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Abstract: With the development of Industry 4.0, artificial intelligence (AI) is gaining increasing
attention for its performance in solving particularly complex problems in industrial chemistry and
chemical engineering. Therefore, this review provides an overview of the application of AI techniques,
in particular machine learning, in chemical design, synthesis, and process optimization over the past
years. In this review, the focus is on the application of AI for structure-function relationship analysis,
synthetic route planning, and automated synthesis. Finally, we discuss the challenges and future of
AI in making chemical products.

Keywords: artificial intelligence; machine learning; automated synthesis; synthetic route planning;
structure-function relationship

1. Introduction

Chemists have spent substantial time on repetitive experimental tasks, such as the syn-
thesis of organic compounds, optimization of process parameters, and molecular structure
identification. To some extent, these tedious tasks limit the creativity of chemists. As green
chemistry continues to evolve, the chemical industry has been working to discover new
chemical reactions, catalysts, and equipment to reduce the use of hazardous substances and
prepare high-value-added chemicals through sustainable production processes. However,
such discoveries are expensive and time-consuming for pure human labor [1].

In the past decade, a growing body of literature and patents attest to AI-driven
chemical engineering studies. Baum et al. studied the growth and distribution of artificial
intelligence in relevant chemical publications over the past two decades using the CAS
Content collection (Figure 1) [2]. As shown in Figure 1, the number of published papers
and patents containing AI has increased dramatically since 2015, with the second-highest
increase in published papers in industrial chemistry and chemical engineering. Meanwhile,
data obtained from SciFinder show that the total number of annual publications on machine
learning in the chemical industry exceeded 20,000 in 2021–2022.
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Figure 1. Publication trends for AI in different research areas from 2000 to 2020: (A) journal publi-

cations and (B) patent publications. Reproduced with permission from [Baum, Z.J.; Yu, X.; Ayala, 

P.Y.; Zhao, Y.; et al], [Artificial Intelligence in Chemistry: Current Trends and Future Directions]; 

published by [J. Chem. Inf. Model], [2021].  
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Figure 1. Publication trends for AI in different research areas from 2000 to 2020: (A) journal publica-
tions and (B) patent publications. Reproduced with permission from [2].

AI involves several methodological domains, such as reasoning, knowledge represen-
tation, solution search, and the basic paradigm of machine learning (ML) among them. In
the last few years, especially since the introduction of AlphaGo, ML has been greatly devel-
oped in the field of industrial chemistry and chemical engineering, thus greatly helping the
development of pharmaceuticals and fine chemicals, thus reducing time and cost [3–5]. So
far, much of the literature has summarized the application of machine learning algorithms
in the chemical industry (Figure 2) [6]. As shown in Figure 2, supervised learning methods
are the most used in the chemical industry, accounting for nearly 70% of the total, while
hybrid, unsupervised learning, and combinatorial methods are used much less than super-
vised learning. Almost all of these machine learning methods are used for data mining and
analytics in the chemical industry. The only exception is reinforcement learning, whose
applications are currently limited to robotics, gaming, and navigation. Figure 3 depicts
in more detail the types of problems solved primarily using supervised methods, namely
modeling, optimization, control and monitoring, design and discovery, support to sensorial
analysis, and reaction prediction. As for unsupervised methods, they are mostly used for
dimensionality reduction, data visualization, and information extraction. Additionally, a
subfield of ML is deep learning (DL), which engages deep neural networks (DNNs). DNN
constitutes a set of nodes, each of which receives individual inputs and eventually converts
them to outputs, either singly or in multiple sessions using algorithms to solve problems. In
quantitative structure-activity relationship (QSAR) modeling, deep learning models have
achieved state-of-the-art results in molecular property prediction as well as property uncer-
tainty quantification. It is worth noting that the ML-based molecular design approach is
different from the mathematical optimization-based approach. Mathematical optimization-
based approaches require large amounts of experimental process data, such as reaction
rates, which are difficult to obtain with a single form of benchmark. In contrast, machine
learning models performing molecular design tasks require only structural information
of molecules or simple molecular property information, which are more readily available
and accurate than experimental processes. In addition, machine Learning for molecular
design has more trainable parameters than mathematical optimization. In general, the
more trainable parameters, the higher the accuracy of the trained model given a sufficient
amount of data. With the development of Industry 4.0, the successful application of artifi-
cial intelligence in areas such as image recognition and text processing has also facilitated
its use in drug discovery, including the design optimization of small molecule drugs [7–9].
Key to the development of computer-aided chemistry is the availability of large reaction
datasets and high-performance computing, for example, in molecular design, retrosynthetic
planning, reaction prediction, and optimization of reaction conditions [10–19].
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This paper reviews the applications of AI in various areas of the chemical industry.
First, AI can be used for molecular structure-function relationship analysis. Moreover,
applications of AI to chemical reactions include retrosynthetic planning, condition recom-
mendation, and forward reaction prediction. In addition, AI allows the automation of
compound synthesis and reduces the repetitive work of laboratory staff.

2. AI Enabled Chemical Process Intensification
2.1. AI for Structure-Function Relationship Analysis
2.1.1. Molecular Property Prediction

Molecular property prediction is an important problem in computer-aided molecular
design, and excellent deep-learning models for molecular property prediction can greatly
accelerate the progress of experimental studies. Two main types of models are prominent
in molecular property prediction—graphical neural networks and sequence-based neural
networks, which differ in their representation of different molecules, with the former
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requiring molecular graphical information and the latter requiring string representations of
molecular structures (Figure 4) [20].
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The direct use of matrices to record molecular structure information is a widely used
method of molecular representation known as molecular graphs. Molecular graphs can
be trained using graph neural networks. Lu et al. reported the prediction of molecular
properties using multilevel Graph Convolutional Neural Networks (MGCN). Different
layers of convolutional layers learn the atomic feature information and chemical bond fea-
ture information of the molecule and then process the information to predict the molecular
properties [21]. In QM9, the MGCN model gains a mean absolute error (MAE) of 0.0642 eV
in the HOMO-LUMO gap. The model has excellent predictive performance with generaliza-
tion capability. Gilmer et al. used a Message Passing Neural Network (MPNN) to predict
the QM9 public data set and obtained better performance than any previous model [22,23].
The ratio of the MAE of the MPNN models to the provided chemical accuracy estimate was
reported, with a HOMO-LUMO gap of 1.60 eV in QM9. In the framework of the MPNN
model, the design of appropriate functions can effectively improve the prediction effect.
The directed-MPNN model was used by Yang et al. for the extraction of molecular graph
features and predicting the properties of molecules, and the model was tested on 19 public
datasets and 16 industry datasets, and the model performance was better than previous
models on most tasks [24]. Compared to other papers, the paper gives an MAE of 2.766
± 0.022 for multi-task prediction of the QM9 database and provides more comparison of
model performance.

The recording of molecules using strings is another mainstream molecular represen-
tation method, of which the most widely used is SMILES [25]. Deep learning models
for natural language processing are well suited to process these sequences, which record
molecular information. There is no more effective model for string processing in recent
years than the Transformer [26]. Honda et al. reported the use of the Transformer for the
prediction of molecular properties in 2019 [27]. Schwaller et al., on the other hand, applied
the Transformer model to the prediction of reaction yields [28]. Chithrananda et al. then
built several pre-trained models for chemical molecules using the BERT model, which
allowed for a significant reduction in training time for later Transformer-based models [29].
Su et al. used these pre-trained models for a transfer learning study to predict the en-
ergy gap of metalloporphyrin, spending only one-third of the training time that would
have been spent if transfer learning had not been used [30]. Jo et al., on the other hand,
used MPNN for processing SMILES information, and the model obtained better results
when performing classification tasks on multiple datasets [31]. The molecular graph-based
models and sequence-based models, though both perform well in molecular property pre-



Processes 2023, 11, 330 5 of 21

diction tasks, have their own advantages. The molecular structure information recorded in
molecular graphs is significantly richer than that of sequence methods, and the prediction
of molecular properties will be more accurate. The use of sequences to record molecular
information has high freedom and can reduce the training cost more easily using transfer
learning methods. The two families of models should be selected according to the research
content in the next study, or multimodal models can be used to combine their advantages.

2.1.2. Molecular Design

Computer-aided molecular design is another important research direction in chem-
informatics, and the design of suitable molecules according to requirements has been a
dream function for chemists [32]. Similar to molecular property prediction, both graph
generation models and text generation models in the field of deep learning can be used for
the molecular design (Figure 5).
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In 2018, Gómez-Bombarelli et al. reported the design of new molecules using Varia-
tional Auto-Encoder (VAE), a study that will perform molecule generation while mapping
the encoded potential chemical space to the corresponding molecular properties, allowing
the model to explore the chemical space more efficiently and purposefully [33]. Segler
et al., on the other hand, applied recurrent neural networks based on Long Short-Term
Memory (LSTM) for ab initio drug design [34]. In this model, transfer learning and rein-
forcement learning are introduced to improve the validity of the designed new molecules.
In the same year, Cao et al. applied Generative Adversarial Network (GAN) to chemical
molecule generation, and reinforcement learning also was introduced in the model to score
the generated molecules in order to be able to generate molecules that meet the desired
target [35]. Flam-Shepherd et al. added MPNN to the decoder and encoder of the VAE
model, which greatly improved performance of the VAE model [36].

The two most difficult problems to overcome in computer-aided molecular design are
the generation of legitimate chemical molecules and the generation of molecules with target
properties or target characteristics, in other words, distribution learning for molecular
design and goal-directed molecular optimization [32]. Comparing the performance of
molecular design models is not a trivial task. Brown et al. 2019 proposed the GuacaMol
platform, which gives different evaluation criteria for the two task models [37]. From
current approaches, the use of transfer learning in a separate generative model can improve
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the chance of generating valid molecules. On the other hand, the development of novel
molecular representation methods with greater robustness, such as SELFIES, can also be
effective for the task of distribution-learning of molecular design [38]. In addition, in
goal-directed molecular optimization with targets, when the design targets can be quickly
computed by computer (e.g., LogP, TPSA, etc.), reinforcement learning can help the model
to find the target molecules faster. Furthermore, when the desired property cannot be
obtained by simple computation, the potential chemical space in the model can be mapped
to the corresponding property before the molecule is designed.

For the design of new molecules, one of the important application areas of AI is
interpretable machine learning [39]. For example, Verkhivker et al. developed and im-
plemented interpretable machine learning models for the molecular design of Tyrosine
Kinase Inhibitors by combining ChemVAE embedding architecture and cluster decomposi-
tion [40]. Recently, a computer-aided molecular design (CAMD) framework for molecular
design has been reported. Hatamleh et al. developed a CAMD framework for mosquito
repellents to mitigate the drawbacks of currently used repellents [41]. In this framework, a
data-driven Hyperbox-based machine learning approach was used to predict the mosquito
rejection properties of molecules in the absence of a mechanistic prediction model. Ooi et al.
proposed a CAMD-based approach to design fragrance molecules and used a Hyperbox
classifier to predict fragrance properties [42]. The resulting model can be interpreted as a
parsing decision support rule that establishes a quantitative relationship between the struc-
tural parameters of a molecule and its odor characteristics. In addition, a novel data-driven
rough set-based machine learning (RSML) model was used as a predictive or diagnostic
modeling tool for odor properties to design fragrance molecules [43]. The RSML generates
deterministic rules based on the relationship between the topology of fragrant molecules
and the odor characteristics from existing odor databases. The generated rules are then
integrated into CAMD problems as constraints. The results show that the new method is
capable of identifying non-intuitive and promising fragrant molecules that can be used for
various applications.

Moreover, in addition to molecular design, several fields are beginning to take ad-
vantage of the integration of ML and systems biology, including pathways identification
and analysis, modeling of metabolisms and growth, and 3D protein modeling [44]. For
example, AI is being used for the dynamic modeling of signaling networks, which helps
to understand cellular pathways and facilitate drug discovery. It allows cataloging the
changes in gene expression and signaling that occur when cells are exposed to various
perturbations, building a network-based understanding of biology [45–47]. For example,
in metabolic engineering, ML models, including naive Bayes, decision trees, and logistic
regression trained on the pathway information of many organisms, were used in MetaCyc
to predict the presence of a novel metabolic pathway in a newly-sequenced organism [44].
In general, the ML models used for pathway prediction showed better performance than
standard mathematical and statistical methods. Nevertheless, pathway discovery still relies
heavily on traditional approaches such as gene sequence similarity and network analysis.
Therefore, better ML algorithms/methods for improving Dynamic and Constraint-based
Metabolic Modelling, such as FBA modeling, are needed [44].

2.2. AI for Synthetic Route Planning

AI has been successful in planning synthetic routes performed in the laboratory or
evaluated by chemists, including (1) retrosynthetic planning, (2) forward reaction predic-
tion, and (3) condition recommendation. In chemistry, the origins of Computer-assisted
synthesis planning (CASP) can be traced back to the translation of retrosynthetic logic into
computer code by Corey in the 1960s [48]. Nevertheless, early synthetic route planning
relied entirely on the expertise of chemists and did not use statistical learning based on
large amounts of data [49–51]. Given the limitation of computational resources, complex
algorithms cannot be widely used in synthetic planning. Fortunately, with the growing
availability of molecular property datasets, reaction datasets, and increased computational
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power, AI for synthetic planning is once again gaining widespread attention [52–56]. In
the last 20 years, patterns of reactivity inferred from published response data by AI have
become viable alternatives to algorithms based on “expert” rules. It can automate the ex-
traction and training of data, making it easily scalable to merge new responses, which eases
the burden on scientists. Today, the retrosynthesis of complex molecules, high-fidelity pre-
diction of reaction outcomes, and automation of chemical reactions are still major research
fields.

2.2.1. Retrosynthetic Planning

Rule-based and rule-free methods are the main approaches used for retrosynthesis.
The rule-based method is conceptually similar to the process by which an organic chemist
selects a known reaction type to apply to a specific synthetic target. It has been well
implemented in state-of-the-art detailed synthetic planners, but building an expert-encoded
rule is laborious and inherently dependent on the expertise of scientists [57]. Consequently,
the automatic generation of reaction rules from accessible reaction databases has attracted
the attention of scientists [58]. The reaction rules are generated automatically by extracting
reaction templates from the reactions in the database, clustering, and processing them with
additional molecules [59,60]. Other methods apply the templates directly to the target where
filters, such as similarity-based neural networks, are often used to apply only a chemically
relevant subset of the template library to reduce the required computational power [61–67].
Although rule-based approaches are common in the most advanced detailed synthetic
planners, the main drawback is the huge computational cost involved in extracting a library
of rules or templates. Moreover, the complexity of assessing between all existing rules
and new rules increases as the number of codified rules increases, which may ultimately
make the problem intractable. In contrast, the rule-free method maps the target compounds
directly to potential starting materials, bypassing the need to build a library of reaction rules.
It represents molecules as text, such as SMILES strings, thus making the prediction a natural
language processing problem [68]. With different types of neural machine translation
architectures, forward reaction or retrosynthetic prediction can be achieved. The Molecular
Transformer architecture is currently the most popular method of treating chemistry as a
language, capable of producing valid SMILE strings more accurately [69,70]. Compared
to rule-based methods, rule-free methods are more general and have lower associated
computational costs.

Inspired by the use of Molecular Transformers for forward reaction prediction, some
retrosynthetic models based on the same architecture have attracted a lot of attention [15,71,72].
Zheng et al. developed a template-free self-correcting retrosynthesis predictor (SCROP)
that uses a transformer neural network to predict retrosynthesis [14]. By converting
retrosynthesis planning into a molecular linear symbolic problem for machine translation,
the method achieves an accuracy of 59.0% on a standard benchmark dataset utilizing a
grammar corrector for neural networks. Wang et al. proposed a single-step template-free
and Transformer-based method called RetroPrime, which aims to address the issues that
the output of the Transformer-based retrosynthesis model tends to suffer from insufficient
diversity and high chemical implausibility [73]. What’s more, Tetko et al. investigated the
impact of a text-like representation of chemical reactions (SMILES) and the natural language
processing (NLP) neural network Transformer architecture on predicting retrosynthetic
reactions [74]. Lin et al. used the Transformer architecture to treat each reaction prediction
task as a data-driven sequence-to-sequence problem, achieving superior performance for
single-step inverse synthesis tasks (Figure 6) [70]. The top-1 accuracy of the retrosynthesis
methods discussed above ranged from 41–54% [75]. Even though the increased batch size
and training time of the Transformer model by Duan et al. achieved a top-1 accuracy
of 54.1% on the 50 k USPTO dataset [76]. In contrast, the RetroTRAE developed by
Cernak et al. is free of all SMILES-based translation problems, yielding a top-1 accuracy
of 58.3% on the USPTO test dataset [75]. Although the top-1 accuracy is gained using
the proprietary training and test sets, it is questionable how models with specific sets
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of the same chemical transformations can be used in specific processes. Recently, graph-
enhanced transformer and hybrid models were reported, achieving 44.9% top-1 accuracy
and more diverse reactant suggestions, respectively, but without substantial improvements
over previous work [77,78]. Notably, except for the work of Lin et al., all transformer-
based retrosynthesis methods are limited to a single step [69]. Additionally, reagent,
catalyst, and solvent conditions were not simultaneously predicted in the retrosynthesis
planning. The Molecular Transformer model introduced by Schwaller et al. incorporates
a hypergraph exploration strategy for automatic retrosynthesis planning without human
intervention [72,79]. Meanwhile, the single-step retrosynthesis model predicts the reactants,
reagents, solvents, and catalysts for each retrosynthesis step, bringing the retrosynthesis
technology to a new technological level.
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2.2.2. Forward Reaction Prediction

AI is also widely used for forward reaction prediction. Reaction prediction, which
predicts possible products from starting materials and conditions, can be used to virtually
screen the proposed reactions or to validate the proposed synthesis steps.

Compared to retrosynthesis, the forward reaction prediction has only one answer,
leading to a more straightforward quantitative assessment. Currently, AI-based models
used for reaction prediction include (1) inferring reaction rules from predefined lists of
rules or templates, (2) graph convolutional neural networks that predict changes in atoms
and bonds between starting materials to products, and (3) sequence-to-sequence model of
the prediction product SMILES. Similar to retrosynthetic planning, reliable data tend to
favor the quality of forward reaction prediction results. In the absence of precise data, such
as concentration, time, and temperature data, reaction prediction becomes a tricky problem.
For example, Lee et al. found that retraining a sequence-to-sequence forward prediction
model on its own data did improve the accuracy of company-specific chemistry [15].

Coley et al. combined the traditional use of reaction templates with the flexibility
of pattern recognition offered by neural networks to develop a framework for predicting
reaction outcomes [80]. In 5-fold cross-validation, it is shown that the trained model is
very successful in forward reaction prediction. Similarly, Aspuru-Guzik et al. combined
predictor variables with SMARTS transformations to construct a system of predictable
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products [81]. Finally, the usability of the system was verified with questions from organic
chemistry textbooks. Coley et al. used Weisfeiler-Lehman networks to model higher-
order interactions between changes occurring at nodes in a molecule to effectively explore
the space of product molecules and predict the outcome of organic reactions [82]. The
experimental results show that the accuracy of the model is comparable to the performance
of domain experts. Furthermore, given the reactant, reagent, and solvent conditions, Coley’s
group proposed a supervised learning method to predict the product [16]. By mapping the
text sequence representing the reactants to the text sequence representing the products, the
reaction prediction can be viewed as a translation problem. For example, Schwaller et al.
enabled the prediction of complex organic chemical reactions with template-free sequence-
to-sequence models [83]. The model achieves 80.3% top-1 accuracy without relying on
auxiliary knowledge, such as response templates or explicit atomic features. Recently,
Schwaller’s group forward prediction was considered a machine translation problem and
developed the Molecular Transformer model [69]. The model can make predictions by
inferring correlations between the chemical motifs in the reactants, reagents, and products
in the data set, achieving over 90% top-1 accuracy.

Another parameter of interest for the forward reaction prediction is the reaction yield.
It can guide the chemist in choosing the route that maximizes the total yield as well as
assists in retrosynthetic planning. The model for reaction prediction was mainly built on
the high-throughput experiment dataset. Perera et al. studied 15 pairs of electrophilic and
nucleophilic reagents for the Suzuki-Miyaura reaction using the HTE technique, and each
obtained different products [84]. Doyle et al. trained a random forest algorithm using
a high-throughput data set to accurately predict the yield of other Buchwald-Hartwig
coupling reactions with multidimensional variables after being trained with thousands of
Buchwald-Hartwig coupling reaction data [85]. Similarly, Schwaller et al. used Doyle’s
high-throughput dataset to predict yields for a total of 3955 Buchwald-Hartwig reactions
containing [86]. Andrzej et al. predicted the yield of 16 phosphate ligands for nickel-
catalyzed Suzuki cross-coupling by training a linear regression model with two larger data
sets obtained by high-throughput experiments (HTE) (Figure 7) [87]. Further, Schwaller’s
group combined the encoder converter model with a regression layer, and the excellent
reaction yield prediction performance of the high model was demonstrated on two high-
throughput experimental reaction sets [28]. Although high-throughput experiments are
capable of screening multiple reaction variables at the nanomolar level, this technique
covers a very narrow chemical space dataset. Structure-based descriptors (molecular
fingerprints and molecular maps) are faster and easier to compute for any molecule. Hirst
et al. demonstrated the applicability of support vector regression (SVR) in predicting
reaction yields using combined data [88]. Schwaller’s group treated organic molecules as a
language and introduced SMILES strings of reactions into the model to predict reaction
yields [68,83]. Additionally, the use of encoder-only transformers, such as Bidirectional
Encoder Representations from Transformers (BERT), has led to advances in response
yield prediction. The superiority of yield prediction compared to one-hot encoding was
demonstrated by Sandfort et al. using a concatenation of multiple molecular “fingerprints”
as a representation of alternative reactions [89]. Moreover, Akinori et al. developed
a Message Passing Neural Network (MPNN) model for chemical yield prediction for
Buchwald-Hartwig cross-coupling yields [90]. Sequence-to-sequence models are not only
useful when working with language tokens but also provide high-quality descriptors to
predict reaction properties, such as reaction yields.
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2.2.3. Condition Recommendation

For the forward reaction to proceed smoothly, it is necessary to explore the reaction
conditions that will achieve the desired transformation. Typically, chemists screen reac-
tion conditions based on their own experience and are biased. Instead, based on a priori
knowledge, the AI can more objectively infer the appropriate conditions. However, recom-
mendations for specific reaction conditions were limited to a single reaction class [91,92].
The main reason is the lack of high-quality data, which makes the model difficult to develop.
Mainly including (1) quantity, volume, or concentration, (2) reaction time or kinetics, and
(3) order of addition of reagents and catalysts. Despite the difficulties, AI has demonstrated
the ability to make reaction condition recommendations for more diverse reaction sets.
These models provide a strong basis for empirical optimization of reaction conditions but
still lack the full details needed for implementation. The discovery of more general reaction
conditions requires consideration of a broad region of chemical space derived from a large
matrix substrate that intersects with the high-dimensional matrix of reaction conditions.
In their optimization of the Suzuki- Miyaura cross-coupling reaction, Aspuru-Guzik et al.
identified the phosphine ligand as a classification parameter critical for determining the
reaction outcome [93]. Thus, a strategy using computational molecular feature clustering
was developed to reveal the conditions for selectively obtaining the desired product iso-
mers in high yields. What’s more, Aspuru-Guzik’s group reported a simple closed-loop
workflow that can be used to discover general reaction conditions using data-guided matrix
down-selection, uncertainty minimization machine learning, and robotic experiments [94].
By applying it to the heteroaryl Suzuki-Miyaura cross-coupling reaction, conditions were
identified that doubled the average yield relative to a widely used benchmark previously
developed using conventional methods. A practical roadmap was provided for solving
multidimensional chemical optimization problems with large search spaces.
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2.3. AI for Automated Synthesis

Applications of AI in chemical reactions include not only synthetic route planning
but also automated synthesis. Traditionally, scientists have been exposed to hazardous,
repetitive chemical manipulations for long periods, resulting in a significant waste of
resources and time [95,96]. Additionally, cost and condition constraints prevent scientists
from conducting too many experiments to obtain desired results. Most importantly, tra-
ditional chemical synthesis relies heavily on labor-intensive practices such as scientific
training, planning, experience, observation, and interpretation. Fortunately, AI is changing
the productivity of modern manufacturing, and modern automation of organic chemistry
operations is gradually freeing the hands and minds of organic chemists [85,97,98]. For ex-
ample, with an auto mated platform, the anti-arrhythmic drug lidocaine, the anti-epileptic
drug rufinamide, and the anti-cardiovascular drug sildenafil have been synthesized auto-
matically without human intervention [99,100]. Exactly, AI alleviates the operator from
tedious work and manual intervention.

2.3.1. Robotic Lab Platform

Automated chemistry is based on the modularity of common physical operations, such
as liquid handling robots, robotic grippers for plate or vial transfer, and computer-controlled
heater/shaker blocks, to help scientists reduce labor-intensive laboratory tasks [101]. The
platform mainly consists of (1) continuous flow technology combined with process analysis
technologies and robotics, (2) automated operation modes combined with hardware for
traditional intermittent reactions, and (3) robotics replacing the operator’s operation. A sim-
ple paradigm for automated chemistry is to automate the operational and sample transfer
steps between existing laboratory hardware, such as the mobile robotic chemists of Burger
et al. [102]. Mo et al. built a robotic desktop system for the high-throughput collection
of TLC data with an image analysis program that automatically calculates compound Rf
values. This work reduces the reproducibility of experiments by replacing scientists with
robots for repetitive TLC sampling [103]. Currently, the intelligence of chemical synthesis
is still in the development stage. Cronin’s group developed a modular standard robotic
platform to automate laboratory-scale chemical synthesis [99]. With the robotic platform,
the authors synthesized three pharmaceutical compounds, Nytol, rufinamide, and silde-
nafil, without human intervention. The yields and purity of the products and intermediates
were comparable to or better than those obtained manually. What’s more, the Chemputer
synthesis robot can perform many different reactions, including solid-phase synthesis and
iterative cross-coupling [104]. Interestingly, the system can simultaneously reuse only 22
different steps in 10 unique modules, and the code can access 17 different reactions, making
it possible to link multi-step synthesis to run many different protocols and reactions in a
single machine. Although this robotic platform is encouraging, the synthesis of complex
organic compounds is still largely artificial. To reduce experimental reproducibility, Jamison
et al. developed a plug-and-play continuous flow chemical synthesis system [105]. The
system has a flexible robotic arm that can perform all synthetic operations instead of the
scientist, automatically synthesizing 15 drugs, including Aspirin, Lidocaine, Diazepam,
Warfarin, etc. (Figure 8) [106]. Notably, the system remains insoluble for process inten-
sification (e.g., reducing reaction time), reducing solid formation to avoid blockage, etc.
Additionally, predicting the appropriate purification method is challenging, especially for
non-column chromatography methods. Moreover, the optimization of multi-step reactions
can be complicated by the propagation of parameters. In addition to replacing scientists
in labor-intensive laboratory operations, robots can help scientists with other complex
tasks. For example, Cronin’s group invented robots that automatically read the literature
and form a generalized autonomous synthesis workflow [99]. However, manual error
correction is still required. Burger et al. used a mobile robot to find photocatalysts that
break down water into hydrogen [102]. The robot, driven by a Bayesian search algorithm,
performed 688 experiments in an experimental space of 10 variables over eight days. Jami-
son et al. developed robots that can vary downstream dwell time and control the addition
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sequence to minimize undesired reactivity [107]. Robotic reconfigurability and convergent
synthesis flexibility play an increasingly important role in assisting with idea generation,
experimental design, execution, and optimization to enhance manual experiments.
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Robotic lab platforms are used not only in the chemical industry but also in other fields,
such as for the automated synthesis of chemical peptides and materials. Peptide Nucleic
Acid (PNA) is a synthetic DNA or RNA analog with a peptide chain backbone structure,
and traditional synthetic methods require several days to synthesize a biologically active
sequence. Bradley et al. have invented a fully automated flow synthesis robot called “Tiny
Tides” that allows rapid “one-pot” synthesis of peptide nucleic acid sequences (PPNA)
with cell-penetrating peptides [108]. This automated synthesis technology reduces the
synthesis time of PPNA from several days to just two hours. Similarly, Aspuru-Guzik’s
group reported an algorithm-driven modular robotics-based platform applied to discover
thin film materials [109]. Cronin’s group develops an autonomous chemical synthesis robot
for exploring, discovering, and optimizing nanostructures driven by real-time spectral
feedback, theory, and machine learning algorithms [110]. Additionally, advances in robotics
have played a role in precision medicine to improve modern medicine and quality of life,
including the delivery of drugs, biologics, genes, and living cells, as detailed in the related
review [111].

Fully automated chemical synthesis using AI robots instead of humans is a future trend,
with advantages not only in faster and more efficient synthesis but also in the production of
compounds that are difficult to synthesize manually. As can be seen, experimental methods
based on robotic lab platforms have been used successfully to solve high-dimensional
problems in physics, chemistry, and life sciences. It is worth noting that although the
necessary hardware units for such tasks are commercially available, cost, standardization,
and efficiency issues have made scaling up difficult. Furthermore, current automated
multistep synthesis relies on iterative or linear processes and requires compromises in
versatility and equipment usage, which means that machines cannot perform multi-step
synthesis to run many different protocols and reactions [112–115]. It is believed that in the
future, robotic chemists will further change chemical synthesis.
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2.3.2. Automated Synthesis

In the field of chemistry, AI can be used to optimize chemical reaction conditions
experimentally. In the past, Chemists devote considerable time to evaluating various reac-
tion parameters such as substrates, catalysts, reagents, additives, solvents, concentrations,
temperatures, and reactor types. Despite the prevalence of established techniques such as
single-objective optimization algorithms, design of experiments (DoE), and other existing
techniques, reaction optimization is still often a difficult and time-consuming process for
chemists [116–118]. For example, the Single-objective optimization algorithms cannot ex-
plore the entire chemical space, thus yielding an overall sub-optimal process. Design of
experiments (DOE) methods such as Latin Hypercube Sampling (LHS) typically generate
samples that cover the design space as uniformly as possible to improve the accuracy of
the overall metamodel. However, it is not the most efficient method if the design goals are
clearly defined. Additionally, when a complex model is required to achieve a predefined
design goal, the sole experimental methods are inefficient. Consequently, there are often
multiple factors to consider during process optimization, such as reaction yield, process
cost, impurity levels, and environmental impact. Multi-objective optimization can address
multiple (conflicting) objectives encountered in many chemical engineering applications,
for example, conversion and selectivity in chemical reactions [119]. Multi-objective opti-
mization techniques such as the parametric approach, epsilon constraint method, or genetic
algorithms are used as solution strategies for the multi-objective optimization of chemical
reactions [120,121]. However, since they require many functional evaluations and partially
derived information is not available, these approaches do not apply to automated chemi-
cal reaction systems. Surprisingly, the Bayesian optimization method is a derivative-free
global stochastic optimization method for the automatic optimization of multi-objective
experimental parameters in chemistry, materials, and other fields [122,123]. For example,
both Doyle et al. and Jensen’s group used Bayesian algorithms to achieve optimization
for performing single or multi-objective reaction parameters [122,124]. Additionally, some
excellent multi-objective Bayesian optimization algorithms have been gradually developed,
such as Thompson Sampling Efficient Multi-Objective (TS-EMO), Phoenics, Gryffin, and
Chimera, etc. (Figure 9) [125–129].
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Bayesian optimization is an iterative response surface-based global optimization al-
gorithm that has shown excellent performance in the optimization of chemical reaction
parameters [130–132]. It aims to balance the exploration of areas of uncertainty with the
use of available information to obtain high-quality configurations in fewer evaluations. In
many cases, Bayesian optimization algorithms outperform expert practitioners and other
state-of-the-art global optimization algorithms [133]. Currently, multi-objective Bayesian
optimization algorithms, including Thompson Sampling Efficient Multi-Objective (TS-
EMO), ParEGO, and Expected Hypervolume Improvement (EHI), aim to approximate the
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Pareto front. Lapkin’s group study showed that the TS-EMO algorithm has comparable
or better data efficiency than both EHI and ParEGO [130]. Further, TS-EMO performs
well on a set of mathematical test functions for a given budget compared to the externally
commonly used genetic algorithm NSGA-II. Based on the advantages of the TS-EMO
algorithm, Lapkin et al. achieved self-optimization for the Sonogashira reaction, Claisen-
Schmidt condensation reaction, N-benzylation reaction, and N-benzylation reaction with
flow chemistry systems [130,133]. The optimal conditions corresponding to the trade-off
curve (Pareto front) between environmental and economic objectives were successfully
identified. The TS-EMO algorithm combined with flow chemistry systems demonstrates
the ability to identify optimal reaction conditions and trade-offs (Pareto fronts) between
conflicting optimization objectives such as yield, cost, space-time yield, and E-factor in a
data-efficient manner [134]. The TS-EMO algorithm applies not only to classical single-
step reactions but also to the optimization of multi-step reaction parameters. Lapkin’s
group combined the TSEMO algorithm with a self-optimizing platform to optimize the
Claisen-Schmidt condensation reaction with subsequent liquid-liquid separation, involv-
ing three objectives [133]. By optimizing multi-step sequential reactions, AI shows how
to re-evaluate optimal reaction conditions with changing downstream post-processing
specifications during active learning. The diversity of possible combinations of reagents,
solvents, stoichiometry, and temperature for reactions makes the development of new
products fraught with difficulties. For example, studies have shown that most catalytic
reactions have over 50 million potential conditions, making a robust exploration of the
parameter space impractical [135]. Recent work has shown that machine learning and
molecular descriptors of a solvent or catalyst can be used to extrapolate performance from
a small number of experiments to a large library, but which machine learning strategy
to apply in a particular case remains difficult [136,137]. Therefore, Lapkin et al. released
an open-source software package called Summit based on Bayesian optimization to op-
timize the reaction [125]. Summit includes a benchmark that enables the comparison of
the performance of different ML strategies, where researchers can test the efficiency of
each strategy through virtual experiments. The platform was used to achieve process
route development for the SNAr reaction and to screen the optimal catalyst and ligand
for the Pd-catalyzed cross-coupling reaction. Furthermore, AI makes it possible to obtain
functional molecules with high selectivity from renewable biomaterials and biowastes. The
preparation of p-cymene from waste terpene mixtures was reported by Lapkin et al. [138].
This work used the TS-EMO algorithm to optimize the first two steps of the reaction to
obtain maximum conversion and selectivity for the production of functional molecules
from biomaterials and biowaste. In brief, Bayesian optimization algorithms are tools to
develop accurate reaction models without prior knowledge, with a large number of input
variables, and with competing objectives. Models developed for individual steps can be
used for potential process design and scale-up.

Other examples of multi-objective algorithms developed for the chemical process
include Phoenics, Gryffin, and Chimera [127–129]. These algorithms avoid the problem of
classical Bayesian algorithms that select data in the order of parameter points. Phoenics
uses Bayesian neural networks (BNNs) to construct kernel density estimates of the objec-
tive function, and its acquisition function allows the selection of batches of evaluations
that run in parallel. Importantly, Phoenics is suitable for the optimization of continuous
parameters, such as temperature and concentration, and can be used for the optimization
of chemical reaction conditions and material properties. Aspuru-Guzik’s group developed
Gryffin for optimizing categorical parameters such as solvent selection. The algorithm
uses categorical kernel densities that can be relaxed to continuous ones. In addition, it
allows the provision of expert knowledge in the form of descriptors for each classifica-
tion choice and is successfully used for the optimization of chemical reaction conditions.
Usually, there are also multiple competing objectives in materials science. Chimera is a
generic multi-objective optimization method. It allows for defining a hierarchy of objective
preferences that are combined into a single function optimized with any chosen algo-
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rithm. Importantly, both the previously mentioned TS-EMO algorithm and the algorithm
described here can be combined with an automation platform to automate experiments.
For example, Aspuru-Guzik’s group deployed ChemOS, together with Phoenics, Gryffin,
and Chimera, for the autonomous optimization of manufacturing processes of thin-film
materials, multicomponent polymer OPV blends, and reaction conditions of stereoselec-
tive Suzuki coupling [93,109,139]. For other excellent work, Aspuru-Guzik’s group has
described specifically in the review [140]. Other AI-based automation platforms are also
being reported. Vlachos’s group has developed the NEXTorch platform using state-of-
the-art Bayesian optimization algorithms to enable the sampling of continuous variables
and discrete values of subtypes [141]. It can help not only chemical synthesis in labora-
tory experiments but also multi-scale computational tasks from molecular-scale design to
reactor-scale optimization.

Nevertheless, AI in automated synthesis still faces many challenges. First, the in-
line/online analysis still needs further development, especially in terms of measurement
accuracy, instrument response speed, and compatibility with heterogeneous synthesis. In
addition, the equipment for automated synthesis is too expensive for research laboratories
in developing countries to afford.

3. Conclusions and Outlook

In this review, different aspects of artificial intelligence-enabled chemical process
intensification are discussed. In chemistry, AI enables structure-function relationship
analysis, including the prediction of molecular properties and the design of molecules. In
addition, here is a brief summary of the use of computer-aided synthesis planning (CASP):
retrosynthetic planning, condition recommendation, and forward reaction prediction in
the Pharmaceutical and Chemical Industry. Moreover, the robotic lab platform enables
automated organic synthesis to reduce the repetitive work of laboratory staff. Finally, AI
techniques enable the optimization of chemical reaction conditions with multiple objectives,
achieving a trade-off between optimal reaction conditions and conflicting optimization
objectives (e.g., yield, cost, spacetime yield (STY), and E factor).

Although AI is booming in the chemical industry, it still faces many challenges. Op-
timal predictions depend on the availability of a stable and high-quality dataset, and the
challenge is to obtain sufficient and reliable data. Second, while the arithmetic (quantum
and cloud-based approaches) is improving, there are still limitations from the user’s per-
spective. The shortage of data science talent in chemical engineering means that increased
collaboration between chemistry and other scientific disciplines may help accelerate the
integration of AI with other fields.
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