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Abstract: In the present work, a multi-angle approach is adopted to develop two ML-QSPR models
for the prediction of the enthalpy of formation and the entropy of molecules, in their ideal gas state.
The molecules were represented by high-dimensional vectors of structural and physico-chemical
characteristics (i.e., descriptors). In this sense, an overview is provided of the possible methods that
can be employed at each step of the ML-QSPR procedure (i.e., data preprocessing, dimensionality
reduction and model construction) and an attempt is made to increase the understanding of the effects
related to a given choice or method on the model performance, interpretability and applicability
domain. At the same time, the well-known OECD principles for the validation of (Q)SAR models
are also considered and addressed. The employed data set is a good representation of two common
problems in ML-QSPR modeling, namely the high-dimensional descriptor-based representation and
the high chemical diversity of the molecules. This diversity effectively impacts the subsequent appli-
cability of the developed models to a new molecule. The data set complexity is addressed through
customized data preprocessing techniques and genetic algorithms. The former improves the data
quality while limiting the loss of information, while the latter allows for the automatic identification of
the most important descriptors, in accordance with a physical interpretation. The best performances
are obtained with Lasso linear models (MAE test = 25.2 kJ/mol for the enthalpy and 17.9 J/mol/K
for the entropy). Finally, the overall developed procedure is also tested on various enthalpy and
entropy related data sets from the literature to check its applicability to other problems and competing
performances are obtained, highlighting that different methods and molecular representations can
lead to good performances.

Keywords: machine learning; QSPR/QSAR; high-dimensional data; descriptors; thermodynamic
properties; feature selection; genetic algorithms

1. Introduction

Quantitative Structure Property/Activity Relationship (QSPR/QSAR) models have
been widely employed for several decades in chemistry-related fields to predict various end-
points of molecules (i.e., physico-chemical properties and biological activities, respectively)
on the basis of their structure (e.g., descriptors, fingerprints, graphs), via mathematical
methods. Successful QSPR/QSAR applications include very different endpoints such as
critical temperature and pressure [1], normal boiling point [2], heat capacity [3], enthalpy
of solvation [4]/vaporization [5,6], blood-brain barrier permeability [7], physico-chemical
properties of polymers/fuels/ionic liquids [8–15], solubility [16–21], minimum ignition
energy of combustible dusts [22] or antibacterial/antiviral properties [23,24].

To construct these QSPR/QSAR models, numerous mathematical methods were used
ranging from simple and interpretable linear regression methods (e.g., multiple linear
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regression and partial least squares) to more complex and nonlinear machine learning (ML)
and deep learning methods, in response to the rising complexity of available data sets
(e.g., larger data sets, nonlinear relations between molecular structures and endpoints,
diversity in the molecular structures) [25–29]. Similarly, significant progress has been
made in terms of the molecular structure representation, which evolved from simple
representations (e.g., with few descriptors) to more complex ones (e.g., with up to thousands
of descriptors, or based on graph neural networks (GNN)). More generally, the need to
discover and develop more rapidly new molecules and properties has kept QSPR/QSAR
research particularly active. These data-driven models effectively circumvent the complex
and time-consuming development of knowledge-based models and experimental studies.
More examples of artificial intelligence and ML application in various subfields of chemistry
can be found in [30,31].

However, many QSPR/QSAR works lack important elements and fail to properly
address the recommendations from the OECD (Organization for Economic Co-operation
and Development) [25,32,33]. In particular, these recommendations are composed of 5 prin-
ciples aiming at ‘facilitating the consideration of a (Q)SAR model for regulatory purposes’,
for example when predicting the health hazards and toxicity of new chemicals [25,29].
These principles dictate that any relevant study should clearly include a defined endpoint,
an unambiguous algorithm, a defined domain of applicability, appropriate measures of
goodness-of-fit/robustness/predictivity and, if possible, a mechanistic interpretation [34].
Even if they were initially established to predict the hazards of chemicals, these general
principles well-addressed the critical aspects during the development of any ML procedure.
Besides, the use of ML methods has exploded over the last decades and there is a lack of
“rules” to control whether the models are properly developed, which would facilitate their
use and acceptance. Developing a ML model without possible further application is indeed
useless. For all these reasons, the OECD principles were considered in this work in the case
of thermodynamic properties.

The development of any ML-QSPR/QSAR model is generally composed of the fol-
lowing well-known steps: data collection, data preprocessing, dimensionality reduction,
model construction and applicability domain definition. Along the implementation of
these steps, a great number of methods and choices are presented to the developer, de-
pending also on the characteristics of the problem and the available data, and these have a
direct impact on the model performance, interpretability and applicability (e.g., to a new
chemical). However, a clear overview of the possible methods or a clear justification of
a choice over another one does not typically accompany relevant studies, thus making
it unclear whether the proposed solution is general or robust enough for the envisioned
application area. Accordingly, the first and main contribution of this work is to break-down
and analyze the different steps of the development of a ML-QSPR/QSAR model in an
attempt to assess the impact and the contribution of each choice and method along the
process, while considering the OECD principles. The objective of this methodological
approach will be the development of a predictive ML-QSPR model for two thermodynamic
properties of molecules, namely the enthalpy of formation and the absolute entropy for the
ideal gas state of molecules at 298.15 K and 1 bar. The representation of the molecules will
be based on molecular descriptors.

The enthalpy of formation and entropy, which are the endpoints of interest in this study,
are crucial to many chemical applications. In particular, they are required in the design of
molecules, since they impact molecular stability; they are also present in the development
of kinetic models and the prediction of reactions since they influence energy balances
and equilibrium. Accordingly, the design of any process, involving chemical reactions or
heat transfer, is prone to depend on the existence of accurate models for the prediction
of these properties. Among the most common approaches to predict them, quantum
chemistry (QC) and group contribution (GC) methods have been largely employed so far
for their accuracy (e.g., <1 kcal/mol for the enthalpy of formation of small molecules)
and/or simplicity [35–44]. However, for large/complex molecules, QC methods become
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physically and computationally complex, while for GC methods, the decomposition of the
molecules into known groups becomes a tedious/infeasible task and corrections due to
the contribution of the 3D overall structure are needed (e.g., to include steric effects and
ring strain effects). Consequently, ML methods represent an interesting alternative to the
aforementioned QC and GC approaches due to their accuracy, low computation time and
ability to describe complex problems without requiring physical knowledge. At the same
time, ML methods, being data-driven in nature, suffer from a lack of interpretability and
extrapolability, in comparison to their QC and GC knowledge-based counterparts [45].

Molecular descriptors represent diverse structural and physico-chemical character-
istics of the molecules. Thousands of different descriptors have been reported in the
literature and their calculation is nowadays facilitated by the use of publicly accessible
libraries and software (e.g., RDKit, AlvaDesc, PaDEL, CDK, Mordred) [46–50]. In particular,
the software AlvaDesc, which was employed in the present study, generates a total of 5666
descriptors for each molecule. This relatively high number of descriptors (i.e., concerning a
physico-chemical problem) contains rich information on the molecular structures and thus
increases the chances of capturing the relevant features affecting the thermodynamic prop-
erties, in the absence of knowledge. At the same time, this poses a number of difficulties
in the development of the ML-QSPR/QSAR model and its generalized implementation
and interpretation. These difficulties are related to the need to distinguish, at a certain
point within the development procedure, the number and identity of the most relevant
descriptors to the endpoints of interest, which remains one of the biggest challenges related
to the use of descriptors (a.k.a. the “curse of dimensionality”). Commonly, to overcome
these issues, a dimensionality reduction step is implemented before the model construction.
On the one hand, feature extraction methods project the original high-dimensional space
into a new space of lower dimension, thus creating new features being linear or nonlinear
combinations of the original ones. On the other hand, feature selection methods select
only a limited subset of descriptors as being the most representative ones and the rest are
discarded, which facilitates the interpretability of the subsequent model in comparison
with feature extraction methods. The selection of descriptors can also be based on available
knowledge (i.e., expert input) but such knowledge is not readily available for the complete
list of generated descriptors. These difficulties and the different dimensionality reduction
approaches that can be undertaken under the premise that physical knowledge is not
available a priori for all 5666 descriptors are analyzed as part of this work. A mechanis-
tic interpretation of the descriptors that are identified as highly relevant by the different
approaches is also attempted.

Finally, this study was not constrained to molecules belonging to a limited number
of chemical families and structures, but, within the perspective of the discovery of new
molecules for various applications, the development of models that will be applicable to
a large diversity of molecules was pursued. Note, that this is a specific differentiating
point of the present study and a major challenge as many reported studies are restricted to
molecules of specific chemical families and/or structural characteristics [51–57].

More generally, this work constitutes a multi-angle, holistic approach to the procedure
for the development of generally-applicable ML-QSPR/QSAR models, based on a high-
dimensional representation of molecules (i.e., descriptors) and in the presence of limited
expert-domain knowledge, following the recommendations of the OECD. As such, it can
serve to enlighten different aspects of the process, especially the ones that are poorly
discussed in the literature, as well as to guide newcomers in the field. To facilitate legibility,
the presentation of the complete study will be made through a series of articles, the present
one being the first of the series and focusing on the general methodology from data
collection to model construction. The following article addresses the questions of defining
the applicability domain and detecting the outliers at different stages of the ML-QSPR
procedure, this challenge being related to the high-dimensional molecular representation.
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2. Data Set and Methods

This section provides detailed information about the employed data set and methods,
in agreement with the first and the second principles of the OECD, namely “a defined
endpoint” and “an unambiguous algorithm”.

2.1. Data Set

DIPPR’s (Design Institute for Physical Properties) Project 801 Database (version
05/2020) [58], containing 2230 molecules represented by their Simplified Molecular In-
put Line Entry Specification (SMILES), was employed in this work. A large diversity of
molecules is included in this database in terms of chemical family, size, atomic composition
and geometry (e.g., linear/cyclic/branched, simple/multiple bonds). Figure 1 presents
the distribution of the molecules of the database in terms of their chemical family. It can
be observed that the number of molecules varies significantly among the different chem-
ical families (i.e., between 15 molecules for inorganic compounds and 247 molecules for
halogen compounds). Figure 2a shows the respective atom number-distribution of the
same molecules. The vast majority of molecules, corresponding to ca. 90% of the database,
have less than 40 atoms while the number of large molecules (i.e., containing more than
100 atoms) is limited to 15 molecules. Figure 2b provides additional information on the
number of cycles of the molecules of the database. It can be observed that highly-cyclic
molecules are under-represented in this specific database. Additional ways to compare the
molecules could be envisioned but the presented figures suffice to demonstrate the high de-
gree of heterogeneity that characterizes the data set. Note that the following molecules were
eliminated due to identical SMILES and, hence, identical descriptors: hydrogen/hydrogen
(para), phosphorus (white)/phosphorus (red) and cis-1,8-terpin/trans-1,8-terpin. Deu-
terium, perchloryl fluoride, chlorine trifluoride and air were eliminated as well from the
database due to technical issues in calculating their descriptor values. The resulting dataset
is then composed of 2220 molecules.

Figure 1. Classification of DIPPR molecules per chemical family (the numbers on the right of the bars
correspond to the number of molecules within each family).
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(a) (b)

Figure 2. Classification of DIPPR molecules (a) per number of atoms and (b) per number of rings,
within each molecule.

In this work, the considered endpoints are the enthalpy of formation and the absolute
entropy for the ideal gas state of molecules at 298.15 K and 1 bar. For simplicity, they will be
henceforth, respectively, denoted as enthalpy (H) and entropy (S). For each molecule of the
database, the values of these physico-chemical properties are accompanied by the associated
determination method and the relative uncertainty. Diverse determination methods have
been used in the construction of the database including both theoretical calculations (e.g.,
QC, GC, calculations based on other phases, conditions or properties) and experimental
measurements. The distribution of the values of both properties is given in Figure 3. The
relative uncertainties are classified in different levels within the DIPPR database, namely
<0.2%, <1%, <3%, <5%, <10%, <25%, <50%, <100% and NaN, as shown in Table 1.
This classification depends on several criteria such as data type, availability, agreement
of data sources, acquisition method or originally reported uncertainty [59]. In this work,
only the molecules within the five first classes of relative uncertainties were considered
as a compromise between the number of molecules and data reliability. Accordingly, the
resulting data sets for the enthalpy and entropy were composed of 1903 and 1872 molecules,
respectively.

(a) (b)

Figure 3. Distribution of (a) the enthalpy and (b) the entropy values of the DIPPR database. A total
of 2147 and 2119 values are present in the database for the enthalpy and the entropy, respectively.
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Table 1. Classification of DIPPR data per uncertainty.

Property Uncertainty

<0.2% <1% <3% <5% <10% <25% <50% <100% NaN

Enthalpy 50 401 1013 242 197 188 33 4 19
Entropy 66 184 1019 419 184 199 20 0 28

2.2. Descriptors

There are different ways to represent molecular structures such as SMILES, finger-
prints, descriptors or graphs [60]. Each representation has its own advantages and draw-
backs and the choice will depend on each problem’s requirements and characteristics. In
particular, the use of graph-based representations has exploded over the last decade due
to their ability to learn the relevant chemical features, thus preventing the manual feature
engineering step of traditional representations (e.g., descriptors or fingerprints) [61,62].
Nevertheless, this works focuses on descriptor-based representations for their simplicity
and easier interpretability, while displaying good performances in various works [63–65].
There is no consensus about the best molecular representation yet (i.e., leading to the
best prediction accuracy), and different representations can lead to comparable predic-
tions [63,64,66]. Indeed, each representation contains different information about the
molecular structure and it is difficult to know which information is relevant for a given
property. In any case, the comparison and/or combination of descriptors with other
molecular representations can be envisioned as a future step of this work.

Molecular descriptors consist of different numerical properties, characteristic of the
structural and topological features or other physico-chemical properties of the molecules,
that are commonly employed in similar QSPR/QSAR studies. In this study, descriptors
were used instead of SMILES to represent the molecules as they contain 2D (based on
molecule graph) and 3D (based on 3D coordinates) information which could impact the
properties of interest. Indeed, enthalpy and entropy, respectively, measure the heat content
and disorder of a molecule and are, therefore, sensitive to its structure.

The values of the descriptors can be calculated by means of different libraries or soft-
ware, such as PaDEL [48], RDKit [46], CDK [49], AlvaDesc [7,47] or Mordred [50], on the
basis of a standardized description of the molecules (i.e., as input), such as their SMILES no-
tation. In this work, two open-source (PaDEL and RDKit) and one closed-source (AlvaDesc
from Alvascience) tools were tested. Among them, AlvaDesc was finally retained, mainly
due to the high number of calculated molecular descriptors it provides (i.e., 5666 descrip-
tors were provided by AlvaDesc), as well as due to its robustness, ease of implementation,
execution speed and proposed documentation and support. A comparison of different
relevant libraries and software can be found in [50]. Note, that in AlvaDesc software,
1500 3D descriptors require information that can not be provided via the SMILES notation
(i.e., related to the 3D atoms coordinates of the molecules). It was, therefore, necessary to
convert the SMILES notation of the molecules to an MDL Mol standard, prior to importing
them into AlvaDesc. The MDL Mol format essentially consists in an atom block which de-
scribes the 3D coordinates of each atom of the molecule, and a bond block which indicates
the type of bonds between the atoms. The whole conversion procedure is summarized in
Figure 4. The conversion of SMILES (from DIPPR) to MDL Mol format was performed
in two steps, using RDKit, an open-source toolkit for cheminformatics; first, the SMILES
notation from DIPPR was converted to canonical SMILES, the latter being unique to each
molecule as opposed to SMILES. Then, in order to convert canonical SMILES to the MDL
Mol format, the RDKit was employed and generated the conformers of the molecules by
applying distance geometry calculations. The conformers are subsequently corrected by the
ETKDG (Experimental-Torsion Distance Geometry with additional basic knowledge terms)
method of Riniker and Landrum, based on torsion angle preferences [67]. The ETKDG
method, which is a stochastic method using knowledge-based and distance geometry
algorithms, is considered to be an accurate fast conformer generation method, especially
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for small molecules [68]. Lastly, once the MDL Mol format was generated, AlvaDesc was
employed to calculate the 5666 descriptors for each molecule.

Figure 4. Procedure for converting the initial SMILES notation, of the DIPPR database, to molecular
descriptor values.

The generated descriptors can be classified into 33 categories, as shown in Table 2.
Their calculation is based on different mathematical algorithms, available in the literature.
Some of them were developed on the basis of small organic molecules but the algorithms
used in AlvaDesc software are considered to be applicable to a larger set of molecules [47].
Prior to the calculation of descriptors, AlvaDesc operates a series of internal standard-
ization procedures on molecular structures to handle nitro groups, aromatization and
implicit hydrogens. Other standardization procedures can be implemented via other tools
(e.g., AlvaScience software, researcher knowledge) but are not in the scope of this work.
However, this standardization step and, more generally, the accuracy in the representation
of the molecular structures can highly impact the performance of the developed models,
hence specific studies are reported on the preparation of chemical data [25,28,69].

Table 2. AlvaDesc descriptors per category.

Category Category Number of Category Category Number of
n° Name Descriptors n° Name Descriptors

1 Constitutional indices 50 18 WHIM descriptors 114
2 Ring descriptors 35 19 GETAWAY descriptors 273
3 Topological indices 79 20 Randic molecular profiles 41
4 Walk and path counts 46 21 Functional group counts 154
5 Connectivity indices 37 22 Atom-centred fragments 115
6 Information indices 51 23 Atom-type E-state indices 346
7 2D matrix-based descriptors 608 24 Pharmacophore descriptors 165
8 2D autocorrelations 213 25 2D Atom Pairs 1596
9 Burden eigenvalues 96 26 3D Atom Pairs 36
10 P_VSA-like descriptors 69 27 Charge descriptors 15
11 ETA indices 40 28 Molecular properties 27
12 Edge adjacency indices 324 29 Drug-like indices 30
13 Geometrical descriptors 38 30 CATS 3D descriptors 300
14 3D matrix-based descriptors 132 31 WHALES descriptors 33
15 3D autocorrelations 80 32 MDE descriptors 19
16 RDF descriptors 210 33 Chirality descriptors 70
17 3D-MoRSE descriptors 224

2.3. Data Preprocessing

Data preprocessing is a step that, although time-consuming, is crucial in any ML-
development project since the accuracy, efficiency and robustness of the developed model
depend directly on the existence of sufficient data of high quality (i.e., without missing,
constant, redundant, irrelevant values), as commonly transcribed by the popular concept
of “garbage in, garbage out”.

A preliminary analysis of the available data set revealed the following issues: (i) miss-
ing descriptor values (cf. Figure 5), (ii) descriptors with low variance (i.e., quasi-constant
values for all molecules), and (iii) significant correlation between descriptor values (N.B.
if two descriptors are highly correlated, only one of them could be sufficient to describe
the property of interest, the other being redundant). The order in which these issues
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will be dealt with, during the preprocessing stage, as well as the selected treatment ap-
proach for each issue, can influence the final (i.e., preprocessed) data set, and therefore, the
performance of the model. In the present work, the following order was employed:

1. Elimination of missing descriptor values (Desc-MVs).
2. Elimination of descriptors with low variance.
3. Elimination of correlations between descriptors.

Figure 5. Heatmap of DescMVs (white = Desc-MVs; black = defined values; molecules are classified
by their chemical family).

The elimination of the Desc-MVs was selected to be performed at the beginning of
the preprocessing stage to ensure the unbiased calculation of the variance and of the
correlation coefficients of the descriptor values, which are necessary for the subsequent
steps. The existence of Desc-MVs in the data set is the result of the incapacity of AlvaDesc to
calculate them for certain molecules, due to constraints related to the respective calculation
algorithms (e.g., disconnected structures). Accordingly, their removal was preferred over
the implementation of data-imputation techniques (e.g., mean, median, interpolation, ML),
as the latter would risk introducing bias and artifact values into the data set. The three
following algorithms were compared for the elimination of Desc-MVs: (i) elimination by
rows (i.e., molecules), (ii) elimination by columns (i.e., descriptors), and (iii) alternating
elimination by row or column.

The first algorithm removes all molecules that contain at least one missing value,
presenting the drawback of a vast reduction of the number of considered molecules. The
second algorithm consists of eliminating the complete descriptor from the data set, for all
molecules, if this descriptor contains even a single missing value for a given molecule. This
approach presents the inconvenience of eventually reducing the number of descriptors to a
stage where molecules become identical among them, due to the loss of the differentiating
descriptors. Note, that the important diversity of the considered molecules results in an
inevitable absence of some values for certain groups of descriptors and for specific chemical
families (cf. Figure 5), which is one of the challenging elements of the adopted generic (i.e.,
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non family-specific) approach. The third algorithm was based on an iterative alternating
step-wise elimination of either the molecule or the descriptor that contained the highest
number of missing values at the given iteration, thus limiting the loss of information, both
in terms of molecules and descriptors. In this latter elimination algorithm, iterations are
carried on until the removal of all the Desc-MVs from the data set.

Concerning the elimination of descriptors with low variance, this was performed
before the elimination of the correlations to reduce the computational cost associated with
the calculation of the correlation matrix, required for the correlation elimination step. More
generally, the role of this step is to remove the quasi-constant descriptors as they show no
effect on the target property. Several threshold values were tested in terms of the minimum
descriptor variance, below which the descriptor elimination should be employed. These
threshold values are 0 and 10k (for k in {−4,−3,−2,−1, 0, 1, 2, 3}).

Finally, the elimination of correlations between descriptors was based on the calcu-
lation of the correlation matrix among all descriptors. A novel approach, based on the
graph theory, was employed to ensure that all correlations above a fixed threshold would
be efficiently removed, without any additional information loss and without the risk of
retaining redundant information in the data set. This approach is particularly pertinent
in the presence of high-dimensional data sets, for which a pairwise consideration would
be insufficient. Indeed, in an approach where correlated descriptors would be removed
in consecutive loops of pairwise eliminations, one risks eliminating excessive information
or even adding bias to the data set (cf. Supplementary Materials). According to the ap-
proach adopted here, it is possible to construct graphs in which nodes and edges represent
descriptors and correlation coefficients, respectively. The designed procedure consists
of selecting which descriptors to keep/remove in each graph, in order to eliminate all
correlations above a fixed threshold value of the correlation coefficient, without losing
additional information. Accordingly, the three following cases are distinguished, as also
illustrated in Figure 6:

1. A descriptor does not belong to any graph (i.e., it is not correlated to any other
descriptor) and must be retained.

2. Two descriptors form a complete graph. In this case, only one of them is retained.
3. Three or more descriptors belong to a graph. In this case, the descriptor with the

most correlations is retained and all descriptors connected directly (i.e., descriptors
that are nodes on common edges with the descriptor in question) with this one are
eliminated. The remaining descriptors are analyzed through cases 1, 2 and 3 until
there is no descriptor left.

Figure 6. Graph theory-based method for the elimination of correlations between descriptors (nodes
and edges correspond to descriptors and correlations (above a given threshold for the value of the
correlation coefficient), respectively). Case 1: non correlated descriptors; Case 2: pairwise correlated
descriptors; Case 3: multiple correlations between descriptors. Descriptors in green are selected
while those in red are removed.
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The following thresholds were tested to eliminate correlations between descriptors:
0.6, 0.7, 0.8, 0.9, 0.92, 0.95, 0.98 and 0.99.

All the configurations that were tested during the preprocessing step, in the frame-
work of the present study, are summarized in Table 3. Default values for the different
preprocessing steps were also set up for a preliminary screening of various ML methods in
Section 3.1.

Table 3. Summary of the tested and default preprocessing options.

Preprocessing Step Tested Default

Elimination of Desc-MVs
- By row

Alternating row or column- By column
- Alternating row or column

Elimination of descriptors [0, 0.0001, 0.001, 0.01, 0.001with low variance 0.1, 1, 10, 100, 1000]

Elimination of correlated [0.6, 0.7, 0.8, 0.9, 0.95descriptors 0.92, 0.95, 0.98, 0.99]

2.4. Dimensionality Reduction

Prior to applying directly ML models to the preprocessed data, it can be necessary to
reduce the number of descriptors through dimensionality reduction methods. Indeed, this
step helps to reduce the computational cost associated with the model implementation,
prevent overfitting and eventually improve interpretability by identifying the most relevant
descriptors. It also allows to increase the ratio of training molecules to descriptors which
further strengthens the model significance and reduces variance [25,70]. Dimensionality
reduction methods can be divided into two categories, namely feature extraction and
feature selection methods. The former creates a lower dimensional set of new descriptors,
consisting of combinations of the original descriptors. Principal component analysis (PCA),
linear discriminant analysis (LDA) and autoencoders are examples of popular feature
extraction methods [71–75]. Conversely, feature selection methods are based on the premise
of selecting a subset of the original descriptors, without transforming them, and are typically
distinguished into three sub-categories, as illustrated in Figure 7: filter, wrapper and
embedded methods [76–80].

Figure 7. Overview of feature selection methods with their advantages and limits in green and red,
respectively.
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Filter methods calculate a score for each descriptor, without implementing a ML
model, and use these scores to rank descriptors and select those whose values are situated
above/below a given threshold. The calculation of the Pearson coefficient between each
descriptor and the response is a typical example of such an approach. To some extent,
the elimination of descriptors with low variance, as presented previously within the data
preprocessing step, can also be considered as a filter method since the values of the variance
served to ‘filter’ the descriptors. Inversely, wrapper and embedded methods both require
(and hence, depend on) the implementation of a ML model. Concerning wrapper methods,
they consist of evaluating different possible subsets of descriptors (through the selected
ML model) until a stopping criterion is fulfilled (e.g., related to the number of descrip-
tors or to the performance of the ML model). Genetic algorithms (GA) and sequential
approaches (e.g., sequential forward selection (SFS) or backward elimination) belong to
wrapper methods. As for embedded methods, their name originates from the fact they
are ‘embedded’ in the selected ML model, meaning that the latter internally identifies the
most important descriptors during the training phase. The importance of each descriptor
can be read through some attributes of the ML model such as the weights/coefficients in
regression models (e.g., least absolute shrinkage and selection operator (Lasso), support
vector regression (SVR)) or the impurity-based feature importance in ensemble models
(e.g., random forest (RF), extra trees (ET)).

More generally, feature selection methods find wider application in QSPR/QSAR
studies than feature extraction ones, in which high-dimensional data sets are more often
encountered, particularly in bioinformatics for the selection of genes [76,81,82]. Indeed, in
high-dimensional problems, it is particularly difficult to interpret extracted features that
are expressed in the form of combinations of an important number of descriptors, as part
of a feature extraction approach. Within feature selection methods, wrapper approaches
are more likely to find a suitable subset of descriptors, respecting the imposed criteria, as
a result of a comprehensive search in the descriptor space. Additionally, although wrap-
per and embedded methods depend on the choice of a specific ML model, they consider
dependencies between descriptors which can help to improve ML model performance
in comparison to filter methods. However, both come at the expense of a higher compu-
tation time, although embedded methods generally offer a better compromise between
computation time and ML model performance. Note that, a great diversity of feature
selection methods/categories is reported in the literature, extending well beyond the brief
overview attempted in this work, while their implementation may also include sequential
combinations of different techniques [76,77,81,83–87].

As part of this study, different dimensionality reduction methods were tested and
compared, as summarized in Table 4: PCA for feature extraction as well as two filter
methods (Pearson coefficient and mutual information (MI)), two wrapper methods (GA
and SFS) based on Lasso model and three embedded methods (Lasso, SVR lin and ET)
for feature selection. All these methods were implemented using the Scikit-learn default
options of Python v3.9.12 [88], except for the GA whose procedure is fully described in
the Supplementary Materials. In all cases, a mechanistic interpretation of the identified de-
scriptors with the different dimensionality reduction methods is attempted, in compliance
with the scope of this study and the fifth principle of the OECD.

Table 4. Methods tested for dimensionality reduction.

Feature Extraction
Feature Selection

Filter Wrapper Embedded

PCA
Pearson coefficient GA Lasso

MI SFS SVR lin
ET
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2.5. ML Model Construction

This step, which is the central one in the study, consists of training and subsequently
validating ML models on the basis of the final form (i.e., after the preprocessing and
dimensionality reduction steps) of the data set. Once again, the developer is faced with a
series of dilemmas, both in terms of the selection of the most appropriate ML methods as
well as in terms of their implementation options, such as the ones concerning data scaling,
data splitting, optimization of the hyperparameters (HPs), selection of the most suited
performance metrics, etc. All the configurations that were tested during this step, in the
framework of the present study, are summarized in Table 5.

Table 5. Configurations tested during ML model construction.

Data Scaling Data Splitting ML Models Performance Metrics

Standard 5-fold internal CV LR Coefficient of determination
xscaled = x−x̄

σx
5 and 10-fold external CV Ridge R2 = 1− ∑(yDIPPR−ypredicted)

2

∑(yDIPPR−yDIPPR)2

Lasso
Min-Max SVR lin Root Mean Squared Error

xscaled = x−xmin
xmax−xmin

GP
RMSE =√

1
n ∑(yDIPPR − ypredicted)2

kNN
Robust DT Mean Absolute Error

xscaled = x−Q2
Q3−Q1

RF MAE =
1
n ∑
∣∣∣yDIPPR − ypredicted

∣∣∣
ET
AB
GB

MLP

Data scaling consists of transposing the values of all the input features (i.e., the
descriptors in this case) to a reference range before training, so that their original differences
in scale are not considered by the model as significant. Although this scaling step is
considered a rather trivial procedure in all data-driven modeling studies, depending
on the type of ML method, it may affect the performance of the model. In this work,
different scaling methods were compared, namely the standard, min-max and robust
scaling techniques (cf. Table 5). The latter is characterized by its robustness to outliers,
as it is based on quartiles, while the two former are more sensitive to outliers since their
calculation is based on the mean, standard deviation, min and max values. Note, that
an outlier is loosely referred here to an abnormal observation among a set of values
(e.g., descriptor values, response values). A more detailed discussion on the identification
and treatment of outliers is included in the second article of this study [89].

Data splitting is the partitioning of data into training, validation and test sets. In partic-
ular, a nested cross-validation (CV) scheme was employed in this work to assess the effect
of data splitting on the model performance (represented by error bars or uncertainties in
the graphs and tables of this article), and therefore, produce more significant and unbiased
performance estimates [32,70,90,91]. As shown in Figure 8, the nested CV procedure is
effectively composed of an internal k-fold CV loop, nested within an external k′-fold one.
The former is used for the optimization of the HPs while the latter is for model selection.
Concerning the selection of the values of k and k′, these depend on the quantity of data
and affect the simulation time since a higher value of k (or k′) will require a higher number
of simulation passes. The most commonly encountered values are 5 or 10 as they have been
found to ensure a good trade-off between the amount of training data, bias, variance and
computation time [92,93]. In this work, k was fixed at a value of 5 while the value of k′ was
varied between 5 and 10 to assess its impact on the performance of the developed models.
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Figure 8. Nested CV. The outer loop on the left (blue and purple boxes for the training and test sets,
respectively) is used for model selection while the inner loop on the right (grey and yellow boxes for
the training and validation sets, respectively) is used for the optimization of the HPs.

Note, that in an attempt to minimize data leakage in this work, only the training data
set (from the external loop) was used to determine the parameters of the scaling methods
but also during the earlier dimensionality reduction step. The term “data leakage” describes
cases in which model training uses, implicitly or explicitly, information that is not strictly
contained in the training data set. For example, during a standard scaling of the data, if the
mean and the standard deviation are calculated on the complete data set (i.e., including the
test data), this information about the test data is implicitly included in the model training
process. If not well addressed, and depending on the data distribution, data leakage can
lead to highly-performing models on the data set but with limited generalization capacities.

Accordingly, the effects of the different scaling and splitting methods were evaluated
for 12 linear and nonlinear ML models. These include ordinary least squares linear regres-
sion (LR), ridge, Lasso, SVR lin (SVR lin), Gaussian processes (GP), k-nearest neighbors
(kNN), decision tree (DT), RF, ET, gradient boosting (GB), adaptive boosting (AB) and
multilayer perceptron (MLP). Among the most popular performance metrics, which are
typically employed to evaluate and compare models, are the coefficient of determination,
R2, the root mean squared error, RMSE, and the mean absolute error, MAE (cf. Table 5).
Other examples of metrics that are employed in similar studies can be found in [32]. The
choice of the most pertinent performance metric that will help discriminate models depends
on the problem requirements; for example, if high prediction errors must be penalized
at all costs (i.e., even for acceptable overall average performances), RMSE will be more
adapted than MAE. In this article, the three aforementioned performance metrics will be
provided separately for the internal training and validation and the external training and
test sets, to facilitate comparison with other similar studies. The computation times will
also be provided, as they can constitute an additional decision criterion.

More generally, the evaluation of the performance of a model is to be related to the
fourth principle of the OECD, concerning the implementation of “appropriate measures
of goodness-of-fit/robustness/predictivity”. The two former refer to the model internal
performance, in terms of the training set, while the latter refers to the external performance,
in terms of the test set. In particular, the goodness-of-fit measures how well the model
fits with the data, the robustness is the stability of the model in case of a perturbation
(e.g., modification of the training set via CV methods) and the predictivity measures how
accurate the prediction for a new molecule is [34]. Many statistical validation techniques
other than the CV method used in this work can be found in the literature [28,34]. Besides,
the identification of appropriate metrics for external validation has been much debated; for
example, the suitability of R2 as an appropriate metric for such studies has been criticized
as it only measures how well the model fits the test data [28,94,95]. In general, the use
of several metrics is recommended and a model can be accepted if it performs well in
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all metrics (i.e., displaying high R2 and low MAE and RMSE values) for all training,
validation and test sets.

The performance of ML models can be further improved via an optimization step of
their HP values. These are parameters that define structural elements of the methods, such
as the number of neurons or hidden layers in MLP, and whose values are not determined
as part of the training phase. In this respect, GridSearch CV was employed in this work
to optimize the HPs of the ML models that were identified as best-performing ones, after
an initial screening stage. This technique consists of evaluating the different possible
combinations of HP values, given a grid of predefined ranges for each one by the user.
Other methods, sometimes more adapted to specific ML models, are also reported in the
literature [96] but their exhaustive evaluation was found to exceed the scope of this work.

All the ML models of this work were implemented using the Scikit-learn library v1.0.2
of Python v3.9.12 [88], while RDKit v2022.03.5 and AlvaDesc v2.0.8 were used for the
generation of the data set. All the reported simulation times concern runs that were carried
out on an Intel® Core™i9-10900 CPU @2.80 GHz personal workstation.

3. Results

For reasons of brevity, all the figures and tables of results that are provided in this
section concern the modeling of the enthalpy, unless otherwise indicated. Those for the
entropy are provided in the Supplementary Materials.

3.1. Preliminary Screening with Default Preprocessing and without Dimensionality Reduction
3.1.1. Comparison of the Performance of Different Models

Before investigating the effects of data preprocessing and dimensionality reduction, a
preliminary screening of different ML modeling methods is performed to quickly identify
the most promising ones for the present regression problem. This will allow also to
evaluate the effects of data scaling and splitting methods, as well as to assess the pertinence
of the selected performance metrics. The performances (R2, MAE and RMSE) of the 12
screened ML models are given in Figure 9 for the external training and test sets, the error
bars corresponding to different splits. These values are obtained with data containing
1785 molecules and 1961 descriptors, resulting from the previously described preprocessing
steps with the default options (cf. Table 3). Furthermore, the steps of dimensionality
reduction and HP optimization are omitted in this preliminary screening. All data are
scaled with the standard method and split according to a 5-fold external CV (i.e., approx
1428 (80%) molecules for training and 357 (20%) for testing).

Based on the different performance metrics, the models displaying the best gener-
alization (i.e., test) performances are Lasso, SVR lin, ET and MLP. Their parity plots are
displayed in Figure 10. Figure 9 shows that the linear regression models Ridge and Lasso
both perform better than LR, all three models being defined by the general Equation (1):

ŷ = w1x1 + w2x2 + w3x3 + . . . + wpxp + b = Xw + b (1)

where ŷ is the vector of predicted values, w = (w1 . . . wp) corresponds to the parameters
(a.k.a. coefficients or weights) of the model, X = (x1 . . . xp) is the design matrix of size
(n, p) with n and p the number of molecules and descriptors, respectively, and b is the
intercept.

The superior performance of Ridge and Lasso, compared to LR, can be explained
by the fact that their objective functions (cf. Equations (3) and (4), respectively) contain
a regularization term, α, as opposed to that of LR (cf. Equation (2)). This regularization
term penalizes the weights/coefficients of the input terms, X (i.e., corresponding to the
descriptors), that do not display a significant contribution to the predicted property. The
penalization takes the form of a value reduction that may result in complete elimination
(i.e., shrinkage to zero) of some coefficients. This allows keeping the model as simple
as possible and, hence, avoiding overfitting. At the same time, it can be shown that
the L1-regularization, employed in Lasso, results in a higher elimination rate than the
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L2-regularization, employed in Ridge [97]. Indeed, in the simulation shown here, Lasso
eliminated around 88% of the 1961 descriptors while Ridge eliminated less than 1%. The
adjustment of the value of the regularization coefficient, α, which is a HP of these models,
determines the compromise between underfitting (i.e., the model is oversimplified) and
overfitting (i.e., the model remains highly complex). Note that the Scikit-learn default value
of α = 1 was used in these simulations.

(a) (b)

(c)

Figure 9. Performance of the different ML models during the preliminary screening for the enthalpy:
(a) R2; (b) MAE; (c) RMSE (preprocessing: default, splitting: 5-fold external CV, scaling: standard,
dimensionality reduction: none, HP optimization: none).

Similarly, as Ridge and Lasso, SVR lin [98,99] performs better than LR with high-
dimensional data. As shown in the objective function of SVR lin (Equation (6), equivalent
to Equation (5) with a linear kernel), the left term enables penalizing coefficients to limit
overfitting, while the right term controls, via the regularization parameter C, the importance
given to the points outside the epsilon tube which surrounds the regression line. Instead of
focusing on minimizing the distance between data and model as in LR, Ridge and Lasso, the
objective function of SVR lin attempts to minimize the distance between data outside the
epsilon tube and the epsilon tube itself. Figure 11 displays the shrinking of the coefficients
with Ridge, Lasso and SVR lin methods with respect to the classical LR model. It can be
observed that the shrinking effect is more pronounced for Lasso, followed by SVR lin and
Ridge, which is consistent with the observed performances and overfitting degree.
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(a) Lasso, split 1 (b) Lasso, split 2

(c) Lasso, split 3 (d) Lasso, split 4 (e) Lasso, split 5

(f) SVR lin, split 1 (g) SVR lin, split 2

(h) SVR lin, split 3 (i) SVR lin, split 4 (j) SVR lin, split 5

Figure 10. Cont.
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(k) ET, split 1 (l) ET, split 2

(m) ET, split 3 (n) ET, split 4 (o) ET, split 5

(p) MLP, split 1 (q) MLP, split 2

(r) MLP, split 3 (s) MLP, split 4 (t) MLP, split 5

Figure 10. Parity plots of the selected ML models during the preliminary screening, for different splits,
for the enthalpy (preprocessing: default, splitting: 5-fold external CV, scaling: standard, dimensionality
reduction: none, HP optimization: none).
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Figure 11. Distribution of the coefficients in various linear regression models during the preliminary
screening, for split 1, for the enthalpy (preprocessing: default, splitting: 5-fold external CV, scaling:
standard, dimensionality reduction: none, HP optimization: none).

Objective functions:

• Linear regression:
minw,b‖Xw + b− y‖2

2 (2)

• Ridge:
minw,b‖Xw + b− y‖2

2 + α‖w‖2
2 (3)

• Lasso:

minw,b
1

2n
‖Xw + b− y‖2

2 + α‖w‖1 (4)

• SVR and SVR lin:

SVR : minw,b
1
2
‖w‖2

2 + C
n

∑
i=1

(ζi + ζ∗i ) (5)

SVRlin : minw,b
1
2
‖w‖2

2 + C
n

∑
i=1

max(0, |Xw + b− y| − ε) (6)

subject to, for i = 1 . . . n:

{yi − wxi − b ≤ ε + ζi; wxi − b− yi ≤ ε + ζ∗i ; ζi, ζ∗i ≥ 0} (7)

in the above, n is the number of training molecules, y is the vector of observed values, α and
C are regularization parameters, ε is the radius of the ε-tube surrounding the regression
line and ζi, ζ∗i are the distances between the ε-tube and the points outside of it.

The results of GP show a perfect fit to the training data but the model is completely
unable to adapt to the test data, resulting in excessive overfitting (R2 train = 1, R2 test = 0).
This could be attributed to the principle of GP which is based on the prediction of a posterior
distribution over functions from a prior distribution over functions and the available
training data. Predictions are typically accompanied by uncertainties, in contrast to other
regression models, which is an important comparative advantage of GP. These uncertainties
are more or less important depending on whether the training data cover the feature space
around the new test data. However, in high-dimensional spaces, points eventually become
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equidistant [100,101] and the feature space contains many empty regions. In certain cases,
a pertinent choice of the prior distribution, on the basis of existing knowledge on the
behavior of the response with respect to the features has been proven helpful in improving
the prediction performance [102–104]. However, such knowledge is not available in the
present study.

Likewise, DT is also a method that displays overfitting in this problem. The principle
of DT is based on the sequential partition of the training data (root node) into continuously
smaller groups, according to a set of decision rules (internal nodes or branches), until the
minimum required number of samples for the final nodes (leaf nodes) is reached. However,
the construction of a DT can be very sensitive to small variations in the training data and
result in overly-complex trees [88]. This phenomenon can be amplified in the presence of a
large number of features, which is the case here, thus leading the model to learn rules that
are too complex to be generalized to new data.

Different ensemble methods based on DT, namely RF, ET, AB and GB, are also tested
to assess whether the combination of the predictions of a large number of DT can improve
the generalization performance of the model. As shown in Figure 9, these performances are
effectively improved when using these ensemble methods instead of a single DT, except
for AB. Ensemble methods can be categorized into bagging (i.e., RF, ET) and boosting
(i.e., AB, GB) methods. “Bagging” refers to the strategy of training in parallel several strong
estimators (e.g., large DT that present eventual overfitting) on a bootstrap sample of the
training data. The individual predictions are then combined to give one final prediction, in
the form of an average value, thus reducing the variance of the overall model. In “boosting”,
several weak estimators (e.g., small DT accompanied by eventual underfitting) are trained
sequentially with, at each iteration, a new estimator trained by considering the errors of the
previous one. The idea here is that each new estimator attempts to correct the errors made
by the previous one, resulting in less overall bias.

The different performances observed for the tested ensemble models can be explained
by the slight variations in their mechanisms. For bagging, the difference between RF and
ET lies in the method used to compute the splits: RF selects the optimum split while ET
selects it at random to further reduce the variance in comparison to RF. As for boosting, GB
seems to perform better than AB and this can be attributed to different reasons. While no
weighing is applied to the samples in GB, AB increases (resp. decreases) the weights of the
training samples with the highest (resp. lowest) errors after each iteration. Additionally, to
make the final prediction, each individual estimator in AB is weighted based on its error,
while an identical weight is applied to the estimators of GB. These two differences result
in a lower generalization capacity for AB to new data, as the most problematic training
samples benefit from more attention during the different iterations [88].

The high dimensionality and the problem of the significance of the distances between
points may also be the source of the poor performance of kNN, as can be seen in Figure 9.
kNN is a distance-based method and its predictions for a new data point are based on
the mean property of the k-nearest training neighbors of this point. The distance can be
measured via different distance metrics, such as the Euclidean distance. However, when this
calculation is carried out over a large number of dimensions, the average distance between
points becomes of lower significance and, as such, the concept of “nearest neighbors”
becomes weaker. Finally, MLP performs slightly better than all ML models except Lasso
and SVR lin. This good performance could be explained by the well-known ability of MLP
to approximate any linear/nonlinear function through the complexity of its inner structure.

This first screening only provides a general idea of the most adapted ML techniques
to the problem in question but remains bound to the choice of the default values of the HPs
of each method. In fact, the HPs of some ML models, such as the selection of kernels in
GP and SVR and the number of neurons and hidden layers in MLP, can sometimes display
a significant impact on their performance. However, it becomes virtually impractical
to consider the implementation of a HP optimization process within a screening step
of numerous ML techniques, as this will severely increase the development time and
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complexify the selection process. Accordingly, the strategy that has been adopted in the
present study consists of sequencing this initial screening with a preprocessing step, a
dimensionality reduction step and a HP optimization one only for a selection of the most
performing ML models (i.e., as identified through the initial screening step).

The need for an investigation of the effect of a dimensionality reduction step stems
from the observed overfitting behavior in Figure 9 for the tested ML models, coupled with
the identified performance improvement by the regularization, as employed within the
different linear models. Besides, the very nature of the problem includes the manipulation
of a large number of descriptors as features of the developed models, for which prior
understanding is very limited, renders the dimensionality reduction step a rather obvious
necessity in terms of improving both model performance and eventual subsequent inter-
pretability. Finally, another factor that acts in favor of overfitting, in combination with the
above, is the consideration of a large diversity of molecules, as evidenced by the respective
error bars of the different splits.

It is worth noting that, already from this initial model screening, it seems as if linear
models (i.e., Lasso and SVR lin) are sufficient to map the link between molecular descriptors
and the enthalpy. This emphasizes that the use of nonlinear and complex ML models is
not always necessary since, depending on the problem characteristics, they might display
a poorer performance than simpler linear models. Here, the good performance of some
linear models is quite intuitive as they display very similar characteristics to the classical
GC methods. One of the most popular GC methods for its accuracy, reliability and wide
applicability to large and complex molecules, is the one proposed by Marrero and Gani [44].
It is described by Equation (8) which linearly estimates a given property based on first,
second and third order molecular groups. First order groups consist of a large set of basic
groups, allowing them to represent a wide variety of organic compounds. Higher order
groups are included to refine the structural information of molecular groups by accounting
for proximity effects and isomer differentiation, thus enlarging GC applicability to more
complex molecules. Ci, Dj and Ok represent the contribution of the first, second and third
order groups, respectively, occurring Ni, Mj and Ek times, respectively:

ŷ = ∑
i

NiCi + ∑
j

MjDj + ∑
k

EkOk (8)

3.1.2. Comparison of Data Scaling and Data Splitting Methods

As for data splitting and scaling methods, their effects are, respectively, described in
Figures 12 and 13. In particular, 5-fold and 10-fold external CV are compared in terms of
train MAE, test MAE and training time. Train MAE values are very similar for all models,
except for LR, for both 5-fold and 10-fold external CV. Test MAE values are slightly better
for 10-fold external CV for most models, which could be explained by the larger size of the
training samples. In addition, the 5-fold external CV naturally requires lower computation
times than the 10-fold external CV, due to the lower number of model training passes. Note,
that the training time of the different ML models can serve as a factor in the selection of the
ML model, depending on the problem requirements. For example, among the ensemble
models with close performances (such as RF, ET and GB), ET is the most interesting in
terms of computation time, due to the parallel training of several trees and the random
splits of the data.
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(a) (b)

(c)

Figure 12. Effect of the value of k’, for the external CV, on the (a) train MAE (b), test MAE, (c) training
time, of the different ML models during the preliminary screening for the enthalpy (preprocessing:
default, splitting: 5 and 10-fold external CV, scaling: standard, dimensionality reduction: none, HP
optimization: none).

(a) (b)

Figure 13. Effect of the data scaling technique on the (a) train MAE (b), test MAE, of the different
ML models during the preliminary screening for the enthalpy (preprocessing: default, splitting: 5-
fold external CV, scaling: standard/min-max/robust, dimensionality reduction: none, HP optimization:
none). N.B. Robust scaler did not work with the SVR lin method (cf. red crosses).
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Concerning data scaling, the results in Figure 13 show that the method used can
impact more or less the performance (train and/or test) of ML models. On the one hand,
single and ensemble DTs show no variations along the tested scaling methods since, at each
decision node, a DT finds the best split of the data according to a given descriptor (ignoring
the other descriptors), by identifying the threshold minimizing the error. On the other hand,
the tested linear models (i.e., LR, Ridge, Lasso, SVR lin), as well as kNN, GP and MLP are
more sensitive to scaling. kNN predictions are based on similarity/distance measurements,
hence their performance is affected by variations in the value range of the descriptors. The
default solver of MLP is based on gradient descent, the range of the descriptors might also
influence the gradient descent steps and convergence. The calculation of the information
matrix that will be employed within LR for the estimation of the coefficient values will
also be affected by the value range of the descriptors. Similar hypotheses, concerning the
parametric estimation processes within each method and their sensitivity to the range of
the descriptor values can be adopted to explain the observed variations for the rest of
the ML models. More generally, robust scaler seems to display the highest MAE across
the different techniques, presumably due to the composition of the data set and was thus
considered as the least adapted for this study.

Similar results and conclusions are obtained for the entropy for the quick screen-
ing of ML models with default preprocessing options and without dimensionality re-
duction, as well as for the study of the effects of data scaling and splitting (cf. Supple-
mentary Materials). On the basis of the results of this first screening, the configuration
presented in Table 6 was selected to further analyze the data preprocessing and dimen-
sionality reduction methods. The best performing ML models from different categories
(linear/nonlinear, ensemble/neural network . . . ) were chosen, including Lasso, SVR lin,
ET and MLP. A standard scaler was selected for the scaling of the data, as it displayed the
lowest generalization errors in the preliminary tests for the selected models. In addition, as
similar performances were obtained for the 5-fold and 10-fold external CV, the former was
kept due to its shorter computation time. Finally, MAE was selected as a performance met-
ric due to the importance of the error measurement in thermodynamic property prediction
models and applications.

Table 6. Configurations selected for the study of the effects of data preprocessing and dimensionality
reduction, and for HP optimization.

Data Scaling Data Splitting ML Models Performance Metrics

Standard 5-fold external CV

Lasso

MAESVR lin
ET

MLP

3.2. Effect of Data Preprocessing

Data preprocessing is composed of three stages, namely the elimination of Desc-
MVs, the elimination of descriptors with low variance and the elimination of correlated
descriptors. The effect of each step will be analyzed sequentially, with the previously
selected configuration in Table 6 starting with the default preprocessing options in Table 3.
The effects of data preprocessing are demonstrated here for the Lasso model and the
enthalpy. The results obtained for the other selected ML models and for the entropy are
provided in the Supplementary Materials.

The first step of data preprocessing is the elimination of Desc-MVs since the con-
sideration of a wide diversity of molecules effectively creates groups of Desc-MVs for
some descriptors and for some families of molecules. The effects of the three elimination
algorithms (cf. Section 2.3) are displayed in Table 7. In the present problem, the alter-
nating elimination algorithm seems to provide a good compromise between the number
of remaining molecules, the number of remaining descriptors and the overall model per-
formance. The elimination ‘by row’ results in better performance but for a significantly
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reduced number of molecules, restricting the applicability domain of the developed model.
Inversely, the elimination ‘by column’ removes a significant amount of information on
the molecular structure, leading to molecules that can no longer be differentiated on the
basis of the remaining descriptors (i.e., molecule duplicates). The retained method for the
elimination of Desc-MVs was, therefore, the alternating elimination algorithm.

Table 7. Effect of the algorithms for the elimination of Desc-MVs on the data set size and Lasso
model test MAE for the enthalpy (preprocessing: default, splitting: 5-fold external CV, scaling: standard,
dimensionality reduction: none, HP optimization: none).

Elimination Data Set Data Set Data Set after MAE Train MAE Test
Procedure with Desc-MVs without Desc-MVs Preprocessing (kJ/mol) (kJ/mol)

Alg.1: by row 1903 × 5666 236 × 5666 236 × 1378 7.6 ±0.4 20.4 ±6.4mol. desc. 0 duplicates

Alg.2: by column 1903 × 5666 1903 × 2855 1903 × 988 21.1 ±1.0 32.9 ±5.973 duplicates

Alg.3: alternating 1903 × 5666 1785 × 5531 1785 × 1961 16.7 ±0.4 27.6 ±1.7row or column 0 duplicates

mol.: molecules. desc.: descriptors. Blue, orange and red colors represent limited, moderate, important information
loss, respectively. In column 3, the amount of duplicated rows is indicated in italics. In columns 5 and 6, the
standard deviation over the different splits is provided in subscript.

The second step consists of the elimination of descriptors with low variance as they
have no influence on the target property. Figure 14a shows the effect of different variance
thresholds on the number of remaining descriptors after the elimination of descriptors with
low variance and after complete preprocessing. The resulting test MAE is also presented to
facilitate the choice of the threshold value. By increasing the latter, the number of remaining
descriptors naturally decreases inducing a loss of information and an increase in the value
of MAE for the test data. Accordingly, the value of 0.0001 was chosen to limit the loss of
molecular information, while keeping the MAE value at its lower range. Note, for the case
of the complete preprocessing, shown in Figure 14a, the value of the correlation coefficient
was set to 0.95 by default. Qualitatively, the trend of the corresponding curve is similar to
other values of the correlation coefficient. Quantitatively, a higher (lower) coefficient value
will displace the curve downwards (upwards), as shown in Figure 14b, which illustrates
the effect of the coefficient value during the final step of the data preprocessing, namely
that of the elimination of linearly correlated descriptors. Note that, in Figure 14b, the value
of the low variance threshold is the one previously selected (0.0001). The value that was
finally retained for the correlation coefficient is 0.98, for identical reasons as for the choice
of the low variance threshold.

Similar results and conclusions were obtained for the entropy regarding the effects
of data preprocessing. In the rest of this article, the selected preprocessing options of this
section (i.e., elimination of the Desc-MVs by alternating row and column, elimination of
descriptors with variance ≤0.0001, elimination of descriptors with correlation coefficient
value ≥0.98) are referred to as the ‘final’ preprocessing options for both predicted ther-
modynamic properties. The summary of selected preprocessing options is presented in
Table 8.

3.3. Effect of the Dimensionality Reduction

The number of descriptors is still relatively high after data preprocessing
(i.e., 2506 descriptors for the enthalpy with the final options), and dimensionality reduction
methods are investigated to further enhance interpretability, performance and computation
time of the ML models. In particular, the effects of different feature selection methods
(i.e., two filter methods, two wrapper methods and three embedded methods) and of one
feature extraction method (i.e., PCA) are compared with the reference case in which no
dimensionality reduction is performed. For a fair comparison of the effects of the feature
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selection methods, they are all employed under a common objective of reducing the feature
space to an exact number of 100 descriptors. On the other hand, the principal components
(PCs) selected by PCA correspond to 95% of the variance of the data. To prevent data
leakage, dimensionality reduction methods are fitted on the training data and applied to
all the data for each split of the 5-fold external CV, thus providing, at the same time, the
influence of data splitting.

Table 8. Summary of the final preprocessing options.

Preprocessing Step Final

Elimination of Desc-MVs Alternating row or column

Elimination of descriptors 0.0001with low variance

Elimination of correlated 0.98descriptors

(a) (b)

Figure 14. Effect of the value of (a) the variance threshold (b) the correlation coefficient threshold,
on the number of retained descriptors and Lasso model test MAE for the enthalpy (preprocessing:
default for (a) and default with low variance threshold = 0.0001 for (b), splitting: 5-fold external CV, scaling:
standard, dimensionality reduction: none, HP optimization: none).

The results are presented for the enthalpy in Tables 9 and 10 as an average of the
different splits. The displayed computation time is the one for fitting the dimensionality
reduction methods for each split. Wrapper methods are the most time-consuming as they
consist of a more comprehensive search of the optimal subset of descriptors. These methods
are based on Lasso as it displayed both good performance and low computation time in
Section 3.1. The computation time of the GA method is mainly dependent on the number
of generations, which was set here to 5000, keeping in mind that a different value would
affect not only the computation time but also the performance of the model. Note also
that a gain is expected in the computation time of the subsequent ML training step that
should compensate in part the additional time investment to this dimensionality reduction
step (i.e., besides the aforementioned envisioned benefits of improved interpretability
and performance).

In terms of performances, the test MAE values of previously identified well-performing
ML models (i.e., Lasso, SVR lin, ET and MLP) are compared among the different dimen-
sionality reduction methods. To aid in the legibility, the values that are noted in blue color,
in Table 9, correspond to test MAE values that are either lower or within a difference
≤0.5 kJ/mol, compared to the respective reference case values (i.e., without dimensionality
reduction). In the same sense, test MAE values that are higher by a difference that is ≤5 or
>5 kJ/mol, compared to the reference case, are marked in orange and red, respectively.
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Table 9. Effect of the different dimensionality reduction methods on the test MAE of the selected
ML models for the enthalpy (preprocessing: final, splitting: 5-fold external CV, scaling: standard,
dimensionality reduction: different methods, HP optimization: none).

Dimensionality Nb of Time/
MAE Test (kJ/mol) Nb of Nb of Desc.

Reduction Method Desc. Split Lasso SVR lin ET MLP
Pairwise with

(s)
Correlations Variance

≥ 0.9 ≤ 0.01

None (reference case) 2506 0 27.0 ±1.7 28.6 ±3.6 42.6 ±6.6 37.9 ±5.2 4473 512

Filter-Pearson 100 19.4 61.6 ±2.5 75.0 ±5.7 56.7 ±6.1 116.0 ±3.6 124 2
Filter-MI 100 18.7 55.8 ±3.6 62.5 ±7.8 43.8 ±7.8 90.8 ±9.8 72 4

Wrapper-SFS Lasso 100 7795 31.1 ±2.4 34.9 ±3.3 42.9 ±4.8 84.6 ±3.7 3 21
Wrapper-GA Lasso 100 49573 24.2 ±4.0 31.0 ±5.0 43.8 ±5.2 76.1 ±9.7 5 26

Embedded-Lasso 100 1.5 29.0 ±1.4 29.0 ±2.4 38.8 ±5.5 88.7 ±9.9 14 24
Embedded-SVR lin 100 7.0 39.8 ±5.1 40.0 ±5.6 41.1 ±6.1 84.1 ±4.2 34 18

Embedded-ET 100 3.7 50.3 ±4.1 51.2 ±4.0 41.4 ±5.9 85.5 ±9.0 46 4

PCA 95% (261–265 PC) 2506 2.9 37.3 ±3.3 34.2 ±2.7 76.8 ±12.1 38.0 ±2.2 - -

Table 10. Top five descriptor categories identified by the different dimensionality reduction methods
for the enthalpy (preprocessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality
reduction: different methods, HP optimization: none). The percentages correspond to the proportion of a
descriptor category among the descriptors obtained with each method.

Dimensionality Reduction Method Top 5 Descriptor Categories

None (reference case) 25 13.0% 19 8.5% 8 7.2% 30 6.3% 17 6.3%

Filter-Pearson 8 24.4% 3 16.6% 16 15.4% 19 13.2% 7 8.2%
Filter-MI 8 21.4% 7 19.2% 3 13.0% 11 9.8% 27 8.6%

Wrapper-SFS Lasso 25 16.8% 23 10.6% 22 9.0% 21 6.6% 17 6.0%
Wrapper-GA Lasso 25 22.6% 23 10.4% 22 9.2% 21 8.4% 10 8.2%

Embedded-Lasso 25 20.8% 22 8.4% 7 7.6% 10 7.4% 23 7.4%
Embedded-SVR lin 25 32.2% 23 9.8% 10 8.8% 22 7.8% 1 7.2%

Embedded-ET 12 16.0% 8 13.6% 7 13.4% 3 8.6% 11 7.2%

PCA 95% (261–265 PC) 25 13.0% 19 8.5% 8 7.2% 30 6.3% 17 6.3%

Accordingly, one can directly conclude from the results of Table 9 that a reduced
number of 100 descriptors is sufficient to provide better or similar results to the reference
case of 2506 descriptors. This is especially observed with the wrapper methods and the
Lasso-based embedded method and for the ML models of Lasso, SVR lin and ET. The
wrapper-GA Lasso method performs better than the wrapper-SFS Lasso model, which
might be due to the lower flexibility of the latter in terms of the treatment of descriptors
with respect to the former. In fact, GA has the ability to completely modify the population
of individuals (i.e., one individual being represented here by one subset of 100 descriptors),
after each generation, while SFS adds descriptors iteratively until reaching the required
number of descriptors. This means that, in SFS, descriptors can not be removed once they
have been selected, even in the case where they might no longer be interesting after the
addition of new ones, which does not apply to GA. As for the Lasso-based embedded
method, it internally identifies the subset of the most relevant descriptors during training.
Inversely, filter methods result in poorer prediction performances, as the importance of
each descriptor is evaluated independently.

From the results, it can also be observed that PCA is not adapted to such highly dimen-
sional problems. Figure 15a,b display the explained variance as a function of the principal
components for the enthalpy and the entropy, respectively. In the present case, for both
enthalpy and entropy, more than 250 PCs are required to describe 95% of the data variance,
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each one being a linear combination of nearly 2500 descriptors. Regarding embedded
methods, Lasso outperforms SVR lin and ET, in the sense that it identifies a drastically
reduced subset of important descriptors. Indeed, the selected 100 descriptors are the ones
that display the highest absolute coefficient values (absolute feature importance values
for ET) and Lasso, SVR lin and ET result respectively in a number of 252, 2494 and 2268
non-zero coefficient or feature importance values. The performance of MLP models does
not show significant improvement with any of the dimensionality reduction methods, but
their performance is very sensitive to HP values and thus, likely to improve with further HP
optimization. It should be highlighted here that the results of this dimensionality reduction
step are also highly associated with the choices made during the data preprocessing step.

(a) (b)

Figure 15. Explained variance as a function of the principal components obtained with PCA for (a) the
enthalpy and (b) the entropy. (preprocessing: final, splitting: 5-fold external CV, scaling: standard,
dimensionality reduction: PCA, HP optimization: none).

Another explanation for the good performances obtained with the two wrapper
methods and the Lasso embedded method can be visualized in the last two columns
of Table 9. They display respectively the amount of pairwise correlations ≥0.9 and the
number of descriptors with variance ≤0.01 (averaged over the different splits) among the
descriptors selected by the different dimensionality reduction methods. This highlights
the presence of highly correlated descriptors in the case of filter methods as they treat
descriptors independently, thus impacting the performance of the ML models. These filter
methods also identify as important only a few descriptors with variance ≤0.01 contrary to
most of the other dimensionality reduction methods that result in better performance.

Depending on the splits, the 100 descriptors or 95% variance based PCs, obtained with
the feature selection and PCA methods, respectively, display significant variability in the
final model performance as shown in Table 9. This can be mainly due to the fact that each
randomly created split corresponds to a different composition of the training data with
respect to the represented chemical families. One of the major drawbacks of using descrip-
tors in this type of study lies in their large amount and in their ad-hoc definition, which
makes it particularly tedious to understand the meaning of each individual descriptor and
its relevance to the property of interest. However, through this dimensionality reduction
procedure, it is possible to eventually identify some categories of descriptors (cf., AlvaDesc
categories in Table 2) that are more often represented than others, thus demonstrating their
higher relevance to the predicted property.

Among the descriptors identified in this work (cf. Table 10 and Supplementary Materi-
als for the detailed list), on the basis of the three best performing dimensionality reduction
methods (i.e., two wrapper methods and one embedded method based on Lasso), 2D de-
scriptors seem to be the most represented ones. More specifically, these include the 2D atom
pairs (category 25), atom-centered fragments (cat. 22) and atom-type e-state indices (cat.
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23). The two former provide information about the presence/absence/count/topological
distance of atom pairs or atom-centered fragments while the latter describes the electronic
character and the topological environment of the atoms in a molecule. These identified
descriptors are physically consistent with the prediction of the enthalpy of a molecule
that is highly dependent on its chemical bonds and environment. At the same time, they
are also quite similar to the procedure employed by GC, which decomposes molecules
in smaller groups to obtain the global property but also develops certain corrections to
account for specific interactions (e.g., interactions between bulky groups about σ bonds
in alkanes or about π bonds in alkenes) or geometrical particularities (e.g., the presence
of a ring inducing additional strain energy) in more complex molecules (cf. Equation (8)
and [39,105–108]). The following categories are also represented at a lower extent and give
additional 2D and 3D structural information impacting the enthalpy: 2D matrix-based
descriptors (cat. 7), P_VSA-like descriptors (cat. 10), 3D-MoRSE descriptors (cat. 17)
and functional group counts (cat. 21). For further information and understanding of the
identified descriptor categories, a brief description is provided, for each one of them, in the
Supplementary Materials.

A similar analysis can be made for the results of the dimensionality reduction, when
it comes to the prediction of the entropy (cf. Tables 11 and 12). The best performing
dimensionality reduction methods turn out to be the same as for the enthalpy, namely the
two wrapper methods and the Lasso-based embedded method. As for the corresponding
most represented categories, they include 2D and 3D descriptors: 2D atom pairs (cat. 25),
functional group counts (cat. 21) and CATS 3D descriptors (cat. 30). The presence of
the latter is not surprising as the entropy is known to be highly sensitive to the spatial
arrangement of atoms in molecules and how restricted are their movements, and CATS
3D descriptors effectively include information about the Euclidean interatomic distance
between two given atom types. In particular, entropy is a fingerprint of the number of
possible microstates of a species in thermodynamic equilibrium. It is derived from a
molecular partition function describing translational energy states, rotational energy levels,
electronic states, and vibrational ones. It is also reflecting the presence of symmetries
(internal and external ones), and optical isomers. As for the two other descriptor categories,
2D atom pairs and functional group counts, they give information about the arrangement of
atoms in molecules and their presence seems in accordance with the procedure employed by
GC. With lower importance, 2D matrix-based descriptors (cat. 7), RDF descriptors (cat. 16),
atom-centered fragments (cat. 22), atom-type e-state indices (cat. 23) and pharmacophore
descriptors (cat. 24) are also identified as being highly relevant.

Table 11. Effect of the different dimensionality reduction methods on the test MAE of the selected
ML models for the entropy (preprocessing: final, splitting: 5-fold external CV, scaling: standard,
dimensionality reduction: different methods, HP optimization: none).

Dimensionality Nb of Time/
MAE Test (J/mol/K) Nb of Nb of Desc.

Reduction Method Desc. Split Lasso SVR lin ET MLP
Pairwise with

(s)
Correlations Variance

≥ 0.9 ≤ 0.01

None (reference case) 2479 0 18.7 ±1.1 24.3 ±2.2 19.6 ±1.4 27.1 ±1.6 4469 487

Filter-Pearson 100 18.1 20.9 ±1.3 18.5 ±1.7 20.3 ±1.3 46.9 ±3.0 909 2
Filter-MI 100 16.3 21.4 ±1.4 19.1 ±1.4 20.0 ±1.6 31.4 ±1.0 514 6

Wrapper-SFS Lasso 100 8294 19.2 ±1.2 18.9 ±1.7 19.6 ±1.9 55.8 ±4.2 15 19
Wrapper-GA Lasso 100 53,315 17.4 ±1.2 18.1 ±1.3 19.6 ±1.5 57.5 ±3.7 9 25

Embedded-Lasso 100 1.4 18.8 ±1.1 18.5 ±1.2 19.7 ±1.5 52.6 ±5.6 21 20
Embedded-SVR lin 100 5.6 24.2 ±2.5 23.5 ±2.8 21.3 ±2.0 53.0 ±4.6 8 17

Embedded-ET 100 3.7 21.6 ±1.9 19.7 ±1.4 20.8 ±2.1 31.0 ±1.7 338 8

PCA 95% (254–260 PCs) 2479 3.0 19.7 ±1.0 18.3 ±1.5 23.0 ±1.3 29.1 ±2.3 - -
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Table 12. Top 5 descriptor categories identified by the different dimensionality reduction methods
for the entropy (preprocessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality
reduction: different methods, HP optimization: none).

Dimensionality Reduction Method Top 5 Descriptor Categories

None (reference case) 25 12.9% 19 8.7% 8 7.2% 17 6.3% 30 6.2%

Filter-Pearson 7 16.2% 16 15.8% 19 15.4% 3 7.0% 14 7.0%
Filter-MI 7 46.8% 14 10.6% 3 8.4% 8 6.2% 1 4.0%

Wrapper-SFS Lasso 25 14.6% 30 10.4% 21 7.0% 7 6.0% 24 5.4%
Wrapper-GA Lasso 25 16.6% 21 10.4% 30 7.0% 24 5.4% 7 5.0%

Embedded-Lasso 25 17.2% 21 9.6% 16 8.0% 30 7.8% 23 6.0%
Embedded-SVR lin 25 15.8% 30 12.0% 16 8.0% 24 7.4% 21 6.4%

Embedded-ET 7 28.2% 8 14.6% 14 11.8% 9 9.8% 19 8.4%

PCA 95% (254–260 PCs) 25 12.9% 19 8.7% 8 7.2% 17 6.3% 30 6.2%

Note, that the final selection of a single dimensionality reduction method is not straight-
forward and will depend on the problem requirements, often necessitating a compromise
between performance, computation time and interpretability. However, the comparison of
different dimensionality reduction approaches, as employed in the present work, provides
a higher degree of confidence with the identification of the descriptors and, accordingly, of
the molecular characteristics that display the highest relevance to the target property.

3.4. Final ML Modeling and HP Optimization

A final ML modeling step is performed here, similarly as in Section 3.1. The pre-
treatment of the data in this case includes the final preprocessing options and is followed
by the dimensionality reduction step using the wrapper-GA Lasso method, as shown
previously. This choice is based on the premise that the main interest here is the model
performance, despite the increased computation time. Should the computation time be of
higher interest, a different dimensionality reduction approach would have been selected
(e.g., embedded-Lasso). At this stage (i.e., with a reduced number of descriptors), a screen-
ing of the same 12 ML models as in Section 3.1 still identifies the four selected models as
being part of the best ones (cf. Supplementary Materials). However, the reduced descriptor
space enables to improve significantly the performance of some models such as LR and
Ridge. Otherwise, the training time is drastically reduced and a comparison of the different
scaling techniques still outputs the standard scaler as the scaling method of choice (cf.
Supplementary Materials).

HPs are finally optimized for the four best models of different categories, namely
Lasso, SVR lin, ET and MLP. Table 13 presents the different types of HP that are considered
for each method, each one accompanied by the range of values within which GridSearch
CV performs the screening. The final optimal values that minimize the validation MAE for
each split are also reported in the same table. For reasons of completeness, some HPs for
which no optimization was pursued (i.e., their values were fixed) are also included in the
table. The final ML models with the optimal HP settings are retrained on the training data
(external training) and tested on the test data.

The resulting performances and parity plots are shown respectively in Table 14 and
Figure 16. From these results, it can be concluded that the employed HP optimization step
displays a positive effect, especially on the performance of the MLP. However, this im-
provement is not enough to outperform Lasso, which remains the overall best-performing
model. Note, at this stage, no treatment of possible outlier data took place as this will be the
subject of an extensive analysis in the following article. Similar conclusions are obtained
for the entropy and the performance and parity plots of the Lasso model with optimized
HPs are respectively presented in Table 15 and in Figure 17, the complete results being
available in the Supplementary Materials. The latter also provides the coefficient values
of the Lasso models for both enthalpy and entropy, to enable further interpretation and
eventual implementation of the developed models of this work.



Processes 2023, 11, 3325 29 of 40

Table 13. HP optimization settings and results for the selected ML models for the enthalpy (prepro-
cessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality reduction: wrapper-GA
Lasso, HP optimization: yes).

ML HPs Screening Ranges Optimal HP Settings per Split

Model (Blue = Default Value) Split 1 Split 2 Split 3 Split 4 Split 5

Lasso alpha [0.001, 0.01, 0.1, 0.5, 1, 1.5, 2] 0.1 0.001 0.1 0.5 0.1

SVR lin
kernel [‘linear’] linear linear linear linear linear
C [0.1, 0.5, 1, 1.5, 2] 2 2 2 2 2
epsilon [0.01, 0.1, 1] 0.1 0.1 1 1 1

ET

n_estimators [50, 100, 200] 200 200 100 100 200
max_features [‘sqrt’, ‘log2’, None] None None None None None
min_samples_split [2, 5] 2 2 2 2 2
min_samples_leaf [1, 5] 1 1 1 1 1
max_depth [10, None] None None None None None
criterion [‘absolute error’, squared squared squared squared squared

‘squared error’]

MLP

activation [‘relu’] relu relu relu relu relu
hidden_layer_sizes 1 hidden layer: [(i)], (100) (10,10) (15,15) (10,10) (15,15)

i = 100, 200, 400;
2 hidden layers: [(i, i)],
i = 10, 15, 20

solver [‘adam’, ‘lbfgs’] lbfgs lbfgs lbfgs lbfgs lbfgs
learning_rate_init [0.001, 0.01, 0.1, 0.5] 0.001 0.001 0.001 0.001 0.001
max_iter [200, 500] 200 500 500 200 200

Table 14. Performance of the selected ML models with and without HP optimization for the enthalpy
(preprocessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality reduction: wrapper-
GA Lasso, HP optimization: none/yes).

Model Data Set R2 MAE (kJ/mol) RMSE (kJ/mol)

HP Not Opt. HP Opt. HP Not Opt. HP Opt. HP Not Opt. HP Opt.

Lasso

Train (internal) 0.995 ±0.001 0.996 ±0.001 15.8 ±0.5 14.6 ±0.3 35.9 ±1.4 33.7 ±1.5
Validation 0.987 ±0.002 0.989 ±0.002 24.8 ±1.5 22.3 ±0.7 52.2 ±3.5 47.8 ±2.9

Train (external) 0.995 ±0.001 0.996 ±0.001 15.5 ±0.5 14.6 ±0.3 36.9 ±1.5 34.6 ±1.6
Test 0.978 ±0.016 0.976 ±0.019 24.2 ±4.0 25.1 ±4.1 70.8 ±23.1 74.2 ±25.9

SVR lin

Train (internal) 0.987 ±0.005 0.993 ±0.002 23.1 ±3.3 17.9 ±1.6 58.2 ±11.9 44.6 ±6.0
Validation 0.975 ±0.008 0.984 ±0.006 35.6 ±5.3 27.8 ±2.9 75.6 ±15.9 60.1 ±9.9

Train (external) 0.990 ±0.004 0.993 ±0.002 21.4 ±2.5 17.3 ±1.6 53.5 ±9.6 43.7 ±5.8
Test 0.968 ±0.023 0.971 ±0.021 31.0 ±5.0 27.8 ±4.5 85.8 ±26.8 82.4 ±26.3

ET

Train (internal) 1.000 ±0.000 1.000 ±0.000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0
Validation 0.933 ±0.006 0.933 ±0.006 61.6 ±4.9 61.3 ±4.6 114.5 ±9.3 114.4 ±9.2

Train (external) 1.000 ±0.000 1.000 ±0.000 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0 0.0 ±0.0
Test 0.955 ±0.014 0.955 ±0.014 43.8 ±5.2 43.6 ±5.5 112.3 ±36.1 112.3 ±36.7

MLP

Train (internal) 0.955 ±0.006 0.998 ±0.001 79.7 ±7.2 11.8 ±3.7 112.2 ±10.5 20.1 ±6.5
Validation 0.764 ±0.016 0.964 ±0.009 125.9 ±6.7 42.5 ±2.7 197.0 ±11.9 81.3 ±6.6

Train (external) 0.968 ±0.005 0.999 ±0.000 65.2 ±8.1 10.3 ±2.4 95.3 ±10.9 17.7 ±3.8
Test 0.943 ±0.025 0.976 ±0.008 76.1 ±9.7 34.9 ±2.5 117.6 ±12.9 78.3 ±10.9

Table 15. Performance of Lasso model with HP optimization for the entropy (preprocessing: fi-
nal, splitting: 5-fold external CV, scaling: standard, dimensionality reduction: wrapper-GA Lasso, HP
optimization: yes).

Model Data Set R2 MAE (J/mol/K) RMSE (J/mol/K)

Lasso

Train (internal) 0.982 ±0.001 13.8 ±0.4 27.6 ±0.9
Validation 0.966 ±0.005 17.5 ±0.6 34.5 ±1.8

Train (external) 0.982 ±0.001 13.7 ±0.4 28.0 ±0.9
Test 0.968 ±0.008 17.9 ±1.2 36.2 ±4.3
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(a) Lasso, split 1 (b) Lasso, split 2

(c) Lasso, split 3 (d) Lasso, split 4 (e) Lasso, split 5

(f) SVR lin, split 1 (g) SVR lin, split 2

(h) SVR lin, split 3 (i) SVR lin, split 4 (j) SVR lin, split 5

Figure 16. Cont.
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(k) ET, split 1 (l) ET, split 2

(m) ET, split 3 (n) ET, split 4 (o) ET, split 5

(p) MLP, split 1 (q) MLP, split 2

(r) MLP, split 3 (s) MLP, split 4 (t) MLP, split 5

Figure 16. Parity plots of the selected ML models after HP optimization, for different splits, for
the enthalpy (preprocessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality
reduction: wrapper-GA Lasso, HP optimization: yes).
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(a) Lasso, split 1 (b) Lasso, split 2

(c) Lasso, split 3 (d) Lasso, split 4 (e) Lasso, split 5

Figure 17. Parity plots of the selected ML models after HP optimization, for different splits, for the
entropy (preprocessing: final, splitting: 5-fold external CV, scaling: standard, dimensionality reduction:
wrapper-GA Lasso, HP optimization: yes).

4. Benchmark

In this final part, the developed ML-QSPR procedure is benchmarked against other
published works for the prediction of the enthalpy and the entropy. To ensure a fair
comparison, the developed procedure (from data preprocessing to model construction) was
applied to the same data sets as in the considered published works. The data preprocessing
was composed of the elimination of the Desc-MVs by column (to ensure the use of the
exactly same molecules but potentially leading to duplicated rows), the elimination of the
descriptors with variance below 0.0001 and the elimination of correlated descriptors with a
threshold of 0.98. As for the scaling method, a standard scaler was chosen. GA was then
used to identify the 100 most important descriptors (cf. Supplementary Materials for the
detailed list). Finally, a Lasso model was trained and validated via the nested CV scheme
with k = k′. The value of k was chosen to have the same ratio between training (external)
and test data as in the published works. Note, that some of them also used similar nested
CV schemes.

The results of this benchmark study are presented in Table 16. It is interesting to
observe that the performances are similar between this work and all the other published
works, except the one of Dobbelaere et al. with the lignin QM data set for predicting the
enthalpy [56]. Keeping in mind the significant reduction in the number of considered
descriptors, it is noteworthy to observe that this work provides extremely comparable and,
in some cases, improved performances than the established state-of-the-art in the domain.
Besides these numerical comparisons, an added value of this work is also the meticulous
break-down of the different steps and choices along the development procedure. The
similar performances also evidence that there is no unique approach, in particular, there is
no consensus on how to best represent molecular structures [63]. Each type of molecular
representation displays its own advantages and drawbacks and the choice of a particular
representation will depend on the requirements of each problem.
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Table 16. a Hydrocarbons, oxygenated, nitrogenated, chlorinated, fluorinated, brominated, iodi-
nated, phosphorus containing, sulfonated, silicon containing, multifunctional. b GroupGAT (group-
contribution-based graph attention). c Probabilistic vector learned from interatomic distances, bond
angles, and dihedral angles histograms with GMM (Gaussian Mixture Model). N/A: not available.

Property Reference Data Type of Nb of Molecular ML R2 MAE RMSE kSource Molecules Molecules Representation Model Test Test Test

H

[109] DIPPR Diverse a 741
GNN b GNN b 0.99 18.6 30.5

10

(kJ/mol)

exp.This work 100 descriptors Lasso 0.99 12.4 21.6

[51] Literature Noncyclic 310
261 descriptors SVR 0.995 5.703 N/A

10exp., ab initio hydrocarbonsThis work 100 descriptors Lasso 0.998 4.426 6.520

[52]
Literature Cyclic 192

47 descriptors SVR 0.986 9.71 N/A

10exp. hydrocarbons[56] GauL HDAD c ANN N/A 9.6 12.9
This work 100 descriptors Lasso 0.985 10.01 14.51

[56]
Lignin QM (Poly)cyclic

3926

GauL HDAD c ANN N/A 9.34 15.89

10ab initio hydrocarbons and
oxygenatesThis work 100 descriptors Lasso 0.98 21.48 30.81

[110] SPEED Diverse 1059
240 groups GP 0.987 N/A 42.74

20exp.This work 100 descriptors Lasso 0.976 11.30 28.20

S

[56]
Lignin QM (Poly)cyclic

3926

GauL HDAD c ANN N/A 3.86 5.32

10

(J/mol/K)

ab initio hydrocarbons and
oxygenatesThis work 100 descriptors Lasso 0.99 5.57 7.43

[53] Literature Hydrocarbons 310
252 descriptors SVR 0.99 6.3 9

10exp., theo.This work 100 descriptors Lasso 0.98 8.3 10.8

[111] DIPPR Organic 511
GNN GNN 0.99 5.3 N/A

10exp.This work 100 descriptors Lasso 0.99 6.1 9.4

5. Conclusions and Perspectives

In this work, two ML-QSPR models were developed to predict the enthalpy of forma-
tion and the entropy of molecules from their structural and physico-chemical characteristics,
represented by descriptors. The essence of this study lies in the adopted multi-angle per-
spective which provides a better overview of the possible methods at each step of the
ML-QSPR procedure (i.e., data preprocessing, dimensionality reduction and model con-
struction) and an understanding of the effects related to a given choice or method on the
model performance, interpretability and applicability domain. Another characteristic of
this study is the complexity of the data set which comprises a high diversity of molecules
(to increase the applicability domain) and a high-dimensional descriptor-based molecular
representation (to increase the chances of capturing the relevant features affecting the ther-
modynamic properties, in absence of knowledge). This was successfully addressed through
customized data preprocessing techniques and genetic algorithms. The former improves
the data quality while limiting the loss of information which, therefore, avoids applicability
domain reduction and loss in the differentiation of the molecules. The latter allows for
an automatic (i.e., in the absence of domain expert knowledge) identification of the most
important descriptors to improve model interpretability, and the identified descriptors
were found to be consistent with the physics. Finally, with the obtained data set, the best
prediction performances were reached with a Lasso linear model (MAE test = 25.2 kJ/mol
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for the enthalpy and 17.9 J/mol/K for the entropy), interpretable via the linear model coef-
ficients. The overall developed procedure was also tested on various enthalpy and entropy
related data sets from the literature to check its applicability to other problems and similar
performances as those in the literature were obtained. This highlights that different meth-
ods and molecular representations, not necessarily the most complex ones, can lead to good
performances. In any case, the retained methods and choices in any QSPR/QSAR model
are problem specific, meaning that a different problem (i.e., with different requirements
in terms of model precision, interpretability or computation time, and with different data
characteristics) would have led to another set of choices and methods. Even if the latter can
not be clearly defined for each specific case, the multi-angle approach demonstrated here is
expected to provide a better overview and understanding of the methods and choices that
could be applied in similar high-dimensional QSPR/QSAR problems.

However, the procedure is obviously improvable in several aspects. First of all, one
of the OECD principles for the validation of QSAR/QSPR models was not addressed,
namely the applicability domain of the models. This is crucial as the final goal of a
QSPR/QSAR model is to be applied to new molecules and it is known that a ML model
is not extrapolable. The applicability domain corresponds to the response and chemical
structure space within which the model can make predictions with a given reliability. In
this work, only a wide diversity of molecules and a customized pretreatment process were
considered to “maximize” the applicability of the model to a large range of molecular
structures. The next article of this series will be exclusively dedicated to the applicability
domain definition of the developed models [89]. In particular, methods more adapted to
high-dimensional data (as is the case in this problem) will be investigated at different steps
of the ML-QSPR procedure to define the applicability domain (correspondingly, to detect
the outliers). At the same time, this will help to address the overfitting phenomena which
were observed for the developed models.

Concerning the data collection step, several ways of improvement can be envisioned.
The conversion procedure from SMILES to descriptors requires further analysis. For
example, it is not well understood how precise or reliable are the ETKDG method and
AlvaDesc descriptor calculation with bigger, more complex or exotic molecules. Also,
the uncertainties in descriptor values are unknown. Besides, the SMILES notation seems
not adapted to differentiate some molecules, resulting in identical descriptors. Another
improvement point concerns the diversity (i.e., in terms of structure and property) of the
considered molecules and their unequal distribution. This questions the eventual influence
that the most represented molecules could have on the developed models and the feasibility
of building generic models applicable to all molecules. This diversity was particularly
problematic, as some descriptors contained missing values for some types of molecules.
This resulted in a loss of information during data preprocessing (elimination of molecules
and descriptors with missing values), overfitting as well as high variability in the identified
descriptors and model performances depending on the data split. A possible solution
would be to create different models, one for each “category” of molecules. However,
the best way to categorize the molecules needs to be investigated (e.g., by identifying
clusters of molecules or based on chemical families) and it is likely that some categories
will contain very low amounts of data. Regarding the considered chemical families in this
study, some are generally removed in similar studies in the literature, such as inorganic
compounds. The consideration or the separation (from the rest of the data set) of these
molecules needs further analysis. In general, inorganic and organometallic compounds,
counterions, salts and mixtures are removed during data collection or pretreatment, as they
can not be handled by conventional cheminformatics techniques [28].

Above all, the molecular representation requires intensive study. Indeed, this work
highlights several limitations of descriptors, namely their high-dimensional character, the
lack of their understanding (for non-experts) or their unavailability for some molecules.
Molecular representation is a particularly active area of research and an example of a recent
and interesting method is graph-based representations (a.k.a. graph neural networks). The
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latter internally combines feature extraction, which learns the important features from an
initial molecular graph representation, and model construction, to relate the features to the
target property. The main advantage of this type of representation lies in its capacity to
automatically learn the molecular representation adapted for a specific problem, avoiding
the laborious task of descriptor selection prior to model construction. Additionally, a QSPR
model is based on the similarity principle (i.e., similar structures have similar properties)
and on the assumption that the adopted molecular representation effectively contains all
the information necessary to explain the studied property. While the first assumption is
difficult to verify, the second could be addressed with other molecular representations.
For all these reasons, graph-based representations could be envisioned. Besides, as each
molecular representation contains different structural features, potentially interesting for
predicting a given property, a combination of various representations (e.g., descriptors,
fingerprints, graphs) could be investigated as well.

More generally, despite the provided multi-angle approach, the list of the presented
methods is not exhaustive and some methods can be tested or further optimized. Some
examples are listed below:

• identification of non-linearly correlated descriptors during data preprocessing;
• optimization of the HPs in the methods for dimensionality reduction (e.g., model and

HPs in wrapper methods, HPs in embedded methods, number of selected descriptors);
• combination of different dimensionality reduction methods (sequentially; or in parallel

followed by the union or intersection of the identified descriptors);
• other HP optimization techniques, less time consuming and more efficient than Grid-

SearchCV;
• parallelization or use of computer clusters to reduce computation time;
• better consideration by the model of the uncertainties in property values;
• sensitivity analysis to determine the contribution of the descriptors on the predicted

properties;
• comparison with GC or QC methods.
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The following abbreviations are used in this manuscript:

AB Adaptive boosting
CV Cross-validation
Desc-MVs Missing descriptor values
DIPPR Design institute for physical properties
DT Decision tree
ET Extra trees
ETKDG Experimental torsion distance geometry with additional basic knowledge terms
H Enthalpy for ideal gas at 298.15 K and 1 bar
GA Genetic algorithm
GB Gradient boosting
GC Group contribution
GNN Graph neural network
GP Gaussian processes
HP Hyperparameter
kNN k-nearest neighbors
Lasso Least absolute shrinkage and selection operator
LDA Linear discriminant analysis
LR Linear regression (ordinary least squares)
MAE Mean absolute error
MI Mutual information
ML Machine learning
MLP Multilayer perceptron
OECD Organisation for economic co-operation and development
PCs Principal components
PCA Principal component analysis
QC Quantum chemistry
QSAR Quantitative structure-activity relationship
QSPR Quantitative structure-property relationship
R2 Coefficient of determination
RF Random forest
RMSE Root mean square error
S Absolute entropy of ideal gas at 298.15 K and 1 bar
SFS Sequential forward selection
SMILES Simplified molecular input line entry specification
SVR Support vector regression
SVR lin Linear support vector regression
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