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Abstract: Traditional methods for identifying gear faults typically require a substantial number
of faulty samples, which in reality are challenging to obtain. To tackle this challenge, this paper
introduces a sophisticated approach for intelligent gear fault identification, utilizing discrete wavelet
decomposition and an enhanced convolutional neural network (CNN) optimized for scenarios
with limited sample data. Initially, the features of the sample signal are extracted and enhanced
using discrete wavelet decomposition. Subsequently, the refined signal is transformed into a two-
dimensional image through a Markov transition field, preparing it for improved two-dimensional
CNN training. Finally, the refined network model is applied to assess the gear fault dataset, achieving
a training accuracy of 97% and a classification accuracy of 88.33%. This demonstrates the method’s
feasibility and effectiveness in identifying gear faults with limited sample data.

Keywords: fault detection; improved neural network; wavelet analysis; small samples

1. Introduction

With advancements in manufacturing capabilities, mechanical equipment has evolved
to become more intricate. Gears, serving as essential elements in transmitting motion and
power, are ubiquitous in mechanical configurations. The prevalence of gear faults within
these systems can, if not identified promptly, inflict extensive damage on the machinery,
leading to potential safety hazards and significant property losses. Hence, the development
of intelligent methodologies for gear fault detection and diagnosis that employ various
advanced deep-learning algorithms without necessitating equipment disassembly is of
paramount importance for the health management of mechanical systems [1,2].

Contemporary applications of wavelet analysis and image diagnostic methods have
demonstrated remarkable accuracy in classifying gear faults, highlighting their signifi-
cance in the field of intelligent gear fault identification [3]. The image diagnostic method,
which is a crucial technique, enables the identification and classification of faults through
deep learning [4]. Several scholars have made significant contributions to research in this
field. For example, Jin et al. proposed a novel fault diagnosis method based on image
recognition. This method involves processing the vibration signals of gears using wavelet
packet bispectrum analysis (WPBA) to obtain bicoherence textures and extracting features
from them. Finally, support vector machine (SVM) is employed to identify gear faults and
their locations, achieving precise detection of gear faults in fiber manufacturing lines [5].
Li et al. collected normal vibration signals and faulty vibration signals from wind power
transmission gearboxes, extracted image features from the processed data, and utilized
an enhanced artificial immune algorithm for fault recognition, resulting in a 5% increase
in fault recognition accuracy [6]. Additionally, Tang et al. designed a dual-channel CNN
method based on compressed sensing (CS), utilizing non-contact measurements of thermal
imagery and acoustic signals from mobile devices. This approach ensures precise and intel-
ligent diagnosis of common gearbox faults, significantly improving the diagnostic accuracy
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of industrial helical gearboxes [7]. Liang et al. proposed a rolling bearing fault diagnosis
method based on ICEEMDAN, utilizing the Hilbert transform to convert IMF components
from one-dimensional time–domain signals into two-dimensional time–frequency–domain
images. Subsequently, they employed a ResNet network that incorporated the attention-
based attention mechanism (CBAM) structure for precise fault feature extraction. This
approach yielded an accuracy rate that was 7–12% higher than that achieved with other
traditional network models [8].

However, the methods aforementioned predominantly rely on conventional deep-
learning methodologies, necessitating extensive fault datasets as training samples to attain
optimal recognition accuracy [9]. Nonetheless, acquiring a plethora of fault data and sig-
nals is inherently challenging in real-world scenarios, and the inherent background noise
complicates these data signals even further. Consequently, the practical application of
deep-learning methodologies in real-world production scenarios is restricted. To counter-
act this limitation, researchers have introduced small-sample learning methodologies to
address the diminishing accuracy of traditional deep-learning models in scenarios plagued
by insufficient data availability [10]. Innovations in network structure and learning pro-
cesses have been introduced to efficiently identify the networks under these circumstances.
The implementation of small-sample learning methodologies mitigates the constraints
induced by inadequate data availability and background noise, eventually enhancing the
performance of the fault identification system. For example, Wang et al. proposed a fault
diagnosis method based on the combination of a new dual-stage attention-based recurrent
neural network (DA-RNN) and depth residual dispersion self-calibration convolution
network (SC-ResNeSt). To address the issue of the traditional convolution layers lacking
a dynamic receptive field, self-calibrated convolution modules were introduced on the
basis of the distraction network (ResNeSt), and a new network model, SC-ResNeSt, was
established [11]. Chen et al. proposed an adaptive multi-channel residual shrinkage net-
work (AMC-RSN), which extracts as many features as possible by constructing an adaptive
multi-channel network. They also incorporated the Meta-ACON activation function before
the fully connected layer, which activates neurons based on the model’s output to achieve
higher recognition accuracy under conditions of multiple faults and strong noise [12].
Su et al. introduced a data reconstruction hierarchical recursive meta-learning (DRHRML)
method, illustrating significant efficacy in diagnosing small-sample bearing faults under
varying operating conditions [13]. Another study by Chen et al. focused on constructing
an innovative deep convolutional autoencoder neural network capable of autonomously
learning different features of spectral spatial data using multiple convolutional kernels [14].
Some researchers addressed the issue of network overfitting by transferring data features
or utilizing data augmentation methods to simultaneously increase the quantity of data
available for network learning and reduce overfitting. Huang et al. proposed a deep multi-
source transfer learning model that combines maximum mean discrepancy (MMD), local
maximum mean difference (LMMD), and triplet loss for alignment. This model achieved
an accuracy of over 95% in four different operating conditions of the Paderborn bearing
fault dataset, making it suitable for bearing fault diagnosis under various conditions [15].
Li et al. presented a novel approach for planetary gear fault diagnosis based on intrinsic
feature extraction and deep transfer learning, enabling the diagnosis of planetary gear
faults [16]. Krizhevsky et al. applied random cropping of 224 × 224 patches from original
images, horizontal flipping, and PCA color augmentation to enhance the data and reduce
overfitting during neural network training, resulting in a 1% decrease in the model’s error
rate [17].

Despite the advancements in gear fault diagnosis with limited samples, there remains
a necessity for improvements in recognition accuracy and operational efficiency. To address
these concerns, this study introduces an innovative small-sample learning approach for
the recognition and classification of gear faults. Initially, a convolutional neural network
(CNN) is utilized to exploit the two-dimensional characteristics of gear faults, aiming to
attain elevated recognition rates. To augment recognition accuracy in unstable conditions,
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wavelet decomposition and reconstruction techniques are employed to amplify the com-
plexity of the sample information features, thereby facilitating diverse learning within the
network, enhancing its resilience, and ensuring optimal performance in intricate environ-
ments. Moreover, to rectify the dimensional incongruity between the one-dimensional
vibrational signal and the two-dimensional image neural network, a Markov variation field
is deployed to convert the vibrational signal into a two-dimensional image representation.
To surmount the challenges posed by limited data in small-sample learning scenarios, an
image enhancement technique is implemented to augment the dataset, thereby ensuring
exhaustive network training. Finally, we utilize the improved convolutional neural network
to conduct comparative experiments on the test dataset, achieving high recognition accu-
racy. This approach effectively tackles the challenges of limited sample data in real-world
working conditions and the influence of background noise on recognition accuracy during
actual operation. The results demonstrate that our proposed method outperforms other
small-sample recognition techniques in terms of diagnostic performance, confirming its
feasibility and effectiveness in gear fault detection.

2. Key Theories and Techniques
2.1. Wavelet Decomposition

Wavelet transformation rectifies the shortcomings of Fourier decomposition in analyz-
ing non-stationary time series by replacing the sinusoidal waves of Fourier decomposition
with a collection of diminishing orthogonal bases. This substitution enables the effective
capture of abrupt alterations and non-stationary components within a sequence [18,19].
Gear vibration signals, which are vulnerable to noise disruption throughout the acquisition
phase [20], exhibit non-stationarity and irregular variances in the time domain. Such noise
disruptions can be alleviated through the meticulous decomposition and reconstruction
facilitated by wavelet transformation. The discrete wavelet transform (DWT) is distin-
guished by non-redundant decomposition and precise reconstruction, which facilitate the
separation of frequency components in gear fault vibration signals and, consequently,
provide a comprehensive representation of fault characteristics [21,22]. DWT analyzes high-
frequency signals and low-frequency signals using wavelet functions (high-pass filters) and
scaling functions (low-pass filters). In this study, the multi-level Daubechies wavelet filter
is employed, decomposing the time series signal into high-frequency detail signals through
the high-pass filter and low-frequency approximation signals through the low-pass filter.
To address the challenge of gear fault recognition in small-sample scenarios, we selected
the Daubechies 8 wavelet bases for two compelling reasons. First, its orthogonality ensures
the conservation of signal energy, which is a critical factor in the extraction of information
from gear vibration signals. Second, the Daubechies 8 wavelet bases functions possess
tight support in the time domain, rendering them highly suitable for scrutinizing local
signal features. This characteristic proves instrumental in the detection of various gear
faults based on vibration signals. By executing profound decomposition using DWT, the
low-frequency signals derived from the preliminary low-pass filter decomposition can
undergo further segmentation through these two filters, thus enriching the signal quantity.
The DWT decomposition process is articulated as per Equation (1):

xa,L[n] =
K−1
∑

k=0
xa−1,L[2n− k]g[k]

xa,H [n] =
K−1
∑

k=0
xa−1,L[2n− k]h[k]

(1)

In this equation, xa,L represents the low-frequency signal at layer a, xa,H denotes the
high-frequency signal at layer a, g[k] is the low-pass filter, and h[k] is the high-pass filter.
When a signal of length N is subjected to DWT decomposition, it ultimately yields a low-
frequency signal and multiple high-frequency signals. These decomposed signals have
varying lengths, but their sum remains N. To harmonize the lengths of the decomposed
signals with the original one, hierarchical extraction of each level’s signal is necessary
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succeeded by a reconstruction that matches the original signal. The reconstruction formula
is as follows:

xa−1 =
+∞

∑
k=−∞

(xa,L[k]·g[2k− n] + xa,H [k]·h[2k− n]) (2)

Wavelet energy elucidates the energy distribution and crucial characteristics of vibra-
tion signals across various frequency bands [23] and is suitable for classification efforts.
This energy is computed by summing the squares of the decomposed signal coefficients. To
understand the contribution of each decomposition level to the total energy, the wavelet
energies at each level are quantified, and their proportional energy with respect to the total
energy is then calculated using the following formula:

w =

m
∑

j=1
aj

2

n
∑

i=1

m
∑

j=1
aij

2
(3)

In this equation, w represents the matrix of wavelet energy percentages, n corresponds
to the number of signals discerned post-wavelet decomposition that is equivalent to the
summation of decomposition levels and one, m denotes the length of each signal post-
wavelet decomposition, and a characterizes the matrix of signals discerned after wavelet
decomposition. The percentage of wavelet energy indicates the distribution of critical
features in the gear vibration signal and serves as a fundamental criterion for weight
classification [24].

2.2. Markov Transition Field

The Markov transition field (MTF) acts as a mediator in signal recognition by convert-
ing the one-dimensional gear vibration signal into a two-dimensional representation to
accentuate its attributes [25,26]. MTF, which is a probabilistic transition model, categorizes
a time series into Q quantile bins, depicting Q states of the sequence. Every value in the
sequence is assigned to its respective quantile bin. Utilizing a first-order Markov chain,
transition probabilities of each value are calculated, allowing for the formulation of a Q×Q
Markov matrix.

w =


w11 w12 · · · w1Q
w21 w22 · · · w2Q

...
...

. . .
...

wQ1 wQ1 · · · wQQ


wij = p

{
xt ∈ qi

∣∣xt−1 ∈ qj
}

(4)

In this equation, qi and qj represent the state of a value x in the time series at moments
t and t− 1, respectively; hence, wij represents the probability that a point x currently in
state qi will transition to state qj. Given the memoryless nature of a Markov chain, the
deduced transition matrix is solely contingent on the preceding state, causing a subsequent
loss of invaluable data. To mitigate this information loss, this study extends the matrix w to
the Markov transition field M. Instead of segregating the time series into quantile bins, the
dataset is segmented directly into Q bins along the temporal axis with bins corresponding
to timestamps i and j being represented as qi and qj, respectively. Mij depicts the transition
probability from qi to qj, represented through the ensuing matrix:

M =

 wij
∣∣x1 ∈ qi, x1 ∈ qj · · · wij

∣∣x1 ∈ qi, xn ∈ qj
...

. . .
...

wij
∣∣xn ∈ qi, x1 ∈ qj · · · wij

∣∣xn ∈ qi, xn ∈ qj

 (5)
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By deriving the Markov transition matrix M from the time series signal, matrix ele-
ments can be employed as pixels to metamorphose the one-dimensional time series signal
into a two-dimensional image using Matlab’s graphic capacities. Figure 1 showcases the
bidimensional image emanated from the time series signal post-transformation via the
Markov transition field.
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Figure 1. Transformation of a one-dimensional time series signal (a) into a two-dimensional image (b).

2.3. Improved Convolution Neural Network
2.3.1. Improvement of Network Structure

With years of advancements, the convolutional neural network (CNN) has made
significant progress in the fields of image and video processing thanks to improvements in
computational power [27]. This paper employs a CNN architecture that builds upon the
classical VGG network structure, which includes convolutional, activation, and pooling
layers. Additionally, it incorporates BN (batch normalization) layers [28] and dropout
layers [29]. The customized architecture is illustrated below.

In Figure 2, each convolutional layer aggregates multiple convolutional units with
every unit endowed with a convolutional kernel or filter. The calculation for each unit is
delineated as follows:

f ilter = WX + B (6)

In this equation, W represents the weight matrix of the convolutional kernel, X sym-
bolizes the image matrix, and B stands for the bias matrix. The kernel transverses the image
from left to right with a prescribed stride, computing a feature value at each interval to
construe a new image or feature map drawn from the original image. During the CNN
training phase, the input data distribution in each layer may oscillate due to alterations in
the antecedent layer’s parameters, intensifying the complexity and resource demands for
tuning hyperparameters [30]. To counteract this, a BN layer is proposed, formulated as:{

yx = BNγ,β(ax)
}

1
m

m
∑

x=1
ax → µB //mini-batch mean

1
m

m
∑

x=1
(ax−µB)

2 → σ2
B // mini-batch variance

ax−µB√
σ2

B+ζ
→ âx // normalize

BNγ,β(ax) ≡ γâx + β→ yx // scale and shift

(7)
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Figure 2. Improved convolution neural network structure.

In the equation, γ is the scaling factor that calibrates the input, while β serves as the
offset factor that shifts the input accordingly. The rectified image data are then channeled
through a nonlinear activation function f (x), retaining pivotal features and mitigating the
computational burden of the network by nullifying inconsequential features. Herein, the
activation layer employs the ReLU (rectified linear unit) function [31] expressed as:

f (x) =
{

max(0, x), x >= 0
0, x < 0

(8)

Subsequent to the activation layer, the output undergoes further refinement through a
pooling layer that filters feature data, diminishes image dimensions, and bolsters computa-
tional efficiency. This layer scans the image with a 2 × 2 pooling kernel and a stride of 2
and selects the paramount value from every quadruplet of points in the image, resulting in
an image with halved dimensions.

To harness the deep-learning advantages of CNNs, multiple rounds of feature extrac-
tion are performed on the original image [32]. After passing through several layers of
learning, the 2D feature maps obtained from the convolutional process are transformed
into a flattened 1D matrix format using fully connected layers. To mitigate the risk of
rapid parameter descent, which could lead to the loss of valuable feature information and
address non-linearity issues during the learning process, this study incorporates three
fully connected layers for dimensionality reduction. The fully connected layer operates
in a manner similar to the convolutional layer with the distinction that the resulting data,
after scanning the image, are organized in a 1D matrix format. Furthermore, to optimize
the CNN, dropout layers are introduced within the fully connected layers. By randomly
excluding redundant information, dropout helps mitigate overfitting and enhances the
accuracy of the model.

2.3.2. Adjust Network Parameters

To facilitate deep feature learning from the small-sized original input image, this paper
employs a convolutional layer configuration in which all convolutional kernels scan and
traverse the output image of the previous layer with a step size of 1. Simultaneously, to
enhance the extraction of edge information, the adaptive zero-padding method is utilized
to ensure that the image’s dimensions (length and width) remain unchanged after each
convolutional layer operation. Drawing from insights gained from previous networks
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with outstanding performance and considering the specific characteristics of the current
gear vibration signal dataset, we have meticulously optimized and adjusted the parame-
ters of the convolutional kernels in the four convolutional layers. These parameters are
now definitively set as 5 × 5 × 16, 3 × 3 × 64, 3 × 3 × 128, and 3 × 3 × 256, respec-
tively. Figure 3 illustrates the size changes of a grayscale image with initial dimensions of
332 × 332 after passing through a convolutional neural network.
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2.3.3. Optimize Network Weights

The convolutional operations generate new images that symbolize the visual infor-
mation extracted by each convolutional kernel. After their aggregation, these images are
relayed to subsequent layers for advanced processing, culminating in the final, fully con-
nected layer that ascertains the predicted class probabilities. This progression is referred to
as the forward propagation of the CNN. To recalibrate the network weights across layers,
backward propagation is executed that involves weight and bias adjustments. This study
utilizes the cross-entropy loss function (CELF) [33] to calculate the loss value with the
Adam optimizer orchestrating the network weight updates. The computation of the CELF
is as follows:

L =
1
N ∑

i
Li = −

1
N ∑

i

M

∑
c=1

yic log(pic) (9)

In this equation, M represents the total number of classes. The indicator function yic is
assigned a value of 1 when the true class of sample i aligns with c; otherwise, it takes on a
value of 0. The predicted probability pic signifies the likelihood of sample i being classified
under class c. Following the forward propagation of the neural network, probabilities
corresponding to each class are determined. To calculate the loss value, which quantifies
the deviation between the predicted probabilities and the actual labels, the cross-entropy
loss function (CELF) is utilized. The Adam optimizer, which is well-known for its effec-
tiveness, is employed to update the network weights with the aim of minimizing the loss
value indicated by the CELF. The algorithm for updating via the Adam optimizer unfolds
as follows:

sdw = β1sdw + (1− β1)dw, sdb = β1sdb + (1− β1)db
rdw = β2rdw + (1− β2)dw2, rdb = β2rdb + (1− β2)db2

s1 = sdw
1−β1

t

r1 = rdw
1−β2

t

(10)

In the equation, sdw and sdb represent the weight update and bias update for first-order
moment estimation, respectively, rdw and rdb represent the weight update and bias update
for first-order moment estimation, respectively, β1 and β2 are hyperparameters controlling
the decay rate of the moving averages, and s1 and r1 are bias correction formulas to prevent
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very small gradients at the beginning of the optimization. Based on Equation (11), the
gradient update algorithm for Adam can be summarized as follows:

θt+1 = θt −
η√

r1 + ε
s1 (11)

In the equation, θt denotes the gradient at moment t, and η is the step size, generally
taken to be 0.001. ε is a very small constant designed to prevent the denominator from
being zero. In this paper, we introduce a learning rate decay strategy to optimize the
network training process, which increases the gradient and reduces the experimental error
by decaying the learning rate of Adam’s optimizer in equal steps.

3. Fault Diagnosis Method of Gear
3.1. Training Convolution Neural Network

To attain a proficient convolutional neural network for effective fault identification
in gear vibration signals, a comprehensive training process is imperative. This training
procedure involves the iterative weight updates within the network, ultimately resulting in
a highly accurate model. The training process, delineated in Figure 4, encompasses five
distinct stages:

1. Wavelet decomposition: Initially, the original signal undergoes wavelet decomposition;
2. Markov transformation: The decomposed signal is then transformed into a 2D image

signal via the utilization of a Markov matrix;
3. Image transformation: A plethora of new images is generated by applying various

operations, such as folding and rotation, to the 2D image signals;
4. Make a type label: Type labels are assigned with 70% of the data allocated for training

purposes and the remaining 30% reserved for validation;
5. Training convolution neural network: Labeled data are subsequently fed into the

neural network, culminating in the creation of a model with heightened accuracy.
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In Figure 4, the initial step involves preparing the dataset for input into the neural
network. The convolutional neural network utilized in this study is a two-dimensional
network; hence, the dataset must satisfy two fundamental requirements: first, the dataset
should consist of two-dimensional images to align with the network’s dimensions, and
second, the dataset should be sufficiently extensive to ensure thorough weight updates
within the network. However, due to the nature of gear vibration signals, which are one-
dimensional time series data, obtaining a large number of fault signals as training samples
is challenging as they occur infrequently during normal operation. Moreover, small sample
sizes contain limited feature information due to data scarcity, potentially leading to reduced
performance of the highly accurate network on the test dataset. This drop in performance
signifies a decline in the network’s generalization ability. Consequently, increasing the
quantity of signal features is imperative.

In this study, we employ the discrete wavelet decomposition and hierarchical re-
construction method proposed in the previous section to decompose the data into low-
frequency and high-frequency signals, both of which have the same length as the original
signal. This approach enhances the feature information of the signals. Subsequently, we cal-
culate the Markov transition matrices for each decomposed signal. These two-dimensional
probability matrices are then converted into pixel matrices, which are subsequently output
and saved as two-dimensional images. In this manner, the features of small-sample data can
be represented by multiple two-dimensional images. These images are further transformed
through operations such as flipping, brightness adjustment, angle rotation, and others,
generating a substantial number of new images. These new images serve as the training
dataset for the small-sample data, effectively achieving data augmentation. To illustrate,
the transformation process for creating a training dataset that meets the requirements from
a small sample consisting of 48 vibration acceleration data points is depicted in Figure 5.
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Once the training dataset is prepared, it can be input into the neural network for
learning. The learning process follows several steps. First, the training dataset is labeled
with class categories to facilitate computer processing. For example, the four classification
tasks of gear tooth breakage, chipped, health, miss, root, and surface are assigned labels 0, 1,
2, 3, and 4, respectively, with each label representing a specific signal type. Next, the entire
training dataset is randomly divided into training and validation sets in a 7:3 ratio. The
training set is utilized for network learning, while the validation set is used to assess the
network’s performance on unseen data. This evaluation helps determine if the network has
overfit and provides insights into its classification accuracy. The learning process concludes
when the network reaches a sufficient number of learning iterations and maintains high
accuracy on the validation set. At this stage, the network’s weights and architecture are
saved, marking the end of the training process.
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3.2. Weight Allocation Mechanism Based on Wavelet Energy Ratio

Although the network undergoes validation using the validation set during training,
this validation method only involves label classification on the validation set. For instance,
in the case of the dataset created from a single sample, as depicted in Figure 5, applying the
aforementioned classification method to classify 1000 images does not consistently lead
to the correct classification of that sample. If we aim to obtain the correct classification
result for that sample, one possible approach is to consider using the mode, which involves
selecting the most frequent label as the predicted label. However, considering the presence
of interference in real-world signal scenarios and the fact that this issue can be amplified
during small sample learning, it is necessary to have an appropriate weight allocation
mechanism to address this problem even after achieving a high-accuracy network.

This study employs discrete wavelet decomposition to break down the signal into
high-frequency and low-frequency components. Noise interference in gear vibration signals
typically concentrates in the high-frequency component denoted as ‘yd’. Consequently, it
is possible to assign a higher weight to the decomposed low-frequency signal and a lower
weight to the high-frequency signal. This approach helps mitigate the impact of noise
interference on classification accuracy. Given that the wavelet energy of gear vibration
signals primarily resides in the low-frequency component denoted as ‘ya’ and is relatively
less prominent in the high-frequency component (as illustrated in Figure 6), this paper
utilizes this characteristic of wavelet energy to allocate weights to the classification labels.
The weight allocation algorithm is as follows:

w =

m
∑

j=1
aj

2

n
∑

i=1

m
∑

j=1
aij

2

C = [class·w], Rounding up the result

(12)
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In this equation, w represents the matrix of wavelet energy ratios, class represents the
matrix of classification labels, and C represents the predicted labels for the samples.

As portrayed in Figure 7, to maintain network coherence, the classification progres-
sion for the test dataset encompasses several phases. Initially, the test dataset undergoes
analogous preprocessing as the training dataset, incorporating wavelet decomposition
and Markov transformation and foregoing the necessitation for image transformation and
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label creation operations. Subsequently, the transformed image dataset, derived from
the Markov transformation, is directly integrated into a CNN, yielding individual image
labels. Next, the decomposed wavelet energy is calculated to serve as weights, which are
then assigned to the neural network’s predicted labels utilizing Equation (12), facilitating
the formulation of weighted predicted labels. Eventually, these labels are correlated to
signal categories, adhering to the label-to-class relation, which concludes the classification
procedure for the test dataset.
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4. Experimental Process and Analysis
4.1. Prepare Experimental Data

Utilizing the publicly accessible gearbox dataset from Southeast University in China,
we created a small sample dataset for analysis that encompassed five distinct gear health
conditions: chipped, healthy, missing, root, and surface. For each data category, we
randomly selected a sequence of 48 consecutive data points to form a data file, resulting in
the small-sample dataset presented in Table 1. The dataset comprises two primary data
clusters. The first cluster consists of five files, each representing conditions such as missing
teeth, incised roots, cracks, wear, and health. Each file contains 48 data points and serves
as the training dataset for the network. Conversely, the second data cluster comprises
240 files with 48 files dedicated to each of the five conditions. Each file contains 48 data
points and is used as a test dataset for evaluation purposes.

Table 1. Detailed information of a small-sample dataset.

Dataset Type Number of Signal Types Number of
Files Data Points of a Single File

Training set 5 1 48
Test set 5 48 48

Table 2 displays selected data points from the training dataset, featuring the initial
12 data points for each of the five categories. The structure of the data within an individual
file in the test dataset mirrors that of the training dataset except for the higher number of
files in the test dataset.
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Table 2. Partial data from the training dataset.

Chipped Health Miss Root Surface

0.000099 −0.006351 0.00932 0.002831 −0.007212
−0.000266 0.021203 −0.016575 0.003266 −0.003612
−0.00581 −0.003597 0.010294 0.0001 0.000646
0.005527 0.005256 0.00652 0.005203 0.00577
−0.000249 0.018343 −0.00011 0.008528 −0.003577
−0.004404 0.004193 0.001225 0.008875 0.013957
0.019515 0.001658 −0.000241 −0.009279 0.0024
−0.014083 0.005246 −0.000982 0.001366 −0.010189
0.013143 −0.006969 −0.005016 0.004518 −0.001748
0.016012 0.015746 0.015688 −0.00917 0.005802
−0.026476 0.004352 0.000128 0.024582 0.005599
0.023174 −0.013174 −0.00914 0.019507 −0.008323

4.2. Training the CNN

The original training dataset (as shown in Table 1) underwent training using the
CNN training process depicted in Figure 4. Within the wavelet decomposition phase,
we conducted decomposition at various levels (three, four, five, and six) to assess their
influence on the experimental outcomes. Here, we will primarily focus on the four-layer
wavelet decomposition with signal decomposition results illustrated in Figure 8. Following
the four-layer wavelet decomposition, the original set of five fault signals from the training
data produced 25 signals. These signals were used to calculate the Markov transition
field and transform them into two-dimensional images. Subsequently, we applied data
enhancement techniques, including image flipping and rotation, to augment the image
dataset. This process resulted in the generation of 200 images for each signal, resulting in a
total of 5000 images. Figure 9 displays some of these images used for classification. These
images were labeled and randomly divided into training and validation sets at a ratio of
7:3 for input into the neural network training. The network was trained over 20 iterations
with each iteration involving the processing of the entire image dataset. To expedite
network learning, we configured the network to read 64 images in each cycle. The network
updated weights after processing each set of 64 images. Upon processing all 5000 images,
the iterative process concluded. The loss and accuracy curves obtained during training
are presented in Figure 10. It is evident from the curves that the network’s loss value
continually decreased throughout the training process without any significant increases,
indicating the absence of overfitting. The recognition accuracy achieved following the
four-layer wavelet decomposition reached 97.0%, while the accuracy levels after three-,
five-, and six-layer decomposition stood at 94.7%, 87.2%, and 89.2%, respectively.
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4.3. Validation of the Test Dataset

When evaluating the performance of the gear fault recognition method introduced
in this study, establishing a test dataset is imperative. To guarantee the precision and
effectiveness of the evaluation results, it is crucial to include an ample number of data
points in the test dataset. In this research, we generated a test dataset comprising 2304 data
points. More precisely, we created 48 data files for each fault type with each data file
containing 48 test data points.

The test dataset underwent the process illustrated in Figure 7. Initially, it underwent
wavelet decomposition with subsequent computation of wavelet energy and Markov
transition fields for all decomposed signals. These Markov transition fields were then
converted into a set of two-dimensional images. These images were fed into the pre-trained
neural network, which assigned sample labels to each image. These labels were later used
in the wavelet energy calculation formula (Equation (12)), resulting in category labels
for the test dataset. By applying the mapping relationship between category labels and
categories (as presented in Table 3), the fault prediction category for each data file was
determined. Finally, the predicted categories were compared to the actual categories, as
depicted in Figure 11, leading to the classification results displayed in Table 4.

Table 3. Mapping of Category Labels to Categories.

Fault Categories Category Labels

chipped 0
health 1

missing 2
root 3

surface 4

4.4. Comparative Experiments

To further underscore the effectiveness of the method proposed in this study, we con-
ducted two sets of comparative experiments. First, we performed comparative experiments
on the small-sample detection method using datasets of various sizes. Specifically, we
utilized four sets of samples, each containing 40, 32, 24, and 16 data points, and the corre-
sponding accuracy results are depicted in Figure 12. Second, we compared the accuracy of
the method proposed in this study with three other important fault detection algorithms:
DBN, SVM, and ANN. The accuracy of these four detection methods on the test dataset
created for this study is presented in Table 5.
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Table 4. Classification Results of the Test.

Decomposition Level Network Accuracy
True/Total

Total Accuracy
Chipped Health Miss Root Surface Total

3 94.70% 37/48 45/48 41/48 40/48 42/48 205/240 85.42%
4 97.00% 36/48 46/48 46/48 43/48 37/48 208/240 86.67%
5 87.20% 39/48 43/48 45/48 42/48 43/48 212/240 88.33%
6 89.20% 35/48 45/48 43/48 46/48 40/48 209/240 87.08%
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Table 5. Classification Accuracy of Different Methods on the Test Data Set.

Methods Accuracy Training Time (s) Classification Time (s)

This method 88.83% 342.03 20.12
DBN 81.31% 398.34 24.71
SVM 82.45% 311.3 25.98
ANN 60.27% 401.23 19.73

Based on the classification accuracy of sample data of different sizes presented in
Figure 12 and the performance of the four different detection methods on the test dataset
as shown in Table 5, we can draw the following conclusions. The algorithm proposed
in this study achieves a classification accuracy of over 80% when the sample data size is
greater than 32 data points, but it exhibits lower accuracy and poorer detection performance
when the data size is below 24 data points. Using the DBN and SVM detection methods
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for classifying the test dataset results in classification accuracies above 80%, but their
performance is inferior to the recognition method proposed in this paper. When employing
ANN for classifying the test dataset, the classification accuracy is only 60.27%, indicating
lower diagnostic effectiveness.

We trained the convolutional neural network for fault classification using an Intel
i5-12500H processor paired with an NVIDIA GeForce RTX 3050 4GB GPU configuration.
During training, the CPU utilization was at 70%, while the GPU utilization was at 10%.

4.5. Analysis of Experimental Results

Within the experimental process, we initially used the prototype training set to train
the refined 2D convolutional neural network. We continually optimized the network pa-
rameters to achieve higher accuracy. Subsequently, we applied the test dataset to simulate
gear faults, which were then classified using the trained network model. Since the original
training set included only one data file for each fault type, containing just 48 data points,
and had a limited sample size, data augmentation was essential. After wavelet decompo-
sition and conversion into 2D images, we still achieved improved training accuracy. To
obtain more precise recognition accuracy, we created an extensive testing dataset for this
investigation. We generated 48 data files for each fault type, each consisting of 48 data
points, which resulted in a total of 2304 data points. Upon evaluating the testing dataset,
we confirmed that the network trained using the proposed methodology demonstrates
superior generalization capabilities. It maintains optimal identification efficacy even when
recognizing a substantial volume of fault data with the cumulative accuracy exceeding 85%.

During the network model’s validation utilizing the test dataset, an exploration into
the influence of various wavelet decomposition levels on classification accuracy was under-
taken. The revelations in Table 4 insinuate that the interrelationship between the network’s
recognition accuracy with differing wavelet decomposition levels and the accurate classifi-
cation of the test set is not inherently linear. This is attributed to the indispensable weight
allocation throughout the classification phase, which is modulated by the energy stemming
from the wavelet decomposition and the noise inherent in the acquired signals. When
cultivating the network model employing the original training set, the ramifications of
distinct wavelet decomposition levels on training accuracy were scrutinized. Figure 10a
illustrates that the network’s accuracy does not ascend proportionally with the intensi-
fication of decomposition levels. Intriguingly, the network attains paramount accuracy
with a quartet of wavelet decomposition levels. This phenomenon can be ascribed to the
heightened complexity introduced to the signal features by superior decomposition levels,
potentially causing the network to over-simplify the learning trajectory and neglect pivotal
features and, thereby, diminishing recognition accuracy.

5. Conclusions

This research introduces a novel methodology for the intelligent identification of gear
faults through an enhanced convolutional neural network under conditions of insufficient
sample data. Initially, the method employs discrete wavelet decomposition to expand
the small-sample signal data and enriches the convolutional neural network structure
by incorporating BN (batch normalization) and dropout layers to bolster the network’s
generalization ability. Subsequently, a Markov transition field is invoked to metamorphose
the signals derived from wavelet decomposition into two-dimensional images, thereby
rendering them amenable to neural network utilization. To counteract the limitations posed
by scarce data in small-sample settings, additional data augmentation is realized through
image transformation methods. Preceding the application of the network model, a wavelet
energy ratio-based weight allocation mechanism is introduced. This technique computes
the weighted sum of the energy ratios of each signal throughout wavelet decomposition
juxtaposed with the predicted labels garnered from the neural network, thus proficiently
mitigating noise intrusion in small-sample signals. Validation of the proposed methodology
was conducted using a publicly accessible gear fault dataset with the convolutional neural
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network attaining a training accuracy of up to 97% and a classification accuracy of up
to 88.33% on the test dataset. These findings substantiate that the convolutional neural
network, when trained via this methodology, showcases exemplary accuracy, superior
generalization capability, and robust resilience.

Moreover, this research delves into the repercussions of varying wavelet decomposi-
tion levels on the convolutional neural network. It unveils a nonlinear correlation between
the decomposition levels and both the training accuracy of the network and the gear fault
classification accuracy. Diverse decomposition levels exhibit commendable proficiency
in the classification of gear fault signals. Furthermore, the gear fault detection method
presented in this research offers a distinct advantage by operating efficiently with a smaller
sample dataset, resulting in accelerated network recognition speed. In our experiments,
the classification of the 2304 data points in the test dataset required 20 s, primarily limited
by equipment performance. With enhanced equipment capabilities, the classification speed
can be further improved. This feature renders the algorithm highly suitable for online
gear fault type detection. Nonetheless, the proposed methodology does warrant enhance-
ments. More pointedly, the identification of a more efficacious weight allocation mechanism
for the gear fault dataset is imperative to augment the method’s discriminative prowess
on unrecognized datasets, thereby demarcating the ensuing avenue of investigation for
this manuscript.
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