructed SCFP is first adopted to
exploit the global and local statistical features of the fault snapshot dataset XF, and the
trained ECLSTM is applied to classify the extracted global and local statistical features to
recognize the pattern of the snapshot dataset XF. Due to the ECLSTMs virtue in figuring
out the temporal and spatial relations of the extracted global and local statistical features,
the pattern of the fault snapshot dataset can be effectively and accurately identified.

Further on, the implementation of the proposed ECLSTM-based transmission line
fault diagnosis is revealed in Figure 3, which is composed of the ECLSTM model training
and the ECLSTM-based fault recognition. In the ECLSTM model training phase, the correct
label vector is first obtained by importing the multiple historical fault pattern datasets to the
encoding operation cell. Then, the ECLSTM model and fully connected layer cooperatively
transform the global and local statistical features of the historical fault datasets into an
output vector. To be specific, after the operation of the ECLSTM, the fully connected layer
goes on generating the global structure expression of the captured global and local statistical
features. The error, i.e., loss function, is calculated by comparing the estimated output
vector with the correct label vector with the help of softmax cross entropy. According to
the error, the ECLSTMs parameters are adjusted by the Adam optimizer until the preset
value of the fault diagnosis rate is reached. In the ECLSTM-based fault recognition phase,
an output vector is estimated by feeding the snapshot dataset’s global and local statistical
features to the established ECLSTM-based diagnosis model. The achieved output vector
is sequentially converted into a probability vector by means of the softmax layer. At last,
the pattern of the transmission line fault dataset is diagnosed by searching the index of the
probability vector’s largest element.
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The procedures for the ECLSTM-based fault diagnosis model training phase are given
as follows:

(1) Suppose there are C classes fault patterns. The established SCFP feature extraction
model is adopted to capture the historical global and local statistical features of the C fault
pattern datasets. With the help of the ECLSTM and fully connected layer, the extracted
global and local statistical features are transformed into the output vector ŷ ∈ RC×1.

(2) The C fault pattern datasets are encoded to achieve the correct label vector
y = [1, . . . , C] ∈ RC×1 by applying the encoding operation, where the C fault patterns
are represented by different numbers.

(3) The error is calculated by contrasting the output vector ŷ with the correct label
vector y with the aid of the softmax cross entropy, which is computed as

Errorŷ = − 1
C

C

∑
c=1

{
y(c) log

(
eŷ(c)

∑C
i=1 eŷ(i)

)}
(29)

(4) According to the acquired error, the model parameters are adjusted in line with
the Adam optimizer until the preset threshold is attained. More details about the Adam
optimizer are given in the references [4,13,28].

(5) The procedures (1)~(4) are performed iteratively until the fault diagnosis rate
arrives at the given value.

During the fault pattern identification displayed in Figure 3, the established output
vector ŷ containing C real numbers is converted into a probability vector ỹ whose elements
are the probability values, by inputting the vector ŷ into the softmax layer. Based on
Equation (30), the probability vector’s elements are derived and acquired. The index of the
probability vector’s largest element is then hunted to find the output vector’s maximum
probability of remaining with the correct label vector’s specific fault pattern. The searched
index can denote the pattern of the transmission line fault data.

ỹ(i) =
eŷ(i)

C
∑

i=1
eŷ(i)

(30)

To solve the ECLSTMs over-fitting problem for the relatively small training dataset, the
dropout approach is employed to improve the generalization ability of the ECLSTM when
identifying the fault pattern of the snapshot dataset. The goal of the dropout approach
is to abandon the hidden nodes with a particular probability for each iteration and then
incorporate the multiple established submodels into a final model. To be specific, the
essential theory of the dropout approach is formulated in Equation (31). If the probability
vector di is equal to zero, the input node xi will be dropped out.

zj = ∑
i

Wijdixi + bi (31)

The fault recognition phase is similar to the ECLSTM model training phase. After the
global and local statistical features of the snapshot dataset are captured via SCFP, these
global and local statistical features are then imported into the built ECLSTM fault diagnosis
model. At last, the fault pattern of the snapshot dataset is identified by figuring out the
index of the probability vector’s largest element according to Equation (30).

5. The Experiments and Comparisons
5.1. Introduction of the Experimental Data

A benchmark power system is modeled in the MATLAB/Simulink environment [14,39,40]
to simulate the normal operating and multiple fault datasets, where Simscape Electrical
affords a component library to model electronic, mechatronic, and electrical power systems.
The simulated system is widely applied to perform power system studies, which are
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discussed in the literature [14,40]. The simulated power system includes two symmetrical
areas that are connected by two 220 km-long transmission lines, where the various fault
patterns are simulated and studied at the transmission line.

The power system is simulated under normal running and short-circuit fault condi-
tions on the transmission line. A comprehensive normal and fault dataset is constructed to
build the developed ECLSTM-based fault diagnosis model by measuring and collecting
the line voltages and currents of the power system. The sampling interval is 0.001 s, and a
total of 12,000 samples are generated and labeled for twelve types of operating conditions,
which include one normal operating condition and eleven short circuit fault patterns. Thus,
each type of operating condition contains 1000 samples. Before the normalization of trans-
mission line datasets, Gaussian noise with a zero mean and 0.01 variance is introduced to
the monitored variables for the purpose of simulating the actual measurement noise. As
listed in Table 1, the simulated eleven fault patterns are {AG, BG, CG, AB, BC, AC, ABG,
BCG, ACG, ABC, ABCG}, where the symbols A, B, C, and G respectively stand for the
phases A, B, C, and ground. These eleven short circuit fault patterns are classified as double
lines (LL) fault, line to ground (LG) fault, triple lines (LLL) fault, double lines to ground
(LLG) fault, and triple lines to ground (LLLG) fault, where only the LLL and LLLG fault
patterns are symmetric faults and the remaining are asymmetric faults.

Table 1. The description of normal running and eleven fault patterns.

Number Fault Pattern Fault Description

0 NF No fault (normal operation)
1 AG Short fault of line A to ground
2 BG Short fault of line B to ground
3 CG Short fault of line C to ground
4 AB Short fault of line A to line B
5 BC Short fault of line B to line C
6 AC Short fault of line A to line C
7 ABG Short fault of line A and line B to ground
8 BCG Short fault of line B and line C to ground
9 ACG Short fault of line A and line C to ground
10 ABC Short fault in lines A, B, and C
11 ABCG Short fault of lines A, B, and C to ground

To diagnose the fault pattern of the transmission line, the first 500 collected fault
samples are utilized to build the snapshot dataset. And the rest of the 500 fault samples
from the same pattern are regarded as the historical fault dataset. The ECLSTM-based fault
diagnosis model is first trained by feeding the mined historical fault datasets’ global and
local statistical features, which are extracted by the developed SCFP approach, and the
snapshot dataset’s global and local statistical features are then extracted and imported into
the established ECLSTM-based diagnosis model for the purpose of identifying the pattern
of the detected fault.

5.2. Compared Approaches and Effectiveness Evaluation Index

To testify the effectiveness of the proposed ECLSTM-based diagnosis approach, some
traditional and closely related fault diagnosis methods, i.e., the support vector machine
(SVM), the convolutional neural network (CNN), the deep belief network (DBN), and
the long short-term memory (LSTM), are contrasted with the suggested ECLSTM. The
global and local statistical features derived by the constructed SCFP are respectively fed
to the SVM, CNN, DBN, and ELSTM. And these improved fault diagnosis methods are
respectively termed the ESVM, ECNN, EDBN, and ELSTM.

To train the ECLSTM and ELSTM-based diagnosis models, the number of hidden units
is set to 300, the batch size is 64, and the 0.001 learning rate is utilized with the help of
cross-validation. In addition, the optimal model parameters are determined by the Adam
optimizer. The node numbers of the ECNNs three convolution layers are respectively
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selected as 32, 64, and 128 by trial and error, while the neuron numbers in the EDBNs first,
second, and third hidden layers are respectively 500, 300, and 200. Similar to the ECLSTM
and ELSTM, the batch size and the learning rate in the ECNN and EDBN are also chosen
as 64 and 0.001 for fairness. In the ESVM, the Gaussian kernel function is adopted, and
the parameter is set to 600 by the grid search method. In addition, the weight factor of the
ESVM is experientially determined at 50.

To assess the performance of the discussed ECLSTM for transmission line fault diag-
nosis, four performance indices, i.e., the fault diagnosis rate FDR(i), i = 1, 2, . . . , C of fault
samples in the i-th pattern, the average fault diagnosis rate FDRaverage of fault samples in
the total of C patterns, the precision P(i), i = 1, 2, . . ., C for the i-th pattern, and the average
precision, Paverage are employed.

Particularly, the index FDR(i) is defined as

FDR(i) =
Ni(i)

Ni
, i = 1, · · · , C (32)

where Ni(i) denotes the number of correctly diagnosed fault samples for the i-th pattern.
The index FDRaverage expressed in Equation (33) indicates the average value of all the

acquired fault diagnosis rates for the C fault snapshot datasets.

FDRaverage =
1
C

C

∑
i=1

FDR(i) (33)

The precision P(i), i = 1, 2, . . . , C for the i-th pattern is defined as

P(i) =
Ni(i)

(Ni(i) + FPi(i))
(34)

where FPi(i) represents the number of wrongly identified fault samples in the i-th pattern.
The index average precision Paverage expressed in Equation (35) indicates the average

value of all the computed precisions for the C fault snapshot datasets.

Paverage =
1
C

C

∑
i=1

P(i) (35)

5.3. The Comparison of Accuracies for the Diagnosis Methods’ Training Process

The remaining 500 fault samples from each fault pattern are regarded as the historical
fault dataset, i.e., the training dataset. The training process of the fault diagnosis network
stops as the values of the FDR for the eleven training datasets are all above 98.00%. To reveal
the accuracy of the diagnosis network during the training process, the 200 fault samples
randomly selected from the historical fault dataset are adopted to construct a validation
dataset for each short-circuit fault pattern. After the five fault diagnosis models are trained
on the training datasets, the eleven validation datasets’ global and local statistical features
are further inputted into these five trained models to figure out the accuracy of the training
process.

The accuracies (i.e., the values of the FDR) of the ESVM, ECNN, EDBN, ELSTM, and
ECLSTM-based diagnosis networks for the eleven fault patterns during the training process
are revealed in Table 2. In addition, the values of the index FDRaverage for the five diagnosis
models during the training process are also given out. From Table 2, the values of the index
FDRaverage for the ESVM, ECNN, EDBN, ELSTM, and ECLSTM are respectively computed
as 84.23%, 88.55%, 91.27%, 93.86%, and 96.82%. Thus, during the training process, the
ECLSTM-based approach demonstrates the highest accuracy for all eleven fault patterns
among the five approaches. What is more, in comparison with the ESVM, ECNN, EDBN,
and ELSTM, the suggested ECLSTM also exhibits more remarkable diagnosis performance
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to discern the particular validation datasets of the eleven fault patterns in terms of the FDR
values.

Table 2. The accuracies (values of the FDR) of the five fault diagnosis approaches during the training
process.

Fault Pattern ESVM ECNN EDBN ELSTM ECLSTM

AG 84.00% 95.00% 92.00% 93.50% 98.00%
BG 90.50% 87.50% 94.50% 93.50% 94.00%
CG 80.50% 81.00% 98.00% 94.00% 96.00%
AB 74.50% 71.50% 91.00% 87.50% 94.00C
BC 84.00% 98.50% 82.50% 86.50% 98.50%
AC 78.50% 84.50% 89.00% 96.50% 100.00%

ABG 83.50% 90.00% 87.00% 99.00% 96.50%
BCG 88.00% 94.00% 93.50% 99.00% 96.50%
ACG 95.50% 95.00% 100.00% 91.50% 99.50%
ABC 75.00% 90.50% 86.00% 91.50% 97.00%

ABCG 92.50% 86.50% 88.50% 100.00% 95.00%
FDRaverage 84.23% 88.55% 91.27% 93.86% 96.82%

5.4. The Comparison of the Fault Diagnosis Results

(1) Fault diagnosis effectiveness verification of the proposed SCFP based feature
extraction

In order to prove the improvement of the suggested statistics comprehensive feature
preserving (SCFP) technique’s fault diagnosis performance, the SCFP-based feature ex-
traction technique is compared with statistics analysis (SA), principal component analysis
(PCA), and locality-preserving-based methods. In our work, the developed SCFP technique
is combined with the CLSTM classifier to build the ECLSTM method. Similarly, the SA,
PCA, and locality preservation are combined with the CLSTM classifier to respectively
build the SCLSTM, GCLSTM, and LCLSTM approaches. In this way, the fault diagnosis
capabilities of the SCFP, SA, global feature, and local feature-based exaction approaches
can be analyzed.

The fault diagnosis results of the SCLSTM, GCLSTM, LCLSTM, and ECLSTM for
the eleven fault patterns are listed in Tables 3 and 4. According to the values of index
FDR shown in Table 3, the index FDRaverage values for the SCLSTM, GCLSTM, LCLSTM,
and ECLSTM are respectively calculated as 88.36%, 84.45%, 86.09%, and 94.45%. Thus,
the ECLSTM demonstrates the highest value of the index FDRaverage for all eleven fault
patterns. Anyway, in comparison with the SCLSTM, GCLSTM, and LCLSTM, the ECLSTM
also exhibits more remarkable diagnosis performance to discern the eleven fault patterns
in terms of the index FDR values. For example, for the fault pattern AC, the values of the
index FDR for the SCLSTM, GCLSTM, LCLSTM, and ECLSTM are respectively calculated
as 94.80%, 87.20%, 90.60%, and 98.00%, which proves that the ECLSTM owns the highest
value of the index FDR among these four fault diagnosis models. Analogously, according to
the values of precision P displayed in Table 4, the ECLSTM also reveals the highest value of
the index Paverage in comparison with the SCLSTM, GCLSTM, and LCLSTM. Furthermore,
the ECLSTM shows much higher values of precision P than the other three methods in
terms of identifying the eleven fault patterns. In summary, the above experiments prove the
outstanding fault diagnosis performance of the suggested SCFP-based feature extraction
techniques.
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Table 3. The values of the index FDR for the SCLSTM, GCLSTM, LCLSTM, and ECLSTM.

Fault Pattern SCLSTM GCLSTM LCLSTM ECLSTM

AG 89.60% 86.50% 83.80% 95.60%
BG 85.00% 82.80% 87.20% 90.80%
CG 90.00% 87.60% 85.40% 92.20%
AB 86.80% 84.40% 83.20% 91.80%
BC 93.60% 86.40% 96.40% 97.40%
AC 94.80% 87.20% 90.60% 98.00%

ABG 85.20% 77.20% 83.80% 93.40%
BCG 91.60% 85.60% 91.40% 94.80%
ACG 93.60% 90.80% 85.60% 98.20%
ABC 85.20% 82.00% 78.00% 92.60%

ABCG 87.60% 78.40% 81.60% 94.20%
FDRaverage 88.36% 84.45% 86.09% 94.45%

Table 4. The values of the index P for the SCLSTM, GCLSTM, LCLSTM and ECLSTM.

Fault Pattern SCLSTM GCLSTM LCLSTM ECLSTM

AG 87.00% 85.50% 83.80% 95.79%
BG 90.00% 84.80% 86.20% 93.80%
CG 85.20% 83.40% 85.80% 95.64%
AB 88.80% 81.00% 82.40% 94.25%
BC 85.80% 85.00% 90.60% 94.20%
AC 87.20% 86.80% 83.40% 92.45%

ABG 86.40% 83.20% 84.80% 95.50%
BCG 89.20% 87.20% 86.20% 93.86%
ACG 90.40% 88.40% 84.80% 95.34%
ABC 88.20% 85.80% 87.20% 95.07%

ABCG 86.00% 84.00% 85.80% 93.27%
Paverage 87.65% 85.01% 85.54% 94.47%

(2) Fault diagnosis effectiveness verification of the developed ECLSTM based di-
agnosis model

After the above-introduced eleven fault patterns are detected, the fault diagnosis rates
of the ESVM, ECNN, EDBN, ELSTM, and ECLSTM for these eleven fault patterns are
figured out and exhibited in Figures 4 and 5. Specifically, Figure 4 gives out the confusion
matrixes of these five fault diagnosis approaches. From Figure 4, the numbers in the
dark orange blocks denote the numbers of accurately diagnosed fault samples, while the
numbers in the shallow orange blocks stand for the numbers of mistakenly diagnosed
fault samples. The orange block is darker, the number of fault samples is more. As
displayed in Figure 4a–d, the numbers in the shallow orange blocks of the sixth rows for
the ESVM, ECNN, EDBN, and ELSTM are much greater than those in Figure 4e of the
ECLSTM. This demonstrates that more fault data points pertaining to the fault AC are
mistakenly identified by the ESVM, ECNN, EDBN, and ELSTM. Moreover, in comparison
with Figure 4e, much more shallow orange blocks appear in Figure 4a–d. This phenomenon
means that the ESVM, ECNN, EDBN, and ELSTM inaccurately discern much more fault
data points for these eleven faults than the ECLSTM. To implement more graphical analysis
and comparison, the line charts of the fault diagnosis rates for the five approaches under the
eleven fault patterns are exhibited in Figure 5. As revealed in Figure 5, the fault diagnosis
rates of the ECLSTM are significantly improved compared with those of the ESVM, ECNN,
EDBN, and ELSTM. To be specific, the ECLSTMs values of the index FDR for the eleven
fault patterns are all above 90.00%, and the fault diagnosis rate even reaches 98.20%. As
displayed in Figure 5, the great differences between the fault diagnosis rates of the five
approaches prove the superiority of the ECLSTM for implementing transmission line fault
diagnosis.
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The fault diagnosis rates of the ESVM, ECNN, EDBN, ELSTM, and ECLSTM for the
eleven fault patterns are further quantized in Table 5. In addition, for the sake of fairness,
the values of the index FDRaverage for the five diagnosis models on the eleven fault patterns
are also exhibited in Table 5. From Table 5, the values of the index FDRaverage for the ESVM,
ECNN, EDBN, ELSTM, and ECLSTM are respectively computed as 77.84%, 82.87%, 84.60%,
86.67%, and 94.45%. Thus, the ECLSTM-based identification approach demonstrates the
largest value of the index FDRaverage for all eleven fault patterns among the five approaches,
which testifies to the superiority of the ECLSTMs overall fault recognition effectiveness.
What is more, in comparison with the ESVM, ECNN, EDBN, and ELSTM, the suggested
ECLSTM also exhibits more remarkable diagnosis performance to discern the particular
fault of the eleven fault patterns. For example, the index FDRs value for the fault pattern
BCG is 94.80% for the ECLSTM, in contrast to only 88.80% for the ELSTM, 85.80% for
the EDBN, 84.60% for the ECNN, and 76.80% for the ESVM. Analogously, the value of
the index FDR for the fault pattern AB is 91.80% for the ECLSTM, in comparison with
only 85.60% for the ELSTM, 85.00% for the EDBN, 74.20% for the ESVM, and even 68.20%
for the ECNN. It can be concluded that the presented ECLSTM approach is excellent for
recognizing the short-circuit fault patterns of the transmission line. This is because the
global and local statistical features extracted by the ECLSTM promote the improvement of
the transmission line’s fault identification task. To facilitate further visualized analysis, the
values of the index FDR for the five algorithms under the eleven fault patterns are plotted
as the histogram in Figure 6, which also proves the outstanding recognition performance of
the ECLSTM over the ESVM, ECNN, EDBN, and ELSTM for discerning all the eleven short
circuit faults.

Table 5. The values of the index FDR for the five fault diagnosis approaches.

Fault Pattern ESVM ECNN EDBN ELSTM ECLSTM

AG 80.40% 91.00% 89.80% 86.60% 95.60%
BG 85.00% 83.20% 87.80% 87.20% 90.80%
CG 68.40% 75.40% 89.20% 90.80% 92.20%
AB 74.20% 68.20% 85.00% 85.60% 91.80%
BC 83.20% 94.20% 77.20% 81.80% 97.40%
AC 76.20% 79.40% 82.80% 85.60% 98.00%

ABG 73.60% 82.20% 85.20% 87.20% 93.40%
BCG 76.80% 84.60% 85.80% 88.80% 94.80%
ACG 86.00% 88.60% 88.60% 91.60% 98.20%
ABC 68.00% 88.00% 73.40% 79.00% 92.60%

ABCG 84.40% 76.80% 85.80% 89.20% 94.20%
FDRaverage 77.84% 82.87% 84.60% 86.67% 94.45%

According to the confusion matrices given in Figure 4, the values of the index precision
P for the ESVM, ECNN, EDBN, ELSTM, and ECLSTM are also listed in Table 6. Anyway,
the values of the index Paverage for the five diagnosis models are also exhibited in Table 6.
From Table 6, the values of the index Paverage for the ESVM, ECNN, EDBN, ELSTM, and
ECLSTM are respectively computed as 78.13%, 82.96%, 84.60%, 86.76%, and 94.47%. Thus,
the ECLSTM-based identification approach demonstrates the largest value of the index
Paverage for all eleven fault patterns, which testifies the superiority of the ECLSTMs overall
fault recognition effectiveness. In comparison with the ESVM, ECNN, EDBN, and ELSTM,
the suggested ECLSTM displays more remarkable diagnosis performance to discern the
particular fault of the eleven fault patterns. For example, the index precision’s value of
the fault pattern CG is 95.64% for the ECLSTM, in contrast to only 89.72% for the ELSTM,
87.07% for the ECNN, 86.94% for the EDBN, and 78.98% for the ESVM. Analogously,
the value of the index precision for the fault pattern ABG is 95.50% for the ECLSTM, in
comparison with only 86.16% for the ECNN, 85.83% for the ELSTM, 81.30% for the EDBN,
and even 76.03% for the ESVM. It can be concluded that the presented ECLSTM approach
is excellent for recognizing the short-circuit fault patterns of the transmission line.
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Figure 6. The identification results of the ESVM, ECNN, EDBN, ELSTM, and ECLSTM for the eleven
fault patterns.

Table 6. The values of the index precision P for the five fault diagnosis approaches.

Fault Pattern ESVM ECNN EDBN ELSTM ECLSTM

AG 73.63% 82.13% 85.69% 86.77% 95.79%
BG 79.29% 80.15% 87.62% 86.17% 93.80%
CG 78.98% 87.07% 86.94% 89.72% 95.64%
AB 75.25% 83.17% 82.05% 86.29% 94.25%
BC 68.65% 80.93% 79.26% 89.30% 94.20%
AC 78.23% 81.35% 85.89% 87.53% 92.45%

ABG 76.03% 86.16% 81.30% 85.83% 95.50%
BCG 80.00% 83.76% 84.28% 84.57% 93.86%
ACG 82.69% 85.52% 87.20% 85.61% 95.34%
ABC 83.95% 83.97% 84.95% 89.37% 95.07%

ABCG 82.75% 78.37% 85.46% 83.21% 93.27%
Paverage 78.13% 82.96% 84.60% 86.76% 94.47%

(3) Fault diagnosis effects of the proposed ECLSTM under different noise environ-
ments

To further verify the fault diagnosis effects of the proposed ECLSTM-based model
under different noise environments, Gaussian noise with a zero mean and different vari-
ances is introduced to the monitored variables. The specific values of Gaussian noise’s
different variances are set to be 0.1, 0.01, 0.001, and 0.0001 by experience. In this way,
the ECLSTMs fault diagnosis effects under different noise environments are tested and
displayed in Tables 7 and 8.
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Table 7. The values of the index FDR for the ECLSTM under different noise environments.

Fault Pattern Variance (0.1) Variance (0.01) Variance
(0.001)

Variance
(0.0001)

AG 93.40% 95.60% 97.00% 97.80%
BG 87.80% 90.80% 92.400% 91.60%
CG 89.80% 92.20% 94.200% 93.00%
AB 91.60% 91.80% 92.00% 93.20%
BC 95.60% 97.40% 98.400% 97.80%
AC 95.40% 98.00% 99.20% 100.00%

ABG 91.40% 93.40% 94.80% 96.40%
BCG 93.40% 94.80% 96.20% 97.00%
ACG 94.40% 98.20% 99.60% 99.60%
ABC 89.20% 92.60% 94.00% 96.00%

ABCG 90.80% 94.20% 95.00% 96.40%
FDRaverage 92.07% 94.45% 95.71% 96.25%

Table 8. The values of the index precision P for the ECLSTM under different noise environments.

Fault Pattern Variance (0.1) Variance (0.01) Variance
(0.001)

Variance
(0.0001)

AG 94.40% 95.79% 96.40% 99.80%
BG 89.40% 93.80% 94.20% 95.60%
CG 93.40% 95.64% 97.40% 96.00%
AB 90.40% 94.25% 94.40% 96.80%
BC 91.20% 94.20% 96.60% 96.00%
AC 88.60% 92.45% 94.60% 96.20%

ABG 95.00% 95.50% 98.20% 98.20%
BCG 89.00% 93.86% 95.20% 97.80%
ACG 91.00% 95.34% 97.20% 99.40%
ABC 94.80% 95.07% 97.60% 96.00%

ABCG 91.00% 93.27% 94.80% 93.80%
Paverage 91.65% 94.47% 96.05% 96.87%

To be specific, Table 7 lists the ECLSTMs FDR and FDRaverage values, and Table 8
exhibits the ECLSTMs indices P and Paverage values for the eleven fault patterns, with
the noise variance varying from 0.1 to 0.0001. When the value of noise variance is 0.1,
which is the largest in our experiment, the ECLSTM achieves the worst fault diagnosis
performance as the values of the FDRaverage and Paverage are both the smallest, i.e., 92.07%
and 91.65%, respectively. However, the ECLSTMs values of FDRaverage and Paverage at the
largest noise variance environment can be acceptable because they are both above 91.00%.
With the decrease in noise variance, the ECLSTMs fault diagnosis effect becomes better
and better. However, when the noise variance decreases from 0.001 to 0.0001, the diagnosis
effectiveness of the ECLSTM improves slightly because the FDRaverage only varies from
95.71% to 96.25% and the Paverage only increases from 96.05% to 96.87%.

6. Conclusions

A novel ECLSTM fault diagnosis strategy based on the SCFP scheme is developed
to identify the fault in the transmission line. To our best knowledge, we are the first to
incorporate the global and local statistical feature extraction technique into the CLSTM to
diagnose the transmission line’s fault. The other two contributions are expressed below.
Firstly, a novel SCFP algorithm is proposed to deal with the dynamic coupling properties
and mine the global and local structure features of the transmission line data. To be specific,
the SA method is first applied to tackle the dynamic coupling properties of the transmis-
sion line by calculating multiple statistical features of the original process data. Then, the
CFP-based dimension reduction technique is further developed to maintain the global and
local structure information of computed multiple statistics during feature extraction by
integrating the locality structure preservation approach into the PCA model. Secondly, the
troublesome problem of identifying the fault in the transmission line is addressed. After
the global and local statistical features of the snapshot dataset are caught by the estab-
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lished SCFP technique, an ECLSTM-based fault diagnosis method is suggested to classify
these statistical features by considering the ECLSTMs capability to tackle the temporal
dependencies and spatial correlations of the mined global and local statistical features. The
detailed experiments certify the excellent fault diagnosis effect of the presented SCFP-based
ECLSTM fault recognition strategy to diagnose the transmission line fault.
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Abbreviations

SA statistics analysis
SCFP statistics comprehensive feature preserving
CFP comprehensive feature preserving
PCA principal component analysis
ICA independent component analysis
LSTM long short-term memory
ELSTM enhanced feature extraction based LSTM
CLSTM convolutional LSTM
ECLSTM enhanced feature extraction based CLSTM
CNN convolutional neural network
ECNN enhanced feature extraction based CNN
LG line to ground
LL line-to-line
LLG double lines to ground
LLL triple lines
LLLG triple lines to ground
PC principal component
SP statistics pattern
SVM support vector machine
ESVM enhanced feature extraction based SVM
DBN deep belief network
EDBN enhanced feature extraction based DBN
FDR fault diagnosis rate
NF no fault (normal operation)
AG short fault of line A to ground
BG short fault of line B to ground
CG short fault of line C to ground
AB short fault of line A to line B
BC short fault of line B to line C
AC short fault of line A to line C
ABG short fault of line A and line B to ground
BCG short fault of line B and line C to ground
ACG short fault of line A and line C to ground
ABC short fault of line A, line B and Line C
ABCG short fault of line A, line B and Line C to ground
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Nomenclature

X original high-dimensional dataset
S covariance of the datasets X
D diagonal matrix
λ̃1 > λ̃2 > . . . > λ̃rank(X) decreasing order eigenvalues of matrix S
P̃ loading matrix of PCA
T score matrix of PAC
λ̃1 > λ̃2 > . . . > λ̃l first l largest eigenvalues
p̃i the i-th loading vector
ti the i-th score vector
E residual matrix in residual space
ft forget gate of CLSTM
σ activation function of CLSTM
xt input vector
ct−1 previous information
ht−1 previous output of the CLSTM
W f weight of the forget gate
bf bias of the forget gate
it input gate’s output
C̃t memory unit’s alternative information
tanh tangent function.
Ct memory information
ot output gate’s output
ht output of the CLSTM at sample interval
Xk a window of samples
w window width
SA calculate statistics pattern
k current time index
ui mean of the original process variables
vi variance of the original process variables
γi skewness of the original process variables
κi kurtosis of the original process variables
Xk the data subset
x̃s(k) statistics pattern (SP)
k current time index
ms number of the statistics
ns The number of SP
X̃S original training statistics matrix
XS normalized statistics matrix
¯
x s mean value of ns SPs
mean(·) mean deviation operators implemented on the original

training statistics matrix
std(·) standard deviation operators implemented on the original

training statistics matrix
Xsub(i) local neighborhood subset
xs(i) the j-th SP
W similarity matrix
Wij element of the similarity matrix W
L Laplacian matrix
η tradeoff parameter
P loading matrix of the SCFP
Rd cumulative contribution rate
Y score matrix in the feature space
X̃s residual matrix
xs( f ) fault statistics pattern
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yF latent significant features
XF snapshot dataset
ŷ output vector
y correct label vector
ỹ probability vector
P(i), i = 1, 2, . . . , C precision for the i-th pattern
Paverage average precision
FDR fault diagnosis rate
FDRaverage average value of all the acquired fault diagnosis rates
FPi(i) the number of wrongly identified fault samples the i-th pattern.
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