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Abstract: Textile factory water consumption could be optimized to minimize the generation of
wastewater, reduce treatment costs, and promote resource recovery. However, downstream plant
operation and management is a prime concern in the textile industry, particularly bringing treated
wastewater effluent to an acceptable discharge limit. The aim of the study was to optimize key
process control parameters to the observed operational challenges of existing processes and suggest
an operational guide to the operators and decision makers to enhance the treatment performance in
GPS-X. The formulated troubleshooting and decision support strategy, and the optimization results of
waste-activated sludge in the primary and secondary clarifiers, was within the range of 15 ± 5 m3/d
and 83 ± 7 m3/d, respectively, with a recycle-activated sludge flow of 150 ± 10 m3/d. The sludge
retention time was 5 ± 1 d and 6.7 ± 0.5 d in the secondary and primary clarifiers, respectively. The
addition of a carbon source in the form of molasses had a flow of 0.5 ± 0.05 m3/d, and the variation
in the influent due to wastewater characteristics and rainfall was optimized to 600 ± 50 m3/d. The
optimum air flow into the aeration tank was 550 ± 5 m3/hr and saved 91.5% of energy in the
optimized process. Thus, the study is indispensable for the effective and efficient operation of the
plant and serves as a good guide to the plant operators and decision makers for the best course
of action.

Keywords: GPS-X model; optimization; process control parameters; textile wastewater treatment;
troubleshooting

1. Introduction

The operation of wastewater plants is indispensable for the abatement of pollution to
the downstream environment and promoting a green economy for the industrial process [1].
The study by Flores-Alsina et al. [2] showed that a plant’s performance may change
due to overloaded supernatant recycling to the upstream treatment units, shock loads,
inconsistent monitoring, and poor sampling location. Controlling the internal treatment
process parameters is the key challenge in the treatment of textile waste since the intrusion
of toxic substances and/or inhibition of biological process leads to the deterioration of
plant performance [3,4]. Conversely, poor operation protocols used by the operators
pose a serious challenge in attaining a minimum required pollution control standard [5,6].
Furthermore, the technical capability of experts to devise the optimal solutions in a short
time with higher quality is a big challenge in wastewater treatment plant operation [7].
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The efficient operation of plants starts with identifying the key monitoring locations
and process control parameters [8]. The study by Bhave et al. [9] showed that periodic
plant monitoring at a specific location ensures that the operator checks the performance
of each unit process. The key locations where the plant is monitored are at influent,
clarifiers, aeration tank, internal recycles, and effluent [10,11]. Similarly, the key parameters
at the specific monitoring location that should be measured and controlled are sludge
retention time (SRT), food-to-microorganism ratio (F/M), sludge volume index (SVI), air
flow, recycle-activated sludge (RAS), and waste-activated sludge (WAS) [12–15].

The comprehensive optimization of process control parameters is indispensable to
enhance the performance of a plant within optimum costs and energy [11]. Optimization
requires multiple attributes integrated together to find out the best solution to save time, and
increase decision capacity and quality [16,17]. In the study by Latif [18] and Cao et al. [19],
it was revealed that the GPS-X model can be used to design a wastewater treatment plant
and its operation. However, the GPS-X model is a recent development in plant operation
and the optimization of process control parameters for a specific challenge [20]. To optimize
plant performance, it is best to change one parameter at a time and wait for an adequate
period until the results of the change stabilize [10]. Thus, optimization in GPS-X bridges
the gap between discrete decision-making processes and comprehensive simulation by
adjusting the physical process control parameters.

The objective of this study was to optimize key process control parameters in textile
wastewater treatment plants, to the observed operational challenges of existing processes,
and to suggest an operational guide to the operators and decision makers to enhance the
treatment performance in GPS-X. The process control parameters were simulated and
optimized using GPS-X. The approach used in this study would provide fast and precise
results to the operators (decision makers) by identifying and quantifying the key process
control parameters for corresponding challenges. Thus, optimizing the process control
parameters in this study is indispensable to devise strategic troubleshooting actions.

2. Materials and Methods
2.1. Description of the Wastewater Treatment Process

The treatment plant process has activated sludge with its full-scale sludge treatment
configuration’s design flow set at 600 m3/d. Specifically, wastewater passes through the
intake and into the grit chamber, equalization tank, pumping stations, primary clarifier
(with coagulation and flocculation units), activated sludge process, secondary clarifier,
multigrade filter, and guard pond, after which the final effluent is released into the nearby
water body. In line with this, the factory has sludge treatment units, including a sludge
thickener, dewatering filter press, and sludge drying beds. The primary and secondary
waste sludge are collected, mixed with alum and pumped into the thickening tank, after
which the sludge is dewatered and spread onto drying beds. Effluent from sludge treatment
units is returned to the plant intake for further enhanced treatment. Moreover, 98% sulfuric
acid is added at the equalization tank to balance the pH of the incoming flow, which
commonly has an alkaline composition. Conversely, alum and poly aluminum chloride
(PAC) coagulants are added into the primary clarifier to form the settleable flocs that can
be removed easily. Specifically for this study, molasses was added at the aeration stage to
boost the organic carbon content of the wastewater as this is a limiting factor for aerobic
digestion. The treatment plant process flow diagram is presented in Figure 1.
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Figure 1. Textile wastewater treatment plant process flow diagram.

2.2. Research Instruments and Methods

In this research, secondary data were used as a tool including wastewater quality data,
treatment plant design documents, and research outputs. Additional data were extracted
from the plant’s hydraulic data and a questionnaire that was administered for this purpose.
The GPS-X Hydromantis software version 8.5 (educational license No.9-1643) and MS Excel
2016 were the main software used in this research.

The data collection started with careful observation of key characteristics and behavior
of the plant treatment system. The history of the plant was understood by engaging the
operators and available documents on the pattern of operations, failure history, data record
protocols, and troubleshooting strategies. The secondary data on wastewater quality analy-
sis, similar study results, and design documents were collected, reviewed, and presented
to the utility manager and operators to confirm the data quality. Further, based on the sec-
ondary information, physical measurements were conducted on the hydraulic dimensions
and air flows in the treatment system. To assure the quality of data, the operators were
interviewed on the hidden components of the treatment units due to design consideration.
Thus, the data collection followed the standard quality assurance and control techniques.

The model was developed and sensitivity analysis was performed for process control
parameters considering the critical monitoring locations in the GPS-X software version
8.5. The plant process control parameters including waste-activated sludge (WAS), recycle-
activated sludge (RAS), sludge retention time (SRT), and air flow into the aeration tank
were analyzed, simulated, and optimized under steady-state conditions in order to develop
a monitoring framework. Furthermore, food to microorganism ratio (F/M), volumetric
organic loading rate, and solid mass flow were analyzed. One-step sensitivity analysis
was performed targeting optimization of the effluent quality, energy use, and sludge
production. Finally, a 180-day simulation was carried out using the optimized process
control parameters in GPS-X model for the existing and modified processes. The model
methodological framework is shown in Figure 2, starting with selection of operational
parameters and ending with the optimized process control parameters. There are two
looped positions, the sensitivity analysis and optimization.
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Figure 2. Plant process control parameters optimization methodology framework.

3. Results and Discussion
3.1. Analysis of the Influence of Influent Flow (Qinf), Primary WAS, Secondary WAS, and RAS on
Plant Performance

The influent flow variation presented in Figure 3a and c shows that the ability of
removing total suspended solid (TSS), 5-day biochemical oxygen demand (BOD5), and total
phosphorous (TP) from the primary and secondary clarifiers was a negative performance
because Qinf increased from 300 to 415 m3/d. The negative performance depicts the shock
loading of the treatment plant at a low inflow of Qinf at a constant influent concentration
of physicochemical parameters [21]. For the increment in Qinf from 550 to 650 m3/d, the
performance of both clarifiers was increased. However, with the steady increase in Qinf
from 1200 to 2000 m3/d, the removal efficiency of both clarifiers declined except for TSS
and TP parameters in the secondary clarifier (Figure 3a and c). Meanwhile, the Qinf change
from 550 to 2000 m3/d significantly increased the aeration operational variables of F/M
and dissolved oxygen (DO) values from 0.15 to 0.93 and from 1.6 to 4.2 mg/L, respectively
(Figure 3b). Moreover, the mixed liquor suspended solids (MLSS) declined slightly with
the increase in Qinf. Conversely, the change in Qinf affected the effluent concentration of
nitrite and nitrate. However, the effluent concentration of TSS, chemical oxygen demand
(COD), total nitrogen (TN), and TP were not affected by the variation in Qinf (Figure 3d,
e and f), respectively. However, for the higher influent flow greater than 650 m3/d for
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the effluent BOD5, and 1000 m3/d for NH3-N, their permissible limits were violated. The
results from the sensitivity analysis of influent flow variation shows that the flow of 600
(±50) m3/d was the acceptable range for efficient plant operation to attain the desired
effluent quality, and at the same time control the process parameters. The variation in flow
was attributed to intrusion of rainfall and influent variations that could be controlled in the
equalization tank.
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Presented in Figure 4a,c for the primary clarifier raw WAS flow of 10 t-20 m3/d de-
picted that the primary and secondary clarifier pollutant removal efficiency were increased
for the respective TSS, TP, and BOD5 parameters due to the reduction in the sludge blanket
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depth [2,22]. Meanwhile, the aeration process control variables also showed oscillations
within the range of 0.2–0.3 for F/M, 1.98–2.2 mg/L for DO, and 2000–3800 mg/L for
MLSS, (Figure 4b). In addition, the final effluent concentrations of BOD5 (10 mg/L), COD
(40 mg/L), TSS (5 mg/L), and TP (1.45–3.5 mg/L) with insignificant changes for nitrite and
nitrate, were observed for the primary clarifier WAS change from 10–20 m3/d (Figure 4d–f).
However, the increase in WAS against a flow of 30 m3/d significantly affected the efficiency
of the secondary clarifier for removal of BOD5 (from 93.41–48.7%) and decline in the quality
of the final effluent by increasing BOD5 and COD. Moreover, the operational parameters in
the aeration tank were also elevated over the allowable values. Further increase in primary
clarifier WAS flow to greater than 30 m3/d, upset the subsequent treatment process [23] and
the aeration parameters (F/M, DO, and MLSS) remained unchanged. In a study by Wang
et al. [24] and another by Sid et al. [25], indicated that the MLSS is highly dependent on the
organic loading from the primary clarifier, which in turn is maintained by controlling the
wasting of raw sludge. Hence, the analysis result stated that the primary clarifier operation
was effective when it operated in the raw WAS flow of 15 (±5) m3/d.

The results in Figures 5 and 6 show that the small changes in secondary clarifier WAS
has more influence than RAS on each unit operation and treatment process. Specifically, the
RAS increment from 50 to 200 m3/d had a significant impact on the performance of primary
and secondary clarifiers (Figure 5a,c). RAS and secondary clarifier WAS are the most critical
process control parameters to maintain a proper F/M ratio for good operation and to
prevent excessive solids building up in the aeration tank [26]. The final effluent BOD5,
COD, and TSS remained unchanged while TP, TN, and NH3-N increased in concentration
for a change in RAS (Figure 5d–f). However, there was a significant negative performance
of primary and secondary clarifiers for the WAS flow of <50 m3/d (Figure 6a,c). In a
study by Elawwad et al. [26] and Mu’azu et al. [27], it was revealed that withdrawal of an
insufficient amount of waste-activated sludge from the clarifier leads to increased depth of
sludge blanket and development of an unstable system. Conversely, the secondary clarifier
WAS flow increased from 50 to 150 m3/d significantly improve the removal efficiency
of primary and secondary clarifiers as well as produced effluent concentrations in the
acceptable range (Figure 6d–f). This implied that the well-being of the active microbial
population in the activated sludge process was controlled [27]. The optimum amount of
secondary sludge wasting increases the treatment performance and effectively controls
biomass population [28].

As shown in Figure 5b, for the change in RAS the aeration process control parameters
varied for F/M (0.25–0.5), MLSS (1000 to 2800 mg/L), and DO (2.21–3.4 mg/L). In line with
secondary sludge waste flow changes from 50 to 150 m3/d impacted the F/M (0.15–1.2),
MLSS (800–5000 mg/L), and DO (1.7–4.3 mg/L) (Figure 6b). From the sensitivity analysis
results, the impact of RAS on the performance of the plant and process control operational
parameters was insignificant compared to secondary clarifier WAS. The previous study
supports the current study by the microorganisms that sustained the biological population
in the aeration tank and that the overall plant performance and system well-being was
controlled through the optimized WAS and RAS flow [26,29]. Thus, to attain the required
final acceptable effluent quality, the optimal plant operational RAS and secondary clarifier
WAS flows were 150 (±10) and 83 (±7) m3/d, respectively.
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3.2. The Influence Analysis of Air Flow into the Aeration Tank, SRT, and Molasses Flow on the
Performance of Plant

As shown in Figure 7a,c, the air flow into the aeration tank change had an insignificant
impact on the performance of primary and secondary clarifiers. In addition, the effluent
quality also did not directly affect the variation due to air flow of greater than 200 m3/hr
(Figure 7d–f). However, the dissolved oxygen concentration was increased from 0.15 to
5.67 mg/L for the air flow changes from 200 to 3000 m3/hr, respectively. Meanwhile, the
F/M, MLSS, and volumetric organic loading remained unchanged (Figure 7b). From this
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finding, it was depicted that the air flow in the aeration tank greater than the optimum
level was not indispensable and economical for the biological treatment. The air supply
into the aeration tank is responsible for the mixing of biomass and incoming pollutants
and to attain a minimum DO requirement of 2–3 mg/L for biological degradation [30,31].
Due to the variable nature of biological activity in the aeration tank, dynamic simulation
was used [30,32]. Thus, from the analysis results to maintain the minimum required DO
concentration at the outlet of the aeration tank, 550 (±5) m3/hr of air flow was exerted into
the aeration system and thus saved energy consumption.
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The SRT value of >6.2 days significantly affected the performance of removal of
pollutants from primary and secondary clarifiers (Figure 8a,c). The results revealed that
the production of new solids and a longer life of old sludge in the system may deteriorate
the performance of the clarifiers [33]. Meanwhile, at the SRT of 4–6.2 days, the secondary
clarifier was stable and effectively removed the target contaminants with the discharge of
optimum sludge flow.
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The MLSS, F/M, and DO were significantly changed from 2500 to 3200 mg/L, 0.25 to
0.3, 2, and 2.3 mg/L, respectively, for the SRT changes from 4 to 6.2 days. In addition, for the
higher SRT, the aeration performance variables fluctuated drastically and became unstable
(Figure 8b). Moreover, within the optimum range of SRT, the model showed that the
effluent concentrations of TSS, COD, BOD5, TN, TP, NO2, and NO3 were in the acceptable
discharge limits. However, the higher SRT values significantly deteriorated the effluent
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quality (Figure 8d–f). The abrupt change in process parameters depicted that the life-cycle
of biological organisms in the treatment system was affected and the microbes experienced
variable operational conditions due to a long SRT [34,35]. The simulation results indicated
that to attain the minimum required values of process control parameters and for better
performance of the plant, the SRT should be set to 5 (±1) days. The SRT requirements in
biological treatment processes are vital in order to determine the amount of sludge that
must be removed [34,36]. The MLSS, WAS, and SRT are interlinked in the activated sludge
process, to control the plant operation economically and efficiently [31,37,38].

Even though the oxygen concentration was sufficient to metabolize the waste, the
available organic food was minimal (BOD5/COD ratio of 0.31) and, hence, additional
carbon was introduced into the aeration tank in the form of molasses, to maintain the
optimum F/M ratio [17,39]. For the change in molasses, the flow did not significantly alter
the removal efficiency of primary and secondary clarifiers (Figure 9a,c). However, the
variables in the aeration tank (DO, F/M, and MLSS) remained unchanged for the molasses
flow of >0.8 m3/d. While the flow was set between 0.5 and 0.8 m3/d, the results were
as follows: F/M (0.23), MLSS (2500–2800 mg/L), DO (1.7–2 mg/L), and organic loading
(0.45 to 0.6 kg/m3/d) (Figure 9b). From the model analysis results, the higher molasses
flow > 0.8 m3/d significantly deteriorated the BOD5 and COD quality with a slight increase
in the removal performance of TP, TN, and other nutrients in the final effluent (Figure 9b,e,f).
Hence, due to the introduction of molasses as an additional carbon source, the particulate
and inorganic fractions were degraded by the microorganisms [5,40]. Thus, the simulation
and sensitivity analysis results arising from optimum additional carbon source in the form
of molasses flow were set to 0.5 (±0.05) m3/d.

3.3. Plant Troubleshooting and Decision Support Strategy

The simulation and optimization were fully considered using the existing infrastruc-
ture in order to reduce the additional capital cost for upgrading and renovating. The
findings from this study identified the main challenges and problems in the existing infras-
tructure as well as devised the optimized troubleshooting and decision support strategy
for ease of operations (Table 1). Although the piping and instrumentation diagram (PID)
controller is inbuilt in the GPS-X model, however, the existing plant’s physical infrastruc-
ture lacks the PID controller. The PID controller is indispensable for the efficient plant
operation [40–43]. In this regard, for the successful implementation of the model that
was developed in this study, there should be RAS, WAS, airflow meters and controllers,
settleometer apparatus for MLSS control, and a DO meter controller. Additionally, previous
studies addressed the significance of monitoring and controlling parameters as well as
relevant instrumentation for the purpose [44–46]. Thus, for the observed challenges in
the treatment plant, the key process control parameters were optimized, the monitoring
location and corresponding parameters were defined, and a decision support strategy was
designed. The detailed troubleshooting and decision support framework are shown in
Table 1.

All optimized parameters were fed into the model and a 180-day simulation was
conducted using GPS-X. In Figure 10, the main existing process effluent concentration of
COD (180 mg/L), and TSS (165 mg/L) were above the permissible limit of 120 mg/L, and
30 mg/L, respectively [47]. However, Figure 11 shows that the effluent concentrations of
all performance indicator parameters for optimized process were within the permissible
discharge limit. Conversely, the solid mass flow production was reduced from 1087 kg/d
(existing process) to 760 kg/d (optimized process) while the overall pollution load in the
effluent was reduced from 260 kg/d (existing process) to 20 kg/d (optimized process).
Furthermore, the simulation results of optimized process depict that the variation within
the simulation period was quite stable and smooth [48,49].
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Table 1. Process control parameters and troubleshooting strategy.

No. Observed Challenges Objectives Process Control
Parameters

Existing (Old) Process
Operating Parameters

Corrective Actions
(Optimized) Monitoring Parameters Monitoring Locations

1 High primary sludge
blanket

Optimize raw sludge
wasting

WAS flow WAS flow 4 m3/d
Increase WAS
15 ± 5 m3/d

SRT, effluent TSS, BOD5 Primary clarifier

SRT SRT 3.4 days Decrease SRT
6.7 ± 0.5 d

2 High secondary sludge
blanket

Optimize sludge
wasting

Air flow DO 6.5 mg/L
Increase
(if DO < 2 mg/L, else reduce)
air flow

DO * (2–3 mg/L), MLSS *
(1000–3000) mg/L, F/M * (0.2–0.5),
and volumetric loading
(0.3–1.6)

Aeration tank

RAS flow RAS 43 m3/d
Increase RAS
150 ± 10 m3/d

SVI * > 100

Secondary clarifier

SRT SRT 4 days Decrease SRT
5 ± 1 d Secondary clarifier

WAS flow WAS 84 m3/d
Increase WAS
83 ± 7 m3/d Secondary clarifier

3
White foam formation

Optimize
aeration control

WAS flow WAS 84 m3/d
Reduce WAS
83 ± 7 m3/d MLSS

Aeration tank

Dark foam formation Air flow 6500 m3/hr
Increase air flow
550 ± 5 m3/hr DO, NH3, NO2, NO3

5
Low recycle sludge
concentration (<8000)

Optimize RAS solid
mass

RAS flow RAS 43 m3/d
Reduce RAS flow
150 ± 10 m3/d SVI, solid mass balance Secondary clarifier

Air flow 6500 m3/hr Increase Air flow 550 ± 5 m3/hr DO (2–3 mg/L) Aeration tank

6 Influent wastewater and
storm flow handling

Optimize the inflow
and storm flow Influent wastewater 600 m3/d

Optimize Qinf
600 ± 50 m3/d Influent TN, TP, TSS, NH3 Equalization tank

7 Small BOD5/COD ratio
(<0.3 *) Optimize carbon source Additional carbon

source (molasses) No carbon addition Increase molasses flow
0.5 ± 0.05 m3/d F/M, Volumetric loading, MLSS Aeration tank

* [5,30,37,38,50,51].
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4. Conclusions

The critical operational parameters were identified through rigorous simulation and
optimization in the GPS-X model. For the formulated troubleshooting and decision support
strategy, the simulation results for WAS flow significantly reduced the sludge blanket depth
in the primary and secondary clarifiers when operated within the range of 15 ± 5 m3/d
and 83 ± 7 m3/d, respectively, while the RAS flow was 150 ± 10 m3/d. The SRT was
optimized as 5 ± 1 d and 6.7 ± 0.5 d in the secondary and primary clarifiers, respectively.
The addition of molasses in the aeration tank activated the microbial growth at a flow
of Qflow as 0.5 ± 0.05 m3/d, and in turn the plant reduced the pollution load to 20 kg/d.
Due to the variation in influent wastewater as a result of rainfall intrusion, Qinf was
optimized to be 600 ± 50 m3/d. Finally, the optimum air flow into the aeration tank
was 550 ± 5 m3/hr which saved 91.5% of energy than the existing process and enhanced
the treatment performance. For the small variation in WAS, RAS, SRT, and air flow,
the influence of process control parameters in the primary and secondary clarifier and
the aeration tank were significant on the plant performance. The treatment plant was
sensitive to a wide range of variations for each process control parameter. Furthermore, the
troubleshooting and decision support strategy proposed based on the simulation results
should be thoroughly implemented with the conscious monitoring of the key parameters at
a specific location. Thus, from the results, we concluded that the optimized process control
parameters tested under different troubleshooting strategies reduced energy consumption,
increased effluent quality, and reduced the pollution load more than the existing processes
of the plant.
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