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Abstract: Despite substantial progress in the field of deep learning, overfitting persists as a critical
challenge, and data augmentation has emerged as a particularly promising approach due to its capac-
ity to enhance model generalization in various computer vision tasks. While various strategies have
been proposed, Mixed Sample Data Augmentation (MSDA) has shown great potential for enhancing
model performance and generalization. We introduce a novel mixup method called MiAMix, which
stands for Multi-stage Augmented Mixup. MiAMix integrates image augmentation into the mixup
framework, utilizes multiple diversified mixing methods concurrently, and improves the mixing
method by randomly selecting mixing mask augmentation methods. Recent methods utilize saliency
information and the MiAMix is designed for computational efficiency as well, reducing additional
overhead and offering easy integration into existing training pipelines. We comprehensively evaluate
MiAMix using four image benchmarks and pitting it against current state-of-the-art mixed sample
data augmentation techniques to demonstrate that MiAMix improves performance without heavy
computational overhead.

Keywords: computer vision; data augmentation; mixup; image classification

1. Introduction

Deep learning has revolutionized a wide range of computer vision tasks like image
classification, image segmentation, and object detection [1,2]. However, despite these
significant advancements, overfitting remains a challenge [3]. The data distribution shifts
between the training set and test set may cause model degradation. This is also particularly
exacerbated when working with limited labeled data or with corrupted data. Numerous
mitigation strategies have been proposed, and among these, data augmentation has proven
to be remarkably effective [4,5]. Data augmentation techniques increase the diversity of
training data by applying various transformations to input images in the model training.
The model can be trained with a wider slice of the underlying data distribution, which im-
proves model generalization and robustness to unseen inputs. Of particular interest among
these techniques are mixup-based methods, which create synthetic training examples
through the combination of pairs of training examples and their labels [6].

Subsequent to mixup, an array of innovative strategies were developed which go
beyond the simple linear weighted blending of mixup, and instead apply more intricate
ways to fuse image pairs. Notable among these are CutMix and FMix methods [7,8]. The
CutMix technique [7] formulates a novel approach where parts of an image are cut and
pasted onto another, thereby merging the images in a region-based manner. On the other
hand, FMix [8] applies a binary mask to the frequency spectrum of images for fusion, hence
achieving an enhanced mixup process that can take on a wide range of mask shapes, rather
than just the square mask in CutMix. These methods have been successful in preserving
local spatial information while introducing more extensive variations into the training data.
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While mixup-based methods have shown promising results, there remains ample
room for innovation and improvement. These mixup techniques utilize little to no prior
knowledge, which simplifies their integration into training pipelines and incurs only
a modest increase in training costs. To further enhance performance, some methodolo-
gies have leveraged intrinsic image features to boost the impact of mixup-based meth-
ods [9]. Recently, following this approach, some methods employ the model-generated
feature to guide image mixing [10]. Furthermore, some researchers have also incorporated
image labels and model outputs in the training process as prior knowledge, introducing
another dimension to improve these methods’ performance [11]. The utilization of these
methods often introduces a considerable increase in training costs to extract the prior
knowledge and construct a mixing mask dynamically. This added complexity not only
impacts the speed and efficiency of the training process but can also act as a barrier to
deployment in resource-constrained environments. Despite their theoretical simplicity, in
practice, these methods might pose integration challenges. The necessity to adjust the
existing pipeline to accommodate these techniques could complicate the training process
and hinder their adoption in a broader range of applications. Given this, we are driven
to ponder an important question about the evolution of mixed sample data augmenta-
tion methods: How can we fully unleash the potential of MSDA while avoiding extra
computational cost and facilitating seamless integration into existing training pipelines?

Considering the RandAugment [4] and other image augmentation policies, we are
actually applying multiple layers of data augmentation to the input images, and those
works have shown that a multi-layered and diversified data augmentation strategy can
significantly improve the generalization and performance of deep learning models. The
work RandomMix [12] starts ensembling the MSDA methods by randomly choosing one
from a set of methods. However, by restricting to only one mixing mask being applied,
RandomMix imposes some unnecessary limitations. Firstly, the variety of mixing methods
can be highly improved if multiple mask methods can be applied together. Secondly,
the diversity of possible mixing shapes can be greater if we can further augment the
mixing masks. Thirdly, we draw insights from AUGMIX, an innovative approach that
applies different random sampled augmentations on the same input image and mixes
those augmented images. With the help of customized loss function design, it achieved
substantial improvements in robustness. Inspired by this, we propose to remove a limitation
in conventional MSDA methods and allow a sample to mix with itself with an assigned
probability. It is essential to note that during this mixing process, the input data must
undergo two distinct random data augmentations.

In this paper, we propose the MiAMix: Multi-layered Augmented Mixup. MiAMix
alleviates the previously mentioned restrictions. Our contributions can be summarized
as follows:

• We firstly revisit the design of GMix [13], leading to an augmented form called AGMix.
This novel form fully capitalizes the flexibility of the Gaussian kernel to generate a
more diversified mixing output.

• A novel sampling method of the mixing ratio is designed for multiple mixing masks.
• We define a new MSDA method with multiple stages: random sample paring, mix-

ing methods and ratios sampling, generation and augmentation of mixing masks,
and finally, the mixed sample output stage. We consolidate these stages into a com-
prehensive framework named MiAMix and establish a search space with multiple
hyper-parameters.

To assess the performance of our proposed AGmix and MiAMix method, we conducted
a series of rigorous evaluations across CIFAR-10/100, and Tiny-ImageNet [14] datasets.
The outcomes of these experiments substantiate that MiAMix consistently outperforms the
leading mixed sample data augmentation methods, establishing a new benchmark in this
realm. In addition to measuring the generalization performance, we also evaluated the
robustness of our model in the presence of natural noises. The experiments demonstrated
that the application of RandomMix during training considerably enhances the model’s
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robustness against such perturbations. Moreover, to scrutinize the effectiveness of our
multi-stage design, we implemented an extensive ablation study using the ResNet18 [1]
model on the Tiny-ImageNet dataset.

2. Related Works

Mixup-based data augmentation methods have played an important role in deep
neural network training [15]. Mixup generates mixed samples via linear interpolation
between two images and their labels [6]. The mixed input x̃ and label ỹ are generated as:

x̃ = λxi + (1− λ)xj, (1)

where xi , xj are raw input vectors.

ỹ = λyi + (1− λ)yj, (2)

where yi , yj are one-hot label encodings.
(xi, yi) and (xj, yj) are two examples drawn at random from our training data, and

λ ∈ [0, 1]. The λ ∼ Beta(α, α), for α ∈ (0, ∞). Following the development of Mixup, an
assortment of techniques has been proposed that focuses on merging two images as part
of the augmentation process. Among these, CutMix [7] has emerged as a particularly
compelling method.

In the CutMix approach, instead of creating a linear combination of two images as
Mixup does, it generates a mixing mask with a square-shaped area, and the targeted area
of the image is replaced by corresponding parts from a different image. This method is
considered a cutting technique due to its method of fusing two images. The cutting and
replacement idea has also been used in FMix [8] and GridMix [16].

The paper [13] unified the design of different MSDA masks and proposed GMix.
The Gaussian Mixup (GMix) generates mixed samples by combining two images using a
Gaussian mixing mask. GMix first randomly selects a center point c in the input image. It
then generates a Gaussian mask centered at c, where the mask values follow:

maskgmix = 1− exp
(
−|p− c|2

2σ2

)
(3)

where σ is set based on the mixing ratio λ and image size N as

σ =
√

λN (4)

This results in a smooth Gaussian mix of the two images, transitioning from one
image to the other centered around the point c. There are numerous other outstanding
works in the realm of MSDA that we cannot enumerate exhaustively. In Table 1, we have
summarized some of the most representative MSDA methods and those that will be related
to our subsequent experiments.

Table 1. Summary of Various MSDA Methods.

Method Description

Mixup [6] Blends two images based on a blending factor (alpha). Corresponding labels
of these images are also mixed similarly.

ManifoldMix [17] Creates virtual training examples by interpolating between data samples in
the latent space of a pretrained autoencoder.

CutMix [7] Inspired by cutout, fills a random region of an image with a patch from
another image, addressing issues of information loss and region dropout.

SaliencyMix [9] Addresses CutMix’s issue of potentially mixing non-informative patches.
Selects the salient part of an image and pastes it to another image’s
random/salient/non-salient region.
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Table 1. Cont.

Method Description

FMix [8] A type of MSDA that uses random binary masks obtained by thresholding
low-frequency images from the Fourier space.

GridMix [16] Introduces the concept of local context mapping by predicting patch-level
labels. Employs local data augmentation through grid-based mixing.

Gmix [13] Employs a Gaussian mixing mask for data augmentation.
AugMix [18] Aims to reduce the training-test data distribution gap. Applies multiple ran-

dom augmentations to an input image and merges the resultant images.
AutoMix [11] Reformulates the mixup classification into two sub-tasks with sub-networks

and a bi-level optimization framework. Uses a Mix Block to generate mixed
samples under the supervision of mixed labels. Trained end-to-end with a
momentum pipeline.

3. Methods
3.1. GMix and Our AGMix

To further enhance the mixing capabilities of our method, we extend the Gaussian
kernel matrix used in GMix to a new kernel matrix with randomized covariance. The
motivation behind this extension is to allow for more diversified output mixing shapes in
the mix mask. Specifically, we replace the identity kernel matrix with a randomized kernel
matrix as follows:

Σ =

[
1 q
q 1

]
q ∼ U (−1, 1)

Here, Σ is the Gaussian kernel covariance matrix. We keep the value in the diagonal
as 1, which means that we do not randomize the intensity of the mixing, which should be
solely controlled by the mixing ratio coefficient λ. To preserve the assigned mixing ratio λ
and to constrain the shape of the mask region, we sample the parameter q from a uniform
distribution in a restricted range (−1, 1). By randomizing the off-diagonal covariance q,
we allow the mixing mask to have a broader range of shapes and mixing patterns. To add
further variation to the mixing shape, we apply sinusoidal rotations to the mixing mask by
defining a rotation matrix R as follows:

R =

(
cos θ − sin θ
sin θ cos θ

)
, (5)

where θ is a random rotation angle. We then rotate the mixing mask M using the rotation
matrix R to obtain a rotated mixing mask Mrot as follows:

Mrot = RMRT . (6)

A comparative visualization between GMix and AGMix is depicted in Figure 1. This
comparison underlines the successful augmentation of the original GMix approach by
AGMix, introducing a wealth of varied shapes and distortions. This innovation also
inspires us to apply similar rotational and shear augmentations to other applicable mixing
masks. In the forthcoming experiment results section, a series of experiments provides an
in-depth comparison of AGMix and GMix, further underscoring the enhancements and
improvements brought by the method.

3.2. MiAMix

We introduce the MiAMix method and its detailed designs in this section. The frame-
work is constructed by four distinct stages: random sample paring, sampling of mixing
methods and ratios, the generation and augmentation of mixing masks, and finally, the
mixed sample output stage. Each stage will be discussed in the ensuing subsections. These
stages are presented step-by-step in Algorithm 1, the parameters are listed in Table 2,
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a practical illustration of the processes within each stage can be found in Figure 2, and
additional examples can be found in the Appendix A.

Figure 1. Examples generated by GMix and AGMix. The first column shows the generated sample
and the second row shows the corresponding mixing mask. We set λ = 0.7 for both methods.

To understand the effects of the various design choices of this proposed algorithm
in this section, we conduct a series of ablation studies in the following experiment result
section. We also compare our method with previous MSDA methods to justify that the
MiAMix works as a balance between performance and computational overhead.

Algorithm 1 Multi-stage Augmented Mixup (MiAMix)

1: Inputs: Data samples x1, x2, ..., xn, corresponding labels y1, y2, ..., yn,
2: Parameters: mixing parameter α, maximum number of mixing layers kmax, mixing

method candidates M and corresponding sampling weights W, more parameters are
listed in the Table 2

3: Outputs: Mixed samples x̃1, x̃2, ..., x̃n, mixed labels ỹ1, ỹ2, ..., ỹn
4:
5: for i = 1 to n do
6: Sample a mixing data point (xt, yt) either by sampling from the entire pool of data

samples or alternatively, selecting itself as the mixing data point with a ratio psel f .
7: Sample number of mixing layers k from 1 to kmax
8: Sample λ1, λ2, . . . , λk from a Dirichlet distribution Dir(α), where the parameter

vector α = (α1, . . . , αk, αk+1), such that α1 = αk = α and αk+1 = k · α.
9: Sample k mixing methods m1, m2, ..., mk from M with weighted distribution over W

10: Generate all mask j from mj(λj)
11: Apply mask augmentation to masks
12: Merge all the k masks to maskmerged, Get the λmerged from the maskmerged
13: Apply mmerged to the sampled input pair x̃i = maskmerged⊗ xi +(1−maskmerged)⊗ xt
14: Apply λmerged to sampled label pair ỹi = λyi + (1− λ)yj
15: Append mixed x̃i and ỹi to output list
16: end for
17: return Mixed samples x̃1, x̃2, ..., x̃n, mixed labels ỹ1, ỹ2, ..., ỹn

Table 2. MiAMix Parameters

Notation Value Description

α 2 MSDA mix ratio sampling parameter
kmax 2 Maximum number of mixing layers

M [MixUp, CutMix, FMix, GridMix, AGMix] Mixing method candidates
W [2, 1, 1, 1, 1] Mixing method sampling weights

psel f 0.10 Self-mixing ratio
paug 0.25 Mixing mask augmentation ratio

psmooth 0.5 Mixing mask smoothing ratio
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Figure 2. An illustrative example of the MiAMix process, involving: (1) random sample pairing;
(2) sampling the number, methods, and ratios of mixing masks; (3) augmentation of mixing masks;
(4) generation of the final mixed output.

3.2.1. Random Sample Paring

The conventional method of mix pair sampling is direct shuffling the sample indices
to establish mixing pairs. There are two primary differences that arise in our approach.
The first difference is that, in our image augmentation module, we prepare two sets of
random augmentation results for mixing. If all images within a batch undergo the exact
same augmentation, the ultimate mix’s diversity remains constrained. This observation,
inspired by our examination of the open-source project OpenMixup [19], revealed a crucial
oversight in prior work. In MiAMix, we addressed this issue and yielded measurable
improvement. The second, and arguably more critical distinction, is the introduction of a
new probability parameter, denoted as psel f , which enables images to mix with themselves
and generate “corrupted” outputs. This strategy draws from the notable enhancement in
robustness exhibited by AUGMIX [18]. Integrating the scenario of an image mixing with
itself can significantly benefit the model, and we delve into an experimental section of
this paper.

3.2.2. Sampling Number of Mixing Masks, Mixing Methods, and Ratios

Previous studies such as RandAug and AutoAug have shown that ensemble usage and
multi-layer stacking in image data augmentation are essential for improving a computer
vision model and mitigating overfitting [4]. However, the utilization of ensembles and
stacking in mixup-based methods has been underappreciated. Therefore, to enhance input
data diversity with mixing, we introduce two strategies. Firstly, we perform random
sampling over different methods. For each generation of a mask, a method is sampled from
a mixing methods set M, with a corresponding set of sampling weights W. The M contains
not only our proposed method AGMix above but also MixUp, CutMix, GridMix, and FMix.
These mixup techniques blend two images with varying masks, and the main difference
between those methods is how they generate these randomized mixing masks. As such,
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an MSDA can be conceptualized as a standardized mask generator, denoted by m. This
generator takes as input a designated mixing ratio, λ, and outputs a mixing mask. This
mask shares the same dimensions as the original image, with pixel values ranging from
0 to 1. The final image can be directly procured using the formula:

x̃ = mask⊗ x1 + (1−mask)⊗ x2 (7)

In this context, ⊗ denotes element-wise multiplication, the mask is the generated
mixing mask, and x1 and x2 represent the two original images.

Secondly, we pioneered the integration of multi-layer stacking in mixup-based meth-
ods. Therefore, we need to sample another parameter to set the mixing ratio for each mask
generation step. For this, the mixup’s methodology here is:

λ ∼ Beta(α, α), forα ∈ (0, ∞) (8)

While the Beta distribution’s original design caters to bivariate instances, the Dirichlet
distribution presents a multivariate generalization. It is a multivariate probability distribu-
tion parameterized by a positive reals vector α, essentially generalizing the Beta distribution.
Our sampling approach is:

λ1, λ2, . . . , λk ∼ Dir(α), for k masks

where α = (α1, . . . , αk, αk+1), and α1 = αk = α, αk+1 = k× α (9)

We maintain α as the sole sampling parameter for simplicity. With the Dirichlet
distribution’s multidimensional property, the mixing ratios derived from sampling are
employed for multiple mask generators. In other words, our MiAMix approach employs
the parameter λi to determine the mixing ratio for each mask maski. This parameter
selection method plays a pivotal role in defining the multi-layered mixing process.

3.2.3. Mixing Mask Augmentation

Upon generation of the masks, we further execute augmentation procedures on
these masks. To preserve the mixing ratio inherent to the generated masks, the selected
augmentation processes should not bring substantial change to the mixing ratio of the
mask, so we mainly focus on some morphological mask augmentations. Three primary
methods are utilized: shear, rotation, and smoothing. The smoothing applies an average
filter with varying window sizes to subtly smooth the mixing edge. It should be explicitly
noted that these augmentations are particularly applicable to CutMix, FMix, and Grid-
Mix methodologies. In contrast, Mixup and AGMix neither require nor undertake the
aforementioned augmentations.

3.2.4. Mixing Output

During the mask generation step, we may have multiple mixing masks. The MiAMix
employs the masks to merge two images and obtains the mixed weights for labels by
point-wise multiplication.

maskproduct =
n

∏
i=1

maski (10)

The n denotes the number of masks, and the multiplication operation is conducted in
a pointwise manner. Another approach we also tried is by summing the weighted mask:

masksum = clip

(
n

∑
i=1

maski, 0, 1

)
, (11)

The clipping serves to confine the mixing ratio at each pixel within the [0,1] interval.
It is crucial to note that the cumulative mask weights could potentially exceed 1 at specific
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pixels. As a consequence, we enforce a clipping operation subsequent to the summation of
masks if we sum them up.

In the output stage, our approach is different from the conventional mixup method.
We sum the weights of the merged mask, maskmerged, to determine the final λmerged, which
defines the weights of the labels.

λmerged =
1

H ×W

H

∑
j=1

W

∑
k=1

maskmergedjk
(12)

In this equation, H and W denote the height and width of the mask, respectively,
j and k are the indices of the pixels within each mask. Therefore, λmerged represents the
overall mixing intensity by averaging the mixing ratios over all the pixels in maskmerged.
The rationale behind this is that, if multiple masks have significant overlap between them,
the final mixing ratio will deviate from the initially set λsum = Σλi, regardless of whether
the masks are merged via multiplication or summation. We will compare these two ways
of merging the mixing mask and two ways of acquiring the weights λ for labels in the
upcoming experimental results section.

3.3. Why a Diversified MSDA Design Excels

The work [13] established that Mixup, through linear interpolation between data
samples in both input x and output y, acts as implicit regularization as well. Mathematically,
this can be seen as adding a regularization term to the loss function that affects the gradient
and Hessian concerning x. Differentiated variants like CutMix employ varying mixing
masks. The nature of the mask greatly impacts the regularization coefficients. For instance,
CutMix, as a more spatially diversified mask, achieves spatially-conscious regularization,
primarily because the coefficients of these masks are pixel-distance-dependent. In contrast,
the conventional mixup technique imposes uniform regularization across all pixels.

Such diversity in masking potentially enhances regularization by exposing the model
to an expansive range of intermediate samples. To put it illustratively, while mixup
applies regularization to prompt the model to comprehend images over an extensive range
and relate distant pixels, CutMix sharpens the model’s focus, urging it to capitalize on
information from adjacent pixels. The optimal mask design may be contingent on various
factors, such as the specific dataset in use or the particular task at hand. For example, tasks
that emphasize holistic comprehension might benefit more from mixup, whereas those
that prioritize discerning localized information might find CutMix more apt. Admittedly,
such strategic choices might appear to be intentionally fitting a particular data distribution.
Nevertheless, it is evident that increased diversity in mixing masks yields a more potent
and bespoke regularization effect. Inspired by this profound understanding, we have
devised an even more diversified approach and will demonstrate its superior performance
in the subsequent experimental results section.

4. Results

In order to examine the benefits of MiAMix, we conduct experiments on fundamen-
tal tasks in image classification. Specifically, we chose the CIFAR-10, CIFAR-100, and
Tiny-ImageNet datasets for comparison with prior work. We replicate the corresponding
methods on all those datasets to demonstrate the relative improvement of employing this
method over previous mixup-based methods.

4.1. Tiny-ImageNet, CIFAR-10, and CIFAR-100 Classification

For our image classification experiments, we utilize the Tiny-ImageNet [14] dataset,
which consists of 200 classes with 500 training images and 50 testing images per class.
Each image in this dataset has been downscaled to a resolution of 64× 64 pixels. We also
evaluate our methods (AGMix and MiAMix) against those mixing methods on CIFAR-10
and CIFAR-100 datasets. The CIFAR-10 dataset consists of 60,000 32 × 32 pixel images
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distributed across 10 distinct classes, and the CIFAR-100 dataset, mirrors the structure of
the CIFAR-10 but encompasses 100 distinct classes, each holding 600 images. Both datasets
include 50,000 training images and 10,000 for testing.

Training is performed using the ResNet-18 and ResNeXt-50 network architecture
over the course of 400 epochs, with a batch size of 100. Our optimization strategy em-
ploys Stochastic Gradient Descent (SGD) with a momentum of 0.9 and weight decay
set to 5× 10−4. The initial learning rate is set to 0.1 and decays according to a cosine
annealing schedule.

In our investigation of various mixup methods, we select a set of methods
M = [Mixup, CutMix, Fmix, GridMix, AGMix]. Each of these methods was given a weight,
represented as a vector W = [2, 1, 1, 1, 1]. The mixing parameter, α, was set to 1 throughout
the experiments.

As shown in Table 3, we compare the performance and training cost of several MSDA
methods. The training cost is measured as the ratio of the training time of the method to the
training time of the vanilla training. From the results, it is clear that our proposed method,
MiAMix, shows a state-of-the-art performance among those low-cost MSDA methods. The
test results even surpass the AutoMix, which embeds the mixing mask generation into
the training pipeline to take more advantage of injecting dynamic prior knowledge into
the sample mixing. Notably, the MiAMix method only incurs an 11% increase in training
cost over the vanilla model, making it a cost-effective solution for data augmentation. In
contrast, the AutoMix takes approximately 70% more training costs.

Table 3. Comparison of various MSDAs on CIFAR-10 and CIFAR 100 using ResNet-18 and
ResNeXt-50 backbones, on Tiny-ImageNet using a ResNet-18 backbone. Note that AutoMix needs
additional computations for learning and processing extra prior knowledge. Training Cost =

Training time
Vanilla model training time .

CIFAR10 CIFAR100 Tiny-ImageNet Training Cost
Methods ResNet-18(%) ResNeXt-50(%) ResNet-18(%) ResNeXt-50(%) ResNet-18(%)

Vanilla 95.07 95.81 77.73 80.24 61.68 1.00
Mixup [6] 96.35 97.19 79.34 81.55 63.86 1.00
CutMix [7] 95.93 96.63 79.58 78.52 65.53 1.00
FMix [8] 96.53 96.76 79.91 78.99 63.47 1.07
GridMix [16] 96.33 97.30 78.60 79.80 65.14 1.03
GMix [13] 96.02 96.25 78.97 78.90 64.41 1.00
SaliencyMix [9] 96.36 96.89 79.64 79.72 64.60 1.01
AutoMix [11] 97.08 97.42 81.78 83.32 67.33 1.87
AGMix 96.15 96.37 79.36 81.04 65.68 1.03
MiAMix 96.92 97.52 81.43 83.50 67.95 1.11

AutoMix represents methods with higher training costs, hence it is colored gray. Methods highlighted with a gray
background, such as MiAMix, represent our proposed methods.

4.2. Experiment on Image Transformer Model

Image transformers [20,21] have reshaped the landscape of computer vision by achiev-
ing remarkable performance across a wide range of tasks. Given their structural differences
from traditional CNN architectures, it is crucial to ensure that the data augmentation
methods, especially the mixed-sample ones, generalize well with them. In this section, we
present an evaluation of various mixed-sample data augmentation (MSDA) methods on
the CIFAR-100 dataset using the DeiT-S Image Transformer Model. The models are trained
from scratch in 200 epochs, with a batch size of 100. The Adam optimizer is applied with
learning rate warm-up and decay.

As shown in Table 4, the incorporation of MSDA methods offers substantial improve-
ments. Among the methods listed, MiAMix stands out by achieving a Top-1 accuracy
of 73.98%. MiAMix demonstrates its robustness and adaptability when paired with the
transformer architecture. In contrast to other mixup variants, a shift in architecture tends
to induce more pronounced discrepancies in performance outcomes. This is particularly
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impressive, considering that transformers have intricacies that are different from traditional
CNNs, emphasizing MiAMix’s wide applicability and effectiveness.

Table 4. Comparison of various MSDA on CIFAR-100 using DeiT-S Image Transformer Model.

Methods CIFAR-100 Accuracy (%)

Vanilla 65.81
Mixup [6] 69.98
CutMix [7] 74.02

FMix [8] 70.41
GridMix [16] 69.79

SaliencyMix [9] 69.78
AutoMix [11] 76.17

MiAMix 73.98
AutoMix represents methods with higher training costs, hence it is colored gray. Methods highlighted with a gray
background, such as MiAMix, represent our proposed methods.

4.3. Transfer Learning

Transfer learning is a prevalent technique in modern deep learning practices. In
our experiments, we utilized the CUB-200 [22] dataset, which comprises 11,788 images
spanning 200 bird subcategories, with a division of 5994 for training and 5794 for testing.
Images are presented at a resolution of 224× 224.

We employed a ResNet-18, which was pre-trained on the ImageNet-1k dataset, as
our initialization checkpoint. The training was conducted over 200 epochs using the SGD
optimizer with a learning rate of 1× 10−3, momentum set to 0.9, and a batch size of 32.

From the results showcased in Table 5, MiAMix demonstrates commendable efficacy
even under conditions of limited data availability. Moreover, its performance under the
transfer learning paradigm further underscores its robustness and adaptability across
diverse learning scenarios.

Table 5. Comparison of various MSDA on CUB-200 dataset with transfer learning. All those models
are initialized from a ResNet-18 model checkpoint pre-trained on ImageNet-1k.

Methods CUB-200 Accuracy (%)

Vanilla 77.88
Mixup [6] 79.13
CutMix [7] 79.04

FMix [8] 77.82
SaliencyMix [9] 77.95
AutoMix [11] 79.87

MiAMix 79.17
AutoMix represents methods with higher training costs, hence it is colored gray. Methods highlighted with a gray
background, such as MiAMix, represent our proposed methods.

4.4. Robustness

To assess robustness, we set up an evaluation on the CIFAR-100-C dataset, explicitly
designed for corruption robustness testing and providing 19 distinct corruptions such as
noise, blur, and digital corruption. Our model architecture and parameter settings used for
this evaluation are consistent with those applied to the original CIFAR-100 dataset in our
above experiments. According to Table 6, our proposed MiAMix method demonstrated
exemplary performance, achieving the highest accuracy. This provides compelling evi-
dence that our multi-stage and diversified mixing approach contributes significantly to the
improvement of model robustness.
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Table 6. Top-1 accuracy on CIFAR-100 and corrupted CIFAR-100-C based on ResNeXt-50.

Methods Clean Acc(%) Corrupted Acc(%)

Vanilla 80.24 51.71
Mixup [6] 81.55 58.10
CutMix [7] 78.52 49.32
AutoMix [11] 83.32 58.36
MiAMix 83.50 58.99

AutoMix represents methods with higher training costs, hence it is colored gray. Methods highlighted with a gray
background, such as MiAMix, represent our proposed methods.

4.5. Ablation Study

The MiAMix method involves multiple stages of randomization and augmentation,
which introduce many parameters into the process. It is essential to clearly articulate
whether each stage is necessary and how much it contributes to the final result. Further-
more, understanding the influence of each major parameter on the outcome is also crucial.
To further demonstrate the effectiveness of our method, we conducted several ablation
experiments on the CIFAR-10, CIFAR-100-C, and Tiny-ImageNet datasets.

4.5.1. GMix, AGMix, and Mixing Mask Augmentation

A particular comparison of interest is between the GMix and our augmented version,
AGMix, in Tables 3 and 6. The primary difference between these two methods lies in the
inclusion of additional randomization in the Gaussian Kernel. The experiment results
reveal that this simple yet effective augmentation strategy indeed brings about a significant
improvement in the performance of the mixup method across all three datasets and one
corrupted dataset, despite maintaining almost the same training cost as GMix. As the
results in Table 7 illustrate, the introduction of various forms of augmentation progressively
improves model performance. These experiment results underscore the importance and
effectiveness of augmenting mixing masks during the training process; furthermore, they
validate the approach taken in the design of our MiAMix method.

Table 7. Ablation study on mixing mask augmentation with ResNet-18 on Tiny-ImageNet. The
percentage after “Smoothing” and “rotation and shear” refers to the ratio of masks applied with the
respective type of augmentation during training.

Augmentations Top-1(%) Top-5(%)

No augmentation 66.87 86.66
+Smoothing 50% 67.29 86.82
+rotation and shear 25% 67.95 87.26

4.5.2. The Effectiveness of Multiple Mixing Layers

The data presented in Table 8 demonstrates the substantial impact of multiple mixing
layers on the model’s performance. As the table shows, a discernible improvement in Top-1
accuracy is observed when more layers of masks are added, emphasizing the effectiveness
of this approach in enhancing the diversity and complexity of the training data. Most
notably, the model’s performance is further amplified when the number of layers is not
constant but rather sampled randomly from a set of values, as indicated by the bracketed
entries in the table. This observation suggests that introducing variability into the number of
mixing layers could potentially be an effective approach for extracting more comprehensive
and robust features from the data.

However, it is important to note that there are diminishing returns as we further
increase the layers of mixing. The experimental results reveal certain limitations; partic-
ularly, an overly diversified mixing mask does not always guarantee significant perfor-
mance enhancements. As the number of layers continues to grow, the increase in Top-1
accuracy begins to plateau. This phenomenon might be attributed to the potential over-
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complexification of the data, which may inadvertently introduce noise or ambiguities
detrimental to the learning process. Therefore, based on our findings, it seems prudent
to adopt a balanced approach, where the optimal configuration employs a mix of one
or two layers with a sampling weight of [0.5, 0.5]. This setup offers a judicious blend
of diversity and clarity, ensuring the model extracts meaningful patterns without being
overwhelmed by excessive variability.

Table 8. Ablation study on multiple mixing layers with ResNet-18 on Tiny-ImageNet. The brackets
indicate that the number of turns is randomly selected from the enclosed numbers with equal
probability during each training step.

Number of Turns Top-1 (%) Top-5 (%)

1 66.16 86.49
2 67.10 86.45
3 67.10 86.42
4 67.01 86.38
[1, 2] * 67.95 87.25
[1, 2, 3] * 67.86 87.16

An asterisk (*) means that we uniformly sample a number of layers from the list during the training.

4.5.3. The Effectiveness of MSDA Ensemble

In the study, the ensemble’s efficacy was tested by systematically removing individual
mixup-based data augmentation methods from the ensemble and observing the impact
on Top-1 accuracy. The results, as shown in Table 9, clearly exhibit the vital contributions
each method provides to the overall performance. Eliminating any single method from the
ensemble led to a decrease in accuracy, underscoring the value of the diverse mixup-based
data augmentation techniques employed. This demonstrates the strength of our MiAMix
approach in harnessing the collective contributions of these diverse techniques, optimizing
their integration, and achieving superior performance results.

Table 9. Effectiveness experiment of MSDA ensemble, tested on Tiny-ImageNet and CIFAR-10
datasets. Each weight corresponds to a different MSDA candidate, and a weight of zero signifies the
removal of the corresponding method from the ensemble.

Weights [MixUp, CutMix, FMix, GridMix, AGmix] Top-1 Accuracy (%)
Tiny-ImageNet CIFAR-10

[1, 1, 1, 1, 1] 67.51 96.86
[0, 1, 1, 1, 1] 66.81 −0.70 96.42 −0.44
[1, 0, 1, 1, 1] 66.98 −0.53 96.74 −0.12
[1, 1, 0, 1, 1] 66.95 −0.58 96.65 −0.21
[1, 1, 1, 0, 1] 66.02 −0.49 96.67 −0.19
[1, 1, 1, 1, 0] 66.86 −0.65 96.53 −0.33

The colour red is used to highlight how much the performance can degrade if the corresponding changes are
made to the optimal setting which is shown in the first row.

Furthermore, it is noteworthy to mention the consistent performance trends observed
across both Tiny-ImageNet and CIFAR-10 datasets. Despite their intrinsic differences, the
similar patterns of accuracy drop upon the removal of individual methods, highlight the
strong transferability of our MiAMix ensemble approach. This consistency is particularly
encouraging as it suggests that the benefits reaped from integrating diverse mixup-based
data augmentation techniques are not bound to a particular dataset. Rather, when the
dataset changes, the ensemble still maintains its robustness and performance. Such strong
transferability is invaluable, allowing for the seamless application of our approach across
different tasks and datasets without the need for extensive retuning or adaptation. This
underscores the versatility and broad applicability of the MiAMix ensemble in real-world
machine-learning scenarios.
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4.5.4. Comparison Between Mask Merging Methods and Mixing Ratio Merging Methods

As shown in Table 10, the combination of multiplication for mask merging and the
“out” method for λ merging yields the highest accuracy for both Top-1 (67.95%) and Top-5
(87.26%). On the other hand, when using the sum operation for mask merging or reusing
the original λ (the “orig” method), the performance degrades. This suggests that reusing
the original λ might not provide a sufficiently adaptive mixing ratio for the model’s learning
process. Moreover, compared with the multiplication operation, the lower flexibility of the
sum operation does impede the performance. These results reaffirm the superiority of the
(mul, out) method in our multi-stage data augmentation framework.

Table 10. Comparison between different ways of merging multiple mixing masks and merging
mixing ratios on Tiny-ImageNet with a ResNet-18 model. “sum” and “mul”, respectively, refer
to merging masks through sum and multiplication. “merged” and “orig” denote the methods of
acquiring λ—either averaging the final merged mask or reusing the original λ.

Mask Merge Method Lambda Merge Method Top-1(%) Top-5(%)

mul merged 67.95 87.26
sum merged 67.58 −0.37 86.60
mul orig 67.42 −0.53 85.89

The colour red is used to highlight how much the performance can degrade if the corresponding changes are
made to the optimal setting which is shown in the first row.

4.5.5. The Effectiveness of Mixing with an Augmented Version of the Image Itself

In our experiments, we also explore the concept of self-mixing, which refers to a
particular case where an image does not undergo the usual mixup operation with another
randomly paired image but instead blends with an augmented version of itself. This process
can be controlled by the self-mixing ratio, denoting the percentage of images subject to
self-mixing.

Table 11 showcases the impact of the self-mixing ratio on the classification accuracy
of both CIFAR-100 and CIFAR-100-C datasets when employing the ResNeXt-50 model.
The results illustrate a notable trend: a 10% self-mixing ratio leads to improvements in
the classification performance, especially on the CIFAR-100-C dataset, which consists of
corrupted versions of the original images. The improvement in CIFAR-100-C indicates
that self-mixing contributes significantly to the model’s robustness against various cor-
ruptions and perturbations. By incorporating self-mixing, our model becomes exposed to
a form of noise, thereby mimicking the potential real-world scenarios more effectively
and enhancing the model’s ability to generalize. The noise introduced via self-mixing
could be viewed as another unique variant of the data augmentation, further justifying
the importance of diverse augmentation strategies in improving the performance and
robustness of the model.

Table 11. Impact of self-mixing ratio on CIFAR-100 and CIFAR-100-C with ResNeXt-50. “Self-mixing
ratio” denotes the percentage of images that are not mixing with other randomly paired images but
mixup with an augmented version of themselves.

Self-Mixing Ratio Clean Acc(%) Corruption Acc(%)

0% 82.86 56.15
5% 82.83 58.83
10% 83.50 59.02
20% 83.02 58.97

4.5.6. Parameter α

The role of α is pivotal in determining the mixing ratio, as it governs the sampling of
λ from the Beta or Dirichlet Distribution. Specifically:
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• Impact on Mixing: A larger α will lead to more “extreme" mixing ratios more often.
This means that, on average, the mixed samples will look more like one of the original
images than a 50–50 mix. Conversely, a smaller α generally tends to produce mixed
samples that are closer to an even blend of the two original images.

• Special Case of α = 1: An α set to 1 implies uniform sampling of λ over the inter-
val [0, 1].

The results presented in Figure 3 offer several insights into the behavior of MiAMix
with respect to the hyperparameter α. Firstly, it is evident that MiAMix performs optimally
with α = 2 as the default across various datasets. This showcases the method’s inherent
flexibility and adaptability.

Figure 3. Ablation Studies of hyperparameter α of MiAMix on: (a) CIFAR-100, (b) Tiny-ImageNet,
(c) CIFAR-100 with DeiT, (d) CUB-200 with transfer learning.

Another key observation is the method’s good transferability across different datasets
when the underlying model architectures are similar. To evaluate the transferability of the
optimal hyperparameters found on Tiny-ImageNet with the ResNet-18 model, we use the
same α on the CIFAR-100 dataset with ResNet-18 and ResNext-50 models. Such a trait is
highly desirable, especially when deploying models in different datasets without the need
for extensive retuning.

However, when switching between fundamentally different model architectures, like
the Vision Transformer (ViT) and traditional Convolutional Neural Networks (CNNs),
there is a slight divergence in optimal α values. Due to the inherent differences between
these two architectures, our experiments suggest that ViT requires a larger α value.

In the context of transfer learning, a more conservative α is favorable. Specifically, an α
value nearing 2−1 seems to yield superior results. This preference toward mixing samples
enables the generation of a more diverse dataset, particularly valuable when the available
data are limited.

In summary, the model exhibits a moderate level of sensitivity to the α parameter, yet
its transferability remains well within a manageable range. This emphasizes the method’s
strong generalizability.

4.6. MiAMix vs. Other MSDA Methods

In this work, we have also conducted a comprehensive comparison between MiAMix
and other prevalent MSDA methods, as detailed in Table 12. The first comparison lies
in the manner of mixing, which generally falls under three primary categories: linear
interpolation, cropping of images, and the ensemble of MSDA approaches adopted by
MiAMix. Secondly, we summarized the improvements for each method and examined
them across different experimental settings. Moreover, the training cost is added to the
comparison as well. It is essential to highlight the significance of concurrent execution
of data preparation on the CPU and GPU computation. For instance, while methods
like AutoMix show promise in terms of performance, their reliance on GPU-intensive
operations, such as feature extraction for mask generation, inherently lengthens the training
process. Contrarily, methods designed for parallel execution, akin to MiAMix, might seem
computationally intensive, but due to the design, the real-world overhead is negligible.
Based on that comparison and experiments, our experiments shed light on the strengths
and potential pitfalls of each approach. MiAMix offers considerable improvements across
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scenarios but demands more work on parameter tuning, highlighting the need for a
balance between performance and ease of use. Therefore, in the following section, we
will delve deeper into this topic to assist readers in effectively applying this method
to their applications.

Table 12. A comprehensive comparison between MiAMix and other MSDA methods.

Method Mixing Manner Cost Accuracy Improvements ∆ Strength/WeaknessTable 3 Table 4 Table 5

MixUp Linear Interpolation Low 1.55 4.17 1.25 Easy to use

CutMix Cropping Low 1.13 8.21 1.16 Good for Transformer Model

FMix Cropping Low 1.03 4.60 −0.06 Great extension of the CutMix Doesn’t show signifi-
cant advantage over simpler methods

GridMix Cropping Low 1.33 3.98 −1.09 Great extension of the CutMix Cannot generalize well
to all cases

Saliency Cropping Low 1.34 3.97 0.07 Selects a representative image patches to mix

AutoMix Cropping High 3.28 10.36 2.00 Great improvement in almost all cases High training
cost

MiAMix Ensemble Low 3.36 8.17 1.29 Great improvements in almost all cases More parame-
ters to tune

Advantages are highlighted with bold text, while disadvantages are represented in gray font color.

4.7. Delving into Parameter Tuning

While Table 2 enumerates several tunable parameters for our MiAMix method, we
have previously detailed the effectiveness of kmax, M, psel f , and /alpha in the ablation
studies. Additionally, we have conducted an in-depth evaluation and analysis focusing
specifically on the parameters α and M in terms of their transferability across different
tasks and model architectures in the ablation studies. Our findings suggest that, when
transitioning between tasks with similar objectives or employing models with similar
architecture, the need for extensive parameter tuning is limited. The MiAMix method
exhibits a commendable degree of stability in these scenarios, often achieving satisfactory
results with minimal adjustments to parameters. In this section, our attention shifts to
the W, paug, and psmooth parameters. Furthermore, we will give some results on different
mixing mask augmentation methods and augmentation levels.

For the sampling weight W, on datasets like Tiny-ImageNet, CIFAR-10, and CIFAR-
100 with the Resnet model, we identified the optimal ratio as [2, 1, 1, 1, 1] for methods
[MixUp, CutMix, FMix, GridMix, AGmix]. There exists a relatively straightforward ap-
proach for tuning these weights. One can preliminarily evaluate the impact of each
candidate method on the final model’s performance. If a specific method significantly
enhances performance, it is advisable to amplify its weight. Conversely, if its improve-
ment is marginal, one might allocate a lesser weight or even set it to zero. For instance,
compared to traditional CNNs, the DeiT transformer-based model excels in capturing
long-range pixel interactions. Consequently, in our tests, the MixUp technique did not
manifest a pronounced boost. However, methods like CutMix, which prioritize the under-
standing of adjacent pixels, proved to be of greater assistance. As illustrated in Table 10,
we also noted that FMix’s performance was subpar, leading us to ultimately select a
weight distribution of [1, 3, 0, 1, 1].

The experimental results presented in Table 13 offer intriguing insights into the inter-
play between paug and psmooth on the performance of ResNet-18 on the Cifar-10 dataset.
When psmooth increases (i.e., when there is more emphasis on the application of the Gaussian
filter for mask smoothing), the performance peaks at psmooth = 0.5, regardless of the value of
paug. On the other hand, for the parameter paug, which controls the probability of applying
rotation and distortion augmentation to the mixing mask, a value of 0.25 in combination
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with psmooth = 0.5 yields the highest Top-1 accuracy of 96.92%. The method requires a
lower probability of shape augmentation paug primarily because Fmix can already generate
highly flexible masks, and the application of multiple layers of mixing masks inherently
presents a diversified shape. To harness the full potential of the method, the result suggests
that applying a moderate level of augmentation and smoothing on the mixing mask offers
the best performance.

Table 13. Experiments on tuning paug and psmooth with ResNet-18 on CIFAR-10.

paug psmooth Top-1 (%)

0.0 0.0 96.68
0.0 0.25 96.81
0.0 0.5 96.85
0.0 0.75 96.80
0.0 1.0 96.75
0.25 0.5 96.92
0.5 0.5 96.82
0.75 0.5 96.67

For our mixing mask augmentation, especially when considering rotation, we set the
maximum rotation angle to range from −45◦ to +45◦. This range essentially covers all
the orientations. For the smoothing process, Gaussian blurring is applied with a window
size chosen randomly from the set [5, 7, 11, 13] for 64× 64 images and [9, 15, 25, 35, 45] for
224× 224 images.

5. Future Work

While MiAMix has showcased compelling results, as is evident from our rigorous
evaluations against existing state-of-the-art mixed sample data augmentation techniques, it
also opens avenues for intriguing future work. One such avenue is delving deeper into the
interpretability of the method. With the increasing complexity and diversity brought about
by MiAMix, understanding the exact nature of the transformations and their impact on the
neural network’s internal representations becomes crucial.

Another promising direction would be better parameterization. The current approach
has several parameters, and while the paper identifies their optimal values from our
experiments, a more extensive empirical foundation would allow us to devise a simpler
strategy to adjust the level of diversification instead of tuning each hyperparameter. This
can potentially lead to a more streamlined approach similar to the AutoMix [11] method.
Furthermore, there is potential in exploring adaptive algorithms that could dynamically
adjust the mixup strategy based on the model’s performance or the complexity of the data.
This could ensure that the augmentation strategy evolves in tandem with the learning
process, optimizing for both generalization and computational efficiency.

Moreover, the proposed methodology is primarily optimized for image data, but it
presents potential applications beyond its current domain. It would be particularly intrigu-
ing to explore its efficacy on audio data. Given the distinct nature of audio signals and their
intricate temporal dependencies, adapting and refining MiAMix for such datasets can pro-
vide a fresh perspective on its versatility. Such exploration may necessitate modifications
in the mixing masks or even the introduction of new augmentation strategies tailored to
audio’s unique challenges.

6. Conclusions

In conclusion, our work in this paper has provided a significant contribution toward
the development and understanding of Multi-layered Augmented Mixup (MiAMix). By
reimagining the design of GMix, we have introduced an augmented form, AGMix, that
leverages the Gaussian kernel’s flexibility to produce a diversified range of mixing outputs.
Additionally, we have devised an innovative method for sampling the mixing ratio when
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dealing with multiple mixing masks. Most crucially, we have proposed a novel approach
for MSDA that incorporates various stages, namely: random sample pairing, mixing meth-
ods and ratios sampling, the generation and augmentation of mixing masks, and the output
of mixed samples. By unifying these stages into a cohesive framework—MiAMix—we
have constructed a search space replete with diverse hyper-parameters. This multi-stage
approach offers a more diversified and dynamic way to apply data augmentation, poten-
tially leading to improved model performance and better generalization on unseen data.
Importantly, our methods do not incur excessive computational costs and can be seamlessly
integrated into established training pipelines, making them practically viable. Furthermore,
the versatile nature of MiAMix allows for future adaptations and improvements, promising
an exciting path for the continuous evolution of data augmentation techniques. Given these
advantages, we are optimistic about the potential of MiAMix to significantly influence
and shape the field of machine learning, thereby enabling more robust and efficient model
training processes.
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Appendix A. More Examples of MiAMix

Additional examples showcasing the the processes within each mixing stage in MiAMix
method can be found in Figure A1.

Figure A1. Cont.
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Figure A1. Three additional examples of MiAMix.
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