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Abstract: The aim of optimization methods is to identify the best results in the search area. In this
research, we focused on a mixture of the interior point method, opposite gradient method, and
mean-variance mapping optimization, named IPOG-MVMO, where the solutions can be obtained
from the gradient field of the cost function on the constraint manifold. The process was divided
into three main phases. In the first phase, the interior point method was applied for local searching.
Secondly, the opposite gradient method was used to generate a population of candidate solutions.
The last phase involved updating the population according to the mean and variance of the solutions.
In the experiments on real parameter optimization problems, three types of functions, which were
unimodal, multimodal, and continuous composition functions, were considered and used to compare
our proposed method with other meta-heuristics techniques. The results showed that our proposed
algorithms outperformed other algorithms in terms of finding the optimal solution.

Keywords: initial population; interior point method; mean-variance mapping optimization;
meta-heuristics techniques; opposite gradient method

1. Introduction

Optimization methods are employed to solve real parameter optimization problems
in order to obtain a vector x = (x1 . . . xD) that yields the optimal value of the function f (x),
where D is the number of dimensions of the vector. To solve optimization problems, a
global solution is searched without related knowledge or the physical structure of the cost
function. There are real parameter optimization problems, such as engineering optimization
problems, as well as those related to scientific applications, energy savings for tissue paper
mills involving energy efficiency scheduling [1], the optimal scheduling of vehicle-to-grid
energy and ancillary services [2], query optimization mechanisms in cloud computing [3],
energy management [4], and tools for analytics in mechanical engineering [5].

Previously, a wide variety of evolutionary algorithms have been proposed to obtain
solutions from real-world continuous optimization problems. For instance, the covariance
matrix adaptation evolution strategy (CMA-ES) algorithm [6] is based on correlated mu-
tations. The covariance matrix C has been adopted to enable the proper distribution of
mutations, resulting in an increased likelihood of the successful replication of the search pro-
cess. However, there are several black box properties that may promptly lead to premature
CMA-ES convergence, with many uncontrollable variations and uncertainties. Therefore, to
increase the possibility of finding the global optimum using the restart strategy, many tech-
niques have been proposed based on CMA-ES, such as the restart CMA evolution strategy
with increasing population sizes (IPOP-CMA-ES) [7], the bi-population CMA-ES strategy
(BIPOP-CMA-ES) [8], and the new bi-population CMA-ES strategy (NBIPOPaCMA-ES) [9].
Usually, a new generation is randomly sampled based on the current covariance matrix in
the desired search space. Consequently, the starting point is still randomized. Therefore,
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the time taken to find a solution increases as the amount of data increases. Moreover, the
size of the search area and the surface of the cost function have also not been considered.

Another technique that solves the optimization problem is mean-variance mapping
optimization (MVMO). MVMO [10] involves an evolutionary algorithm with two interest-
ing issues. Firstly, the MVMO process determines the range of search areas for variables
within an interval [0, 1]. This process ensures that new values computed later for the
optimization population are always generated within this range before the fitness value
is calculated. Secondly, the statistical features used in MVMO are useful for changing the
search direction. Using the mean and variance of the different solutions and a mapping
function for the mutation operation yields the optimal fitness value. Additionally, for each
time that the algorithm produces better fitness values, the solutions with the n-best fitness
values are updated and stored in the archive for use in finding the best solution, until the
specified number of iterations has been reached. MVMO is applied in chemical process
applications. For example, an adaptive PID controller based on MVMO has been proposed
to enhance the performance of a chemical process with variable time delay [11]. Swarm-
based mean-variance mapping optimization (MVMO-S) is an extension of MVMO, which is
combined with swarm intelligence. The search procedure applied to this technique begins
with the particles. They are represented in the form of the consistent function of archiving
and mapping to the original MVMO [12]. Another extension of MVMO is the swarm
variant of hybrid mean-variance mapping optimization (MVMO-SH) [13–15], which is an
evolutionary algorithm. The algorithm takes advantage of the statistical features (mean
and variance) of the dynamic search function, using mapping functions for mutation and
modification according to the mean and variance of the n-best solutions that are recorded
in the solution archive. The process of generating new offspring from techniques based on
MVMO also uses randomness, regardless of the number of populations in the actual search
surface of the cost function.

In addition to the algorithms mentioned above, there are still many algorithms that
use natural behavior concepts to solve optimization problems, such as the seagull and gray
wolf optimization algorithms. The seagull optimization algorithm (SOA) is a new type of
bioinspired optimization algorithm that is based on the characteristics of a seagull. The
SOA is combined with another algorithm to solve energy problems, such as short-term
wind speed forecasting problems [16]. The gray wolf optimization algorithm (GWO) [17]
relies on the level of leadership and the hunting mechanism of the gray wolf population for
the search process of the optimization algorithm. The algorithms, based on different animal
behavior patterns, are also subject to their effectiveness, which cannot be significantly
improved when modified. Valenta and Langer proposed 2D P colonies to model the gray
wolf optimization algorithm [18], where the performance was compared with that of the
original GWO algorithm. From the computer simulation, the 2D P colonies had good
performance for optimization problems.

Seagull, gray wolf optimization, and other evolutionary algorithms have the charac-
teristics of self-management, adaptation, and self-learning. However, the new population
determination process requires random initialization, resulting in relatively low computing
efficiency. Considering the advantages and disadvantages of these algorithms, facing the
same problem, the efficiency can be improved by modifying the original algorithms with
other initialization concepts to avoid the randomization process.

Furthermore, a philosophy-inspired algorithm, namely, yin–yang pair optimization
(YYOP) [19], uses the concept of balancing between two opposite entities for exploration
and exploitation. YYPO is a low-complexity method that maintains good performance.

An important step in an optimization algorithm is the population generation step.
Random initialization is used to generate new candidate solutions and eliminate the
solutions that yield low scores, so that the cost value can either be maximized or minimized.
However, the geometric structure of the cost function is not assessed at any step of the
solution when generating offspring or for the search process. We proposed the application
of the opposite gradient search [20] technique to search for the solution on the surface of
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the cost function. The technique, namely the fast opposite gradient search (FOGS) method,
refers to a surface search algorithm applied with the opposite gradient method (OGM) [21].
FOGS is different from other search methods. It is not based mainly on meta-heuristics;
instead, it seeks the manifold to obtain the locations where the cost function has zero
gradients and minimum values.

This article introduces methods to increase the problem-solving efficiency with a
better initial population for real parameter optimization problems. The proposed method
presents a combination of the interior point method, the opposite gradient for generating
new offspring, and the mean-variance mapping optimization algorithm (IPOG-MVMO).
The mapping optimization algorithm is applied for the mutation operation to generate
a modification depending on the n-best solution’s mean and variance, to obtain a can-
didate solution on a complex surface of the function. Therefore, this proposed research
contribution involves generating new offspring and obtaining the solution from the high-
dimensional space of the cost function.

The manuscript is structured as follows. Section 2 describes the concepts of the
proposed technique. In Section 3, we present an experimental simulation and analyze the
results. Section 4 presents the discussion. Finally, Section 5 provides the conclusions and
scope for future research.

2. Proposed Concept

For the proposed method, there were three main phases. Firstly, IPM was applied
for local searching. The results from the first phase were introduced as points used for
the second phase to create a new population, which depended on the manifold of the cost
function using OGM. Finally, the last phase aimed to obtain the best solution using MVMO.

Karmarkar [22] presented the interior point method (IPM) to solve a linear program-
ming problem in polynomial time complexity. The number of iterations taken by IPM
was not greater than 100, regardless of the size of the problem. Therefore, IPM is suitable
for local searching for large problems. The repetitive path pattern of searching for IPM
always walks within the domain of possible answers. Since each iteration of IPM is compli-
cated, especially in cases where the coefficient matrix is dense, IPM spends more time on
each iteration.

One important concept that has been used to find the best solution or enhance the IPM
is the opposite gradient method (OGM). The OGM is used to create a new set of points
from the point resulting from the IPM. MVMO then uses the new points from the OGM
phase to mutate to achieve a better solution, instead of randomly generating points as the
original MVMO. This proposed technique, based on a combination of IPM, OGM, and
MVMO, is called IPOG-MVMO and yields a set of solutions throughout the surface of the
cost function. The process of IPOG-MVMO is presented in Algorithm 1.

Algorithm 1 Proposed IPOG-MVMO algorithm

Initialize parameters.
Generate an initial population using IPM from randomized points.
Improve the population using OGM.
Update the archive using MVMO.
Return the best point in the archive.

2.1. Generating Initial Population Using Local Minima Obtained from the IPM

The proposed algorithm focused on the interior point method called the barrier
method [23,24], because of the proof of convergence and its complexity. The IPM was
used to find the local minima that are located near an initial population. A function F(x)
was defined and was differentiable in the neighborhood of a point x. The process involved
formulating a rule to test a differentiable function for the local minima that satisfied the
restrictions. The procedure is described in Algorithm 2, where the output of this algorithm
is assigned as the initial population for the next phase.



Processes 2023, 11, 465 4 of 23

Algorithm 2 Finding the local minima using IPM

Q: an archive storing a population
D: number of dimensions in search space
Randomize N points in the feasible domain to generate an initial population.
Set Q as an empty set.
Set parameters t := t0 > 0, µ > 1, ε > 0.
FOR {1 ≤ j ≤ N}
Set a random point xj as a starting point.
WHILE ( D

t > ε) do
Compute x∗j by minimizing tF(x) +∅(x), subject to Axj = b.
Set xj := x∗j .
Update new t as µt.

ENDWHILE
Insert xj into Q.
ENDFOR
RETURN Q as an archive storing the initial population for the next phase.

According to Algorithm 2, there are three constants, t0 > 0, µ > 1, ε > 0, to be defined
to initiate the algorithm. In each iteration, x∗j is computed by minimizing tF(x) +∅(x)

subject to constraint Axj = b and ∅(x) = −∑M
i=1 log(bi − aix). The solution is updated

until t ≥ D/ε. All local minima in a set Q are used as the initial population for the next step.

2.2. Opposite Gradient Method (OGM)

This section briefly presents a concept for generating new offspring. For a vector in a
D-dimensional space of the cost function, new offspring are generated at the position of
the manifold by OGM, where its first derivative is zero. One of these locations is expected
to be the best solution for the cost function. The proposed technique proceeded along
the same line with the following observation. The first derivative of F(x) is denoted by
F′(x) and the gradient vector field is represented as the matrix of the first derivative form.
Let x(σ) and x(γ) be two vectors on the manifold of the cost function. The locations with
zero values of the first derivatives on dimension i could be in the range between x(σ) and
x(γ) such that Fi

(
x(σ)

)
Fi

(
x(γ)

)
< 0. If

∣∣∣Fi

(
x(σ)

)∣∣∣ > ∣∣∣Fi

(
x(γ)

)∣∣∣, and the location with

zero gradient is closer to x(σ) than x(γ). On the other hand, if
∣∣∣Fi

(
x(σ)

)∣∣∣ < ∣∣∣Fi

(
x(γ)

)∣∣∣, the

location with zero gradient is closer to x(γ) than x(σ). This concept can also be applied to
any other dimensions.

In particular, for each pair of two vectors obtained from set Q, the output of IPM in
Algorithm 2, new next-generation vectors are generated from a varying jumping distance δ
related to two vectors that have different signs of gradient on each dimension, as shown in
Equation (1).

δ =

∣∣∣Fi

(
x(γ)

)∣∣∣∣∣Fi
(
x(σ)

)
|+|Fi

(
x(γ)

)∣∣‖x(γ) − x(σ)‖w (1)

Suppose that x(σ) and x(γ) are selected from the output IPM with the assumption that
Fi

(
x(σ)

)
Fi

(
x(γ)

)
< 0. Then, we have two new vectors, x(σ)new, x(γ)new, whose coefficients on

dimension i are calculated from this jumping distance, as shown in Equations (2) and (3),
while the coefficients on the other dimensions are still unchanged.

x(σ)new,i = x(σ)i + δ (2)

x(γ)new,i = x(γ)i − δ (3)
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In Equation (1), a weight value, w, is calculated at each iteration t according to Algorithm 3
to guarantee that the new vectors are generated within the pre-specified range of the search
area. In essence, the weight value is in the interval between 0 and 1 and involves the
jumping distance, δ, such that the new vectors discovered outside the search space are
discarded immediately.

Algorithm 3 Generating candidate vectors x(σ)new, x(γ)new within the pre-specified search space

w: weight value
NP: number of iterations
Q: an archive storing the current population
Set Xcand = ∅.
w = 0.05w(NP/t)/* Calculating an updated weight value */
Compute a jumping distance δ using Equation (1).

Create two new candidate vectors x(σ)new, x(γ)new using Equations (2) and (3).

IF {x(σ)new is in the range}

Insert x(σ)new into Xcand.
ELSE

Discard x(σ)new.
ENDIF

IF {x(γ)new is in the range}

Insert x(γ)new into Xcand.
ELSE

Discard x(γ)new.
ENDIF
RETURN Xcand

Two new vectors can be generated and located approximately between the parent
vectors. Accordingly, the next generation of vectors is calculated to decrease the search
area. The cost function values of these new vectors must also be within an acceptable
range. If some new vectors providing better cost value are attained, these new vectors will
replace some vectors in the previous generation that are stored in the archive. Subsequently,
for each dimension i, all the vectors in the archive are sorted ascendingly according to
their cost values and divided into two different gradient groups, which are G+

i , a group
of vectors with a positive gradient value along dimension i, and G−i , a group of vectors
with a negative gradient value along dimension i. For each group, a vector that contains
the smallest gradient is retrieved such that these vectors are used as a pair of vectors to
generate the next candidate vectors in the next generation. These steps are described in
Algorithm 4.

The offspring from Algorithm 4 are filled in the archive Q to store the n-best offspring.
The offspring index in the archive can be arranged according to the fitness suitability
sequence and can be used as a guide for conducting the search. The size of the archive Q is
not changed throughout the process. Note that the archive is updated only when the new
vector obtains a solution better than the existing solution in the archive.
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Algorithm 4 Generating a population using the opposite gradient method (OGM)

Q: an archive storing the initial population obtained from Algorithm 2
NP: number of iterations
D: number of dimensions
Set count = 1
WHILE {count ≤ NP}
FOR {1 ≤ i ≤ D}

Set w = 1
Partition the population in Q into G+

i and G−i .
Select x(σ), a vector with smallest gradient from G+

i .
Select x(γ), a vector with smallest gradient from G−i .

Compute vectors x(σ)new, x(γ)new from x(σ) and x(γ) using Algorithm 3.

IF x(σ)new ∈ Xcand and F
(

x(σ)new

)
is less than the highest cost value from vectors in Q

Discard the vector with the highest cost value.

IF Fi

(
x(σ)new

)
> 0

Insert x(σ)new in G+
i .

ELSE

Insert x(σ)new in G−i .
ENDIF

ENDIF

IF x(γ)new ∈ Xcand and F
(

x(γ)new

)
is less than the highest cost value from vectors in Q

Discard the vector with the highest cost value.

IF Fi

(
x(γ)new

)
< 0

Insert x(γ)new in G−i .
ELSE

Insert x(γ)new in G+
i .

ENDIF
ENDIF

ENDFOR
Q′ =

(
∪D

i=1G+
i
)
∪
(
∪D

i=1G−i
)

Select n best points with respect to the cost values to store in Q.
count++
ENDWHILE
RETURN Q as an archive storing the initial population for the next phase

2.3. Combining IPM, OGM, and MVMO

The combination of IPM and OGM with MVMO is presented in this section. MVMO
carries out global searching and focuses on the best solution. MVMO continuously updates
an archive using compact memory with a fixed storage space. The n-best offspring are
stored in the archive and serve as a guide toward the search direction. A solution stored in
the archive is replaced by new offspring with a lower cost function value. Once the pro-
posed combination is conducted, the vector with the lowest cost function value represents
the optimal solution of the given function.

The search procedure applied to MVMO [25] is initiated with a particular set of points
with D dimensions, obtained from Algorithm 4 in this study. MVMO has a key feature
in that a mapping function is used for modifying the offspring depending on the specific
mean-variance of the solutions collected in an archive. The mean xi and variance vi of
dimension i are calculated once the update of the archive for each dimension is made with
Equations (4) and (5), where N is the population size stored in the archive.

xi =
1
N

N

∑
j=1

xi(j) (4)
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vi =
1
N

N

∑
j=1

(xi(j)− xi)
2 (5)

The size of the search space depends on the mapping function. Moreover, the shape
of the function with respect to xi can be controlled by two shape variables si,1 and si,2
as follows:

h(xi, si,1, si,2, x) = xi
(
1− e−xsi,1

)
+ (1− xi)e−(1−x)si,2 (6)

The new coefficient of each selected dimension xi of x is calculated using h values in
terms of hx, h1, h0 as follows:

xi = hx + (1− h1 + h0) xr
i − h0 (7)

where xr
i is a number obtained randomly with uniform distribution in the range of [0, 1]. It

can be guaranteed that the output of Equation (7) is within the range of [–100, 100]. According
to Equation (6), hx, h1, h0 are calculated using x = xr

i , x = 1, and x = 0, respectively.
MVMO is capable of searching the global optimum with the best mean values of the

solution. Two shape variables si,1 and si,2 are originated from a variable si, calculated from
a scaling factor fs and variance vi to change the shape of the function as follows:

si = − fs ln(vi) (8)

where vi is initially set to 1 and then recalculated once the update of the archive for each
dimension is made using (5). The scaling factor fs can be used to improve the accuracy
when its value is greater than 1. On the other hand, the search is coarsely conducted when
the value is less than 1. The factor is initiated for the search procedure with a small value.
Subsequently, the size is increased for every iteration to increase the efficiency, as denoted
in Equation (9):

fs = f ∗s (1 + rand) (9)

where rand is randomized within [0, 1], and f ∗s can be calculated as in Equation (10):

f ∗s = f ∗si
+

(
j
j f

)2(
f ∗s f
− f ∗si

)
(10)

where j and j f are the current iteration number and the last iteration number, respectively.
In this study, the values of f ∗si

and f ∗s f
were set to 1 and 25, respectively.

As aforementioned, the shape of the mapping function can be determined, which
depends upon the shape variables si,1 and si,2 of xi. To improve the efficiency of the search
process, the proper shape variables can be calculated using Algorithm 5.

The parameter di is initially set to 1 and then continuously updated at every iteration
using the increment factor ∆d calculated from Equation (11).

∆d = (1 + ∆d0 + 2·∆d0·(rand− 0.5)) (11)

This factor leads to the expansion or shrinkage of the value of parameter di , resulting
in oscillation around the current si. The optimal interval of ∆d0 is within [0.01, 0.4].

In essence, the original MVMO encounters two problems, causing a long-duration
searching process and difficulty in finding the best solution [10,26]. The first problem is zero
variance when solutions stored in the archive are located at the same position. The second
problem is that the value of the variance is sometimes outside of the specified range. This
research attempted to overcome the limitations of MVMO and improve the flexibility of
global searching over the classical MVMO by generating the population with the opposite
gradient method before proceeding to MVMO. Algorithm 6 presents the determination of
the n-best solutions using MVMO within fewer generations when using the population
obtained from OGM.
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Algorithm 5 Calculating the shape variables si,1 and si,2 for dimension i at iteration j

Calculate the variance vi using Equation (5).
Calculate the scaling factor fs using Equations (9) and (10).
Calculate the variable si using Equation (8).
Set si,1 = si and si,2 = si.
IF si > 0 then

IF si > di
Update di by multiplying with ∆d.

ELSE
Update di by dividing with ∆d.

ENDIF
IF di > si

Set α = di and β = si.
ELSE

Set α = si and β = di.
ENDIF
IF rand < 0.5

Set si,1 = α and si,2 = β.
ELSE

Set si,1 = β and si,2 = α.
ENDIF

ENDIF
RETURN si,1, si,2, di

Algorithm 6 Generating n-best offspring using MVMO

Q: an archive storing the initial population obtained from Algorithm 4
NP: number of iterations
D: number of dimensions
Set the parameters di, ∆d0, f ∗si

, f ∗s f
.

WHILE {count ≤ NP}
FOR {1 ≤ i ≤ D}

Calculate xi using Equation (4).
Apply Algorithm 5 to obtain two shape variables si,1 and si,2.
Calculate hx, h1, h0 using Equation (6).
Generate new xi using Equation (7).

ENDFOR
Calculate the cost value of xnew.
IF F(xnew) is less than the highest cost value from vectors in Q.

Discard the vector with the highest cost value.
Insert xnew in Q.

ENDIF
ENDWHILE

3. Experiments

The IPOG-MVMO algorithm and the other algorithms, which were NBIPOPaCMA [9],
PVADE [27], and MVMO, were applied to 28 benchmark functions on real-parameter
optimization [28] using a computer with a Core i7 2.10 GHz CPU and 6 GB RAM for com-
parative purposes. All 28 benchmark functions have been described by Liang et al. [29,30].
The functions were composed of three types: unimodal (F1–F5), multimodal (F6–F20), and
composition functions (F21–F28). All algorithms began running from the same set of initial
points. The global optimal point of each test function was at the origin of the vector space.
The error value ε can be calculated by Equation (12):

ε =
∣∣ f j(0)− f j(x∗)

∣∣ (12)
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where f j(0) is the cost value at the exact optimal point of the j-th benchmark function and
f j(x∗) is the cost value of the optimal point obtained by a selected algorithm. The error
value is rounded to zero if it is less than 0.00000001 or 1× 10−8.

3.1. IPOG-MVMO Parameter Set-Up

By using IPOG-MVMO, all functions have been tested with N = 15D points, where D
is the number of dimensions. The parameters selected for IPOG-MVMO are presented in
Table 1.

Table 1. The parameters of the proposed algorithm experiment.

Parameters Values

The number of dimensions (D) in each problem {10, 30, 50}
Search range [−100, 100]D

f ∗si
1

f ∗s f
25

di 1
∆d0 0.05
N 15D

Size of the archive 15
NP 100,000

Number of experimental trials 50

The parameters used for IPOG-MVMO are presented in Table 1. The number of
dimensions (D) in each problem, and the search range, were defined according to the
evaluation criteria of CEC2013 benchmark problems. The number of points (N) varied
depending on the number of dimensions, to improve the flexibility of the algorithms to
deal with more difficult problems. The number of iterations (NP) and the number of
experimental trials were defined to achieve reliable results. Moreover, other parameters
were successfully tested in the original MVMO process.

3.2. Experimental Results

The best value, worst value, mean, and standard deviation of the error between the
cost value of the solution found by an algorithm and the exact cost value were recorded
over 50 trials. With these four metrics, the best value was used for the comparison and
was the focus of this study. The results for 10, 30, and 50 dimensions are summarized in
Tables 2–8, respectively. To clearly illustrate the comparison, only the mean of the error was
selected and plotted, as is shown in Figures 1–3.
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Table 2. The comparative results of the errors obtained from unimodal functions F1–F5.

F1

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 0 0 0 0 1.91 × 10−8 0 4.30 × 10−8 0 0 0 0
PVADE 0 0 0 0 0 0 0 0 0 0 0 0
MVMO 0 0 0 0 0 0 0 0 0 0 0 0

IPOG-MVMO 0 0 0 0 0 0 0 0 0 0 0 0

F2

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 0 0 0 0 3.45 × 10−8 1.61 × 10−8 3.78 × 10−9 0 0 0 0
PVADE 0 6.57 × 102 1.39 × 101 1.12 × 102 1.35 × 103 4.23 × 104 9.03 × 103 7.40 × 103 3.55 × 104 4.15 × 105 2.07 × 105 9.44 × 104

MVMO 0 0 0 0 5.59 × 10−4 9.21 × 10−4 7.65 × 10−4 9.49 × 10−5 5.59 × 10−4 9.21 × 10−4 7.65 × 10−4 9.49 × 10−5

IPOG-MVMO 0 0 0 0 0 5.27 × 10−7 0 0 0 0 0 0

F3

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 0 0 0 0 7.42 × 10−8 2.21 × 10−8 1.68 × 10−9 1.17 × 10−5 5.01 × 100 1.41 × 100 2.19 × 100

PVADE 0 4.85 × 10−3 9.7 × 10−5 7.15 × 10−4 0 1.55 × 103 4.01 × 101 2.31 × 103 6.14 × 105 2.63 × 107 1.89 × 107 1.16 × 107

MVMO 0 0 0 0 1.00 × 103 1.11 × 107 7.95 × 105 1.81 × 106 2.88 × 10−6 1.29 × 106 6.08 × 104 2.72 × 105

IPOG-MVMO 0 0 0 0 0 1.17 × 10−6 3.65 × 10−7 4.62 × 10−7 1.75 × 10−5 6.24 × 10−4 2.11 × 10−4 2.23 × 10−4

F4

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 0 0 0 7.75 × 10−8 1.71 × 10−8 1.39 × 10−8 4.81 × 10−8 7.75 × 10−8 1.71 × 10−8 1.39 × 10−8 4.81 × 10−8

PVADE 0 2.12 × 10−1 4.21 × 10−3 3.13 × 10−2 5.53 × 10−7 1.33 × 10−3 1.93 × 10−4 3.31 × 10−4 5.53 × 10−7 1.33 × 10−3 1.93 × 10−4 3.31 × 10−4

MVMO 0 1.18 × 10−8 0 0 5.37 × 10−6 3.91 × 10−3 4.62 × 10−4 7.56 × 10−4 5.37 × 10−6 3.91 × 10−3 4.62 × 10−4 7.56 × 10−4

IPOG-MVMO 0 0 0 0 0 1.42 ×10−6 3.65 ×10−7 5.64 ×10−7 0 1.42 ×10−6 3.65 ×10−7 5.64 ×10−7

F5

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 1.15 × 10−8 0 0 0 3.34 × 10−8 1.39 × 10−8 6.18 × 10−8 0 0 0 0
PVADE 0 8.13 × 10−5 1.26 × 10−5 1.11 × 10−4 0 3.39 x10−8 1.02 × 10−8 1.14 × 10−8 1.45 × 10−4 1.6 × 10−4 1.02 × 10−3 1.11 × 10−3

MVMO 0 4.19 × 10−8 0 0 1.22 × 10−8 3.01 × 10−8 2.34 × 10−8 2.12 × 10−8 0 0 0 0
IPOG-MVMO 0 0 0 0 0 2.79 × 10−8 1.02 ×10−8 1.46 ×10−8 0 0 0 0
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Table 3. The comparative results of the errors obtained from multimodal functions F6–F9.

F6

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 0 0 0 0 2.13 × 10−8 0 3.96 × 10−9 0 0 0 0
PVADE 0 7.35 × 100 7.81 × 100 3.89 × 100 0 2.67 × 101 4.96 × 10−1 3.73 × 100 2.57 × 101 1.48 × 102 8.52 × 101 3.15 × 101

MVMO 0 0 0 0 0 3.91 × 101 1.04 × 101 9.71 × 100 0 4.34 × 101 3.05 × 101 2.01 × 101

IPOG-MVMO 0 0 0 0 0 2.81 × 10−8 0 8.11 × 10−9 0 5.76 × 100 1.21 × 100 2.26 × 100

F7

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 1.62 × 101 1.40 × 102 4.80 × 102 5.67 × 10−3 5.69 × 101 7.01 × 100 1.71 × 101 3.05 × 10−3 1.83 × 101 3.94 × 100 8.05 × 100

PVADE 3.11 × 10−5 1.10 × 101 3.02 × 10−1 1.53 × 100 4.21 × 10−1 2.64 × 101 4.60 × 100 5.75 × 100 3.92 × 104 4.41 × 101 1.89 × 101 9.26 × 100

MVMO 6.33 × 10−3 6.34 × 10−3 6.13 × 10−3 0 2.48 × 100 1.92 × 101 8.17 × 100 3.62 × 100 1.52 × 101 4.91 × 101 3.04 × 101 7.87 × 100

IPOG-MVMO 0 0 0 0 4.22 × 10−5 4.62 × 10−4 2.11 × 10−4 2.22 × 10−4 1.32 × 10−5 4.81 × 10−4 2.21 × 10−4 2.15 × 10−4

F8

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.49 × 10−8 1.68 × 10−8 1.04 × 10−8 8.57 × 10−9 2.08 × 101 2.19 × 101 2.13 × 101 2.85 × 101 7.77 × 10−1 2.11 × 101 5.87 × 100 9.20 × 100

PVADE 1.92 × 101 2.01 × 101 2.01 × 101 6.11 × 10−2 2.04 × 101 2.14 × 101 2.61 × 101 4.08 × 101 2.10 × 101 2.12 × 101 2.11 × 101 3.49 × 10-2

MVMO 1.94 × 101 2.11 × 101 1.98 × 101 6.54 × 10−2 2.08 × 101 2.10 × 101 2.19 × 101 5.41 × 102 2.10 x101 2.12 × 101 2.11 × 101 3.94 × 10-2

IPOG-MVMO 0 6.12 × 10−8 1.54 × 10−7 1.02 × 10−7 2.08 × 101 2.10 × 101 2.09 × 101 2.37 × 102 8.35 × 102 2.16 × 101 1.96 × 101 4.34 × 100

F9

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 1.92 × 10−8 2.47 × 101 3.82 × 100 9.56 × 10−9 2.02 x100 1.78 × 101 4.30 × 100 4.81 × 100 0 7.41 × 101 1.50 × 101 3.30 × 100

PVADE 8.11 × 10−3 3.36 × 100 1.34 × 100 9.67 × 10−1 2.27 × 101 3.09 × 101 2.74 × 101 1.77 × 100 1.99 × 101 3.34 × 101 2.60 × 101 3.05 × 100

MVMO 4.92 × 10−1 2.45 × 100 8.26 × 10−1 6.66 × 10−1 7.11 × 100 1.92 × 101 1.32 × 101 2.65 × 100 2.48 × 101 4.17 × 101 3.33 × 101 4.39 × 100

IPOG-MVMO 0 9.45 × 10−8 6.95 × 10−8 4.45 × 10−8 7.54 × 10−7 1.19 × 10−6 9.57 × 10−7 2.19 × 10−7 4.82 × 10−2 6.73 × 100 1.64 × 100 2.57 × 1000
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Table 4. The comparative results of the errors obtained from multimodal functions F10–F13.

F10

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 1.02 × 10−8 6.71 × 10−8 3.24 × 10−8 1.84 × 10−9 1.01 × 10−8 3.55 × 10−8 1.94 × 10−8 8.32 × 10−8 0 4.69 × 10−2 9.37 × 10−3 2.09 × 10−2

PVADE 0 1.79 × 10−1 5.01 × 10−2 3.79 × 10−2 1.73 × 10−2 1.89 × 10−1 7.64 × 10−2 3.53 × 10−2 4.77 × 10−2 1.15 × 100 5.99 × 10−1 3.42 × 10−1

MVMO 9.95 × 10−3 3.58 × 10−2 1.58 × 10−2 2.11 × 10−2 7.40 × 10−3 7.35 × 10−2 2.78 × 10−2 1.64 × 10−2 0 0 0 0
IPOG-MVMO 0 3.87 × 10−8 2.89 × 10−8 7.34 × 10−9 0 4.01 × 10−8 1.42 × 10−8 1.78 × 10−8 0 6.66 × 101 2.78 × 10−3 3.91 × 10−2

F11

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 6.72 × 10−8 3.27 × 10−8 2.11 × 10−9 9.95 × 10−1 3.98 × 100 2.70 x100 1.25 × 100 7.37 × 10−2 1.89 × 101 3.94 × 100 8.36 × 100

PVADE 0 1.21 × 101 4.04 × 100 2.33 × 100 1.03 × 100 7.34 × 100 3.13 × 100 1.49 × 100 6.76 × 101 2.34 × 102 1.68 × 102 4.08 × 101

MVMO 0 6.02 × 100 2.32 × 100 1.29 × 10−2 1.01 × 100 8.05 × 100 4.34 × 100 1.90 × 100 2.59 × 101 7.57 × 101 4.55 × 101 1.22 × 101

IPOG-MVMO 0 1.13 × 10−8 4.87 × 10−8 3.13 × 10−9 0 1.03 × 10−7 2.13 × 10−8 4.03 × 10−8 1.10 × 10−3 4.90 × 10−2 1.21 × 10−2 1.81 × 10−2

F12

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 1.03 × 100 3.43 × 10−1 1.89 × 10−9 6.70 × 10−8 3.98 × 100 2.27 × 100 1.70 × 100 7.37 × 10−2 1.02 × 100 3.30 × 10−1 3.96 × 10−1

PVADE 9.87 × 10−1 1.59 × 101 5.86 × 100 3.68 × 100 1.59 × 100 3.24 × 101 2.13 × 101 3.79 × 100 2.20 × 102 3.12 × 102 2.56 × 102 2.01 × 101

MVMO 1.89 × 100 1.55 × 101 5.89 × 100 1.32 × 100 1.59 × 101 5.97 × 101 3.36 × 101 1.14 × 101 3.98 × 101 1.34 × 102 7.77 × 101 2.33 × 101

IPOG-MVMO 0 3.49 × 10−5 4.78 × 10−8 7.56 × 10−9 0 2.72 × 10−8 8.87 × 10−8 1.21 × 10−8 7.74 × 10−5 2.45 × 10−3 9.99 × 104 1.05 × 10−3

F13

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 4.54 × 100 7.57 × 10−1 1.45 × 100 0 3.07 × 100 2.77 × 100 1.36 × 100 6.46 × 10−3 1.48 × 101 3.10 × 100 6.54 × 100

PVADE 0 2.08 × 101 8.35 × 100 4.34 × 100 7.60 × 101 1.56 × 102 1.21 × 102 1.86 × 101 8.10 × 101 1.62 × 102 1.18 × 102 1.69 × 101

MVMO 1.87 × 100 1.82 × 101 8.84 × 100 9.01 × 100 3.06 x101 9.95 × 101 5.90 × 101 1.67 × 101 7.20 × 101 2.05 × 102 1.33 × 102 3.43 × 101

IPOG-MVMO 0 3.58 × 10−5 1.08 × 10−5 1.01 × 10−5 0 1.79 × 10−6 3.23 × 10−7 6.07 × 10−7 6.43 × 10−4 6.30 × 100 1.54 × 100 2.59 × 100
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Table 5. The comparative results of the errors obtained from multimodal functions F14–F17.

F14

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 2.13 × 101 7.68 × 102 3.44 × 102 2.11 × 102 7.12 × 102 1.35 × 103 8.70 × 102 3.40 × 102 3.16 × 101 4.59 × 101 3.96 × 101 5.94 × 100

PVADE 4.01 × 101 5.13 × 102 1.67 × 102 1.07 × 102 2.04 × 103 4.01 × 103 3.11 × 103 4.70 × 102 2.14 × 103 3.90 × 103 3.07 × 103 3.80 × 102

MVMO 3.21 × 100 2.08 × 101 8.01 × 100 7.59 × 100 9.40 × 101 1.66 × 103 8.56 × 102 4.12 × 102 2.19 × 103 4.84 × 103 3.89 × 103 6.02 × 102

IPOG-MVMO 2.03 × 10−5 2.67 × 10−5 2.39 × 10−5 4.78 × 10−6 2.37 × 101 6.35 × 102 3.09 × 102 3.11 × 102 9.23 × 10−5 6.10 × 101 5.05 × 101 1.70 × 100

F15

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 6.87 × 100 2.38 × 102 1.17 × 102 8.89 × 101 5.53 × 102 1.67 × 103 7.65 × 102 2.85 × 102 1.27 × 10−1 9.68 × 101 6.51 × 101 3.94 × 101

PVADE 3.71 × 102 1.02 × 103 7.84 × 102 1.68 × 102 2.13 × 103 4.94 × 103 3.32 × 103 4.08 × 102 4.54 × 103 6.17 × 103 5.36 × 103 3.54 × 102

MVMO 1.89 × 102 6.57 × 102 5.58 × 102 9.01 × 101 1.70 × 103 4.45 × 103 3.03 × 103 5.41 × 102 5.75 x103 8.65 × 103 6.64 × 103 5.92 × 102

IPOG-MVMO 2.58 × 10−5 7.28 × 10−2 3.21 × 10−2 3.13 × 10−2 2.19 × 101 1.22 × 103 2.28 × 102 2.37 × 102 3.69 × 10−3 6.67 × 101 2.03 × 101 2.76 × 101

F16

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 1.97 × 101 5.68 × 100 7.23 × 100 5.68 x10−2 1.23 × 100 9.14 × 10−1 1.86 × 10−1 1.18 x10−3 3.51 × 100 1.20 × 100 1.65 × 100

PVADE 4.75 × 10−1 1.26 × 100 8.93 × 10−1 1.88 × 10−1 1.42 × 100 3.13 × 100 2.32 × 100 3.01 × 10−1 2.67 × 100 3.84 × 100 3.38 × 100 2.86 × 10−1

MVMO 3.52 × 10−1 6.49 × 10−1 5.39 × 10−1 1.62 × 10−1 5.37 × 10−1 1.62 × 100 1.08 × 100 2.88 × 10−1 6.60 × 10−1 1.70 × 100 1.14 × 100 2.37 × 10−1

IPOG-MVMO 0 7.64 × 10−1 1.63 × 10−1 3.18 × 10−1 8.08 × 10−2 1.34 × 100 5.40 × 100 1.09 × 101 3.12 × 10−1 3.25 × 100 2.11 × 100 2.24 × 10−1

F17

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 9.71 × 101 1.89 × 101 2.64 × 101 3.41 × 101 4.26 × 101 3.53 × 101 1.87 × 100 2.10 × 100 5.55 × 101 1.30 × 101 2.37 × 101

PVADE 1.15 × 101 1.75 × 101 1.39 × 101 1.39 × 101 7.44 × 101 1.17 × 102 9.52 × 101 1.10 × 101 1.44 × 102 3.17 × 102 2.37 × 102 1.10 × 101

MVMO 1.03 × 101 1.18 × 101 1.11 × 101 7.65 × 10−1 4.38 × 101 8.14 × 101 6.72 × 101 8.50 × 100 8.89 × 101 1.43 × 102 1.11 × 102 1.34 × 101

IPOG-MVMO 0 3.07 × 101 9.85 × 100 8.85 × 100 3.25 × 101 6.60 × 101 4.31 × 101 4.89 × 100 4.50 × 100 6.66 × 101 3.48 × 101 3.30 × 101
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Table 6. The comparative results of the errors obtained from composition functions F18–F20.

F18

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 5.74 × 101 1.58 × 101 1.51 × 101 3.86 × 101 1.72 × 102 6.38 × 101 4.45 × 101 8.60 × 10−2 9.86 × 101 2.54 × 101 4.13 × 101

PVADE 1.13 × 101 3.26 × 101 2.40 × 101 3.90 × 100 1.40 × 102 1.89 × 102 1.66 × 102 1.12 × 101 3.43 × 102 4.22 × 102 3.65 × 102 1.12 × 101

MVMO 1.51 × 101 2.01 × 101 1.72 × 101 2.58 × 100 4.58 × 101 7.88 × 101 5.94 × 101 7.59 × 100 8.06 × 101 1.63 × 102 1.07 × 102 1.73 × 101

IPOG-MVMO 0 1.01 × 10−1 3.27 × 10−2 3.71 × 10−2 1.88 × 101 3.38 × 101 2.94 × 101 9.87 × 100 1.20 × 10−2 4.18 × 100 1.34 × 100 1.92 × 100

F19

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 0 7.38 × 10−1 4.34 × 10−1 2.01 × 10−1 1.14 × 100 2.54 × 100 2.40 × 100 4.41 × 10−1 1.60 × 10−1 2.85 × 100 8.65 × 10−1 1.16 × 100

PVADE 3.27 × 10−1 9.69 × 10−1 5.98 × 10−1 1.25 × 10−1 3.10 × 100 1.06 × 101 6.49 × 100 1.74 × 100 1.06 × 101 3.10 × 101 2.12 × 101 4.74 × 100

MVMO 3.52 × 10−1 6.07 × 10−1 5.19 × 10−1 1.44 × 10−1 1.10 × 100 3.13 × 100 1.93 × 100 4.09 × 10−1 2.79 × 100 7.55 × 100 4.82 × 100 1.24 × 100

IPOG-MVMO 0 1.90 × 10−1 2.59 × 10−2 6.02 × 10−2 3.90 × 10−1 2.88 × 100 1.06 × 100 4.73 × 10−1 1.52 × 10−1 3.28 × 100 1.53 × 100 1.52 × 100

F20

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 2.11 × 100 4.85 × 100 3.26 × 100 9.87 × 10−1 1.01 × 101 1.56 × 101 1.29 × 101 5.98 × 10−1 7.85 × 10−1 2.53 × 101 7.01 × 100 1.05 × 100

PVADE 9.96 × 10−1 3.52 × 100 2.12 × 100 5.61 × 10−1 1.04 × 101 1.50 × 101 1.34 × 101 1.89 × 10−1 1.95 × 101 2.55 × 101 2.36 × 101 1.90 × 100

MVMO 1.83 × 100 2.78 × 100 2.34 × 100 4.76 × 10−1 8.81 × 100 1.19 × 101 1.04 × 101 5.85 × 10−1 1.87 × 101 2.23 × 101 2.01 × 101 6.84 × 10−1

IPOG-MVMO 1.12 × 100 2.74 × 100 1.95 × 100 4.01 × 10−1 6.84 × 100 1.28 × 101 1.01 × 101 6.23 × 10−1 2.10 × 100 1.78 × 101 2.30 × 100 4.57 × 10−1
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Table 7. The comparative results of the errors obtained from composition functions F21–F24.

F21

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.64 × 100 1.42 × 101 1.05 × 101 4.47 × 100 2.00 × 102 2.00 × 102 2.00 × 102 0 1.00 × 102 2.00 × 102 1.91 × 102 1.43 × 101

PVADE 2.53 × 102 3.81 × 102 2.90 × 102 4.06 × 101 2.00 × 102 4.43 × 102 3.17 × 102 6.22 × 101 8.36 × 102 1.22 × 103 9.56 × 102 1.44 × 102

MVMO 3.35 × 10−5 3.90 × 102 2.26 × 102 9.73 × 101 2.00 × 102 4.43 × 102 2.95 × 102 1.07 × 102 1.00 × 102 1.13 × 103 2.45 × 102 1.91 × 102

IPOG-MVMO 2.68 × 100 1.50 × 101 1.22 × 101 4.11 × 100 2.00 × 102 4.45 × 102 2.57 × 102 1.15 × 101 1.00 × 102 5.24 × 102 2.29 × 102 3.48 × 101

F22

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.31 × 100 1.00 × 101 8.81 × 100 3.05 × 100 3.54 × 102 1.08 × 103 8.03 × 102 3.12 × 102 1.89 × 102 3.86 × 103 1.45 × 103 6.01 × 102

PVADE 2.34 × 101 5.07 × 102 2.57 × 102 1.11 × 102 1.72 × 103 3.38 × 103 2.49 × 103 3.86 × 102 6.11 × 103 1.01 × 104 7.72 × 103 8.44 × 102

MVMO 5.02 × 100 1.00 × 102 3.27 × 101 1.91 × 101 2.35 × 102 2.00 × 103 8.19 × 102 4.28 × 102 1.17 × 103 4.94 × 103 2.76 × 103 8.38 × 102

IPOG-MVMO 3.00 × 100 1.76 × 101 6.20 × 100 2.48 × 102 2.00 × 102 2.83 × 103 6.26 × 102 2.55 × 102 3.92 × 102 4.68 × 103 2.35 × 103 6.94 × 102

F23

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.59 × 100 4.14 × 100 3.96 × 100 2.01 × 101 3.52 × 102 3.59 × 103 1.29 × 103 1.35 × 103 1.37 × 103 1.31 × 104 4.29 × 103 5.00 × 103

PVADE 1.18 × 101 1.12 × 102 9.14 × 101 1.78 × 101 4.74 × 103 7.25 × 103 5.81 × 103 5.04 × 102 7.91 × 103 1.54 × 104 1.17 × 104 1.48 × 103

MVMO 5.63 × 101 8.71 × 102 4.95 × 102 2.03 × 102 1.69 × 103 4.45 × 103 3.09 × 103 5.28 × 102 6.17 × 103 1.12 × 104 8.64 × 103 1.32 × 103

IPOG-MVMO 3.54 × 100 3.14 × 100 3.89 × 100 3.01 × 10−1 4.89 × 102 4.28 × 103 2.79 × 103 9.41 × 102 4.97 × 102 7.29 × 103 5.79 × 103 9.41 × 102

F24

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.59 × 100 3.70 × 100 3.74 × 100 5.01 × 10−2 1.39 × 102 3.01 × 102 2.42 × 102 8.00 × 101 2.35 × 102 3.86 × 102 3.27 × 102 7.60 × 101

PVADE 1.01 × 102 2.11 × 102 1.94 × 102 1.30 × 101 2.01 × 102 2.61 × 102 2.03 × 102 1.39 × 100 2.40 × 102 3.28 × 102 2.78 × 102 1.83 × 101

MVMO 1.01 × 102 2.07 × 102 1.83 × 102 3.74 × 101 2.04 × 102 2.20 × 102 2.11 × 102 3.77 × 100 2.28 × 102 2.61 × 102 2.45 × 102 8.05 × 100

IPOG-MVMO 9.85 × 10−1 4.42 × 100 2.07 × 100 1.44 × 10−2 1.05 × 102 4.62 × 102 2.17 × 102 1.46 × 100 1.05 × 102 4.62 × 102 2.17 × 102 1.46 × 101
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Table 8. The comparative results of the errors obtained from composition functions F25–F28.

F25

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 7.31 × 100 7.49 × 100 7.44 × 100 5.01 × 10−2 2.05 × 102 3.01 × 102 2.66 × 102 4.26 × 101 2.34 × 102 3.86 × 102 3.23 × 102 7.86 × 101

PVADE 1.90 × 102 2.13 × 102 2.04 × 102 3.77 × 100 2.00 × 102 2.56 × 102 2.30 × 102 2.04 × 101 3.17 × 102 3.92 × 102 3.54 × 102 1.72 × 101

MVMO 1.01 × 102 2.01 × 102 1.94 × 102 2.25 × 101 2.00 × 102 2.71 × 102 2.51 × 102 9.39 × 100 3.00 × 102 3.50 × 102 3.26 × 102 1.13 × 101

IPOG-MVMO 7.09 × 100 7.57 × 100 7.37 × 100 4.88 × 10−2 2.09 × 102 2.75 × 102 2.55 × 102 2.84 × 101 2.36 × 102 2.77 × 102 2.57 × 102 8.88 × 101

F26

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 4.04 × 100 4.29 × 100 4.14 × 100 1.41 × 10−1 1.55 × 102 3.26 × 102 2.42 × 102 7.92 × 101 1.95 × 102 4.84 × 102 3.43 × 102 1.42 × 102

PVADE 1.04 × 102 2.00 × 102 1.84 × 102 3.33 × 101 2.00 × 102 3.11 × 102 2.18 × 102 4.01 × 101 2.00 × 102 3.96 × 102 3.47 × 102 6.01 × 101

MVMO 1.02 × 102 1.15 × 102 1.08 × 102 3.52 × 100 2.00 × 102 2.00 × 102 2.00 × 102 4.47 × 10-3 2.00 × 102 2.00 × 102 2.00 × 102 3.21 × 10−3

IPOG-MVMO 3.94 × 100 4.46 × 100 4.12 × 100 1.29 × 10−1 1.89 × 102 3.11 × 102 2.12 × 102 2.29 × 101 1.94 × 102 2.96 × 102 2.12 × 102 2.29 × 101

F27

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 1.13 × 101 1.26 × 101 1.22 × 101 5.70 × 10−1 4.00 × 102 5.85 × 102 4.75 × 102 6.75 × 101 4.00 × 102 2.15 × 103 1.48 × 103 9.01 × 102

PVADE 2.95 × 102 5.35 × 102 3.64 × 102 8.98 × 101 3.06 × 102 3.61 × 102 3.26 × 102 1.14 × 101 8.27 × 102 1.36 × 103 1.11 × 103 1.85 × 102

MVMO 2.48 × 102 2.88 × 102 2.60 × 102 4.03 × 100 3.43 × 102 6.89 × 102 4.74 × 102 9.19 × 101 9.09 × 102 1.31 × 103 1.08 × 103 1.10 × 102

IPOG-MVMO 5.75 × 100 1.11 × 101 7.34 × 100 2.45 × 10−1 3.95 × 102 5.17 × 102 4.34 × 102 2.45 × 101 5.95 × 102 1.17 × 103 7.34 × 102 2.45 × 102

F28

Algorithms
D = 10 D = 30 D = 50

Best Worst Mean Std. Best Worst Mean Std. Best Worst Mean Std.

NBIPOPaCMA 3.60 × 100 1.11 × 101 9.63 × 100 3.31 × 100 3.00 × 102 3.00 × 102 3.00 × 102 0 4.00 × 102 4.00 × 102 4.00 × 102 0
PVADE 8.45 × 101 3.01 × 102 2.38 × 102 4.52 × 101 3.00 × 102 3.00 × 102 3.00 × 102 2.23 × 10−5 4.00 × 102 3.54 × 105 4.64 × 102 4.39 × 102

MVMO 9.87 × 101 2.90 × 102 1.88 × 102 1.00 x102 3.00 × 102 3.00 × 102 3.00 x102 5.36 × 10−4 4.00 × 102 4.00 × 102 4.00 × 102 1.29 × 10−2

IPOG-MVMO 3.00 × 100 8.72 × 100 4.49 × 100 2.37 × 10−1 3.00 × 102 3.00 × 102 3.00 × 102 2.37 × 10−5 4.00 × 102 4.00 × 102 4.00 × 102 1.13 × 10−2
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The parameters used for IPOG-MVMO are presented in Table 1. The number of 
dimensions (D) in each problem, and the search range, were defined according to the 
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To solve unimodal functions F1–F5, the proposed algorithm was able to search the
solution without error in every case except F3 (D = 50), where NBIPOPaCMA yielded
the better solution, as is shown in Table 2. Moreover, when considering the mean of the
error, IPOG-MVMO yielded a zero mean in 10 out of 15 cases. In other words, in these
10 cases, IPOG-MVMO guaranteed the best solution for every trial in every case. It seems
that IPOG-MVMO is a suitable technique for solving unimodal problems.

The multimodal functions F6–F20 were analyzed in three groups based on their com-
plexity. To solve multimodal functions in the D = 10 group with the lowest complexity,
IPOG-MVMO attained results with no error, except for F14, F15, and F20. Neverthe-
less, these results were still satisfactory when compared with other algorithms. For the
D = 30 group, IPOG-MVMO performed worse than the other algorithms only in two cases,
which were F8 and F16. Moreover, IPOG-MVMO also attained error-free results in F6 and
F10–F13. For the D = 50 group with the highest complexity, IPOG-MVMO yielded lower
performance than the other algorithms in only five cases, which were F8, F9, F16, F17,
and F20.

To solve the composition functions F21–F28, the proposed algorithm also outper-
formed the other algorithms in all cases of D = 10. The algorithm was able to attain better
results than the other algorithms in F22 and F24 for D = 30, and in F23, F24, and F26 for
D = 50, respectively. Note that this type of function could not provide zero errors in all
cases due to its complexity.

The superior results for each problem are highlighted in bold where the best value of
IPOG-MVMO was obtained and was better than the other methods; although sometimes,
more than one method provided the best value. Clearly, among the 28 × 3 cases, there were
68 cases in which IPOG-MVMO yielded the best result. Likewise, when considering the
mean value, IPOG-MVMO yielded the best result in 59 out of the 28 × 3 cases. The results
indicated that applying IPM and OGM to MVMO provided a solution that was closer to
the optimal solution.

Some examples for the performance comparison were selected, as presented in Figure 4.
We also present the average error with respect to the number of iterations (NP) in Figure 4.
The average error was computed over 50 trials. The results showed that applying IPM and
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OGM to MVMO can accelerate the search process to achieve a solution that was closer to
the optimal solution within a smaller number of iterations.
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Figure 4. Examples of the performance comparison among IPOG-MVMO, NBIPOPaCMA, PVADE,
and MVMO. F9, F14, F15, and F24 at 10, 30, and 50 dimensions were selected. The vertical axis
represents the averaged error, while the horizontal axis represents the number of iterations. All were
averaged over 50 trials. (a–d) F9, F14, F15, and F24 with D = 10; (e–h) F9, F14, F15, and F24 with
D = 30; and (i–l) F9, F14, F15, and F24 with D = 50, respectively.
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4. Discussion
4.1. Optimal Solutions

Twenty-eight different functions of three types were taken to verify our proposed
method. The experimental results in terms of error are shown in Tables 2–8. When
considering the best solution out of all the methods, it was found that IPOG-MVMO
achieved the best result in 68 cases out of 84 cases, or 80.95%. Next, three types of functions
were further analyzed separately. For the unimodal functions F1–F5, the proposed method
offered the best result in 14 out of 15 cases, or 93.33%. This is quite acceptable when
applying our method to this type of function. In the case of the multimodal functions
F6–F20, there were 45 cases in total. Among these cases, IPOG-MVMO yielded the best
result in 37 cases, or 82.22%. This was slightly lower than for the unimodal function due to
the complexity of the problem. The remaining functions were the composition functions,
F21–F28. The proposed method yielded the best result in 17 out of 24 cases, or 70.83%,
which was lower than for unimodal and multimodal functions. Subsequently, the results
can be discussed from a different perspective, where we mainly focused on the number
of dimensions. There were 28 cases for each dimension and our method yielded the best
result in 27, 22, and 19 cases, or 96.43%, 78.57%, and 67.86%, respectively.

In essence, zero error indicates whether the algorithm can reach the exact solution
within the pre-defined number of iterations. IPOG-MVMO provided zero error in 33 out of
84 cases. Table 9 presents the likelihood that IPOG-MVMO and four comparative methods
could reach the exact solution in terms of function type and the number of dimensions.
YYPO, a method inspired by the philosophy of creating a balance between two concepts,
was also conducted and is included in this table. For unimodal functions, there was only
one case at D = 50 in which the error was non-zero, whereas the percentage dropped when
the number of dimensions was higher in multimodal functions. Moreover, NBIPOPaCMA
presented a higher likelihood of obtaining zero error at D = 50; however, IPOG-MVMO
still provided the best results at D = 10 and D = 30. For the composition function, the
best solution over 50 trials did not reach the exact solution for any algorithm. Since the
function type and the number of dimensions corresponded to the problem difficulty and
complexity, it can be inferred that although our IPOG-MVMO method outperformed the
other comparative methods, the performance gradually decreased as the problem difficulty
and complexity rose. However, using different parameter settings might result in greater
performance for solving black box problems.

Table 9. Likelihood of obtaining zero error in 50 trials.

Algorithms
Unimodal Functions Multimodal Functions Composition Functions

D D D D D D D D D

NBIPOPaCMA 100 80 60 33.33 13.33 20 0 0 0
PVADE 100 60 20 26.67 6.67 0 0 0 0
MVMO 100 20 40 13.33 6.67 13.33 0 0 0
YYPO 40 40 20 6.67 6.67 6.67 0 0 0

IPOG-MVMO 100 100 80 80 33.33 13.33 0 0 0

When considering the mean value of error in Tables 2–8, it was found that IPOG-
MVMO yielded the best result in 59 out of 84 cases, or 70.24%. Typically, the zero mean
rarely occurs because the method must reach the exact solution in every trial. Our proposed
method achieved zero mean in 13 cases, although most were unimodal functions. According
to the analysis of the function type, IPOG-MVMO yielded the best result in 12 cases, or
80%, for the unimodal functions, 34 cases, or 75.56%, for the multimodal functions, and
13 cases, or 54.17%, for the composition functions. It can be seen that the type of function
also affected the performance in terms of the mean value. In the case of the number
of dimensions, IPOG-MVMO yielded the best result in 25 cases, or 89.29%, 18 cases, or
64.29%, and 16 cases, or 57.14%, in 10, 30, and 50 dimensions, respectively. The number of
dimensions was another factor that impacted our algorithm.
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Finally, the worst value of error presented a solution to be expected over a specific
number of trials. IPOG-MVMO achieved the best result in 48 cases, or 57.14%, which was
higher than the other methods. Again, the method still worked well in 11 cases, or 73.33%,
of unimodal functions, while it yielded the best result in 29 cases, or 64.44%, and eight cases,
or 33.33%, in multimodal and composition functions, respectively. In terms of the number
of dimensions, our method achieved the best result in 20 out of 28 cases in 10 dimensions.
For the cases with 30 dimensions, our method yielded the best result in 12 cases, or 42.86%,
and the percentage became higher when the number of dimensions was 50, with a 57.14%
rate of obtaining the best result. More parameter settings and experiments are required to
identify the relationship between the number of dimensions and the optimal solutions in
the worst-case scenario.

4.2. Stability

The standard deviation of error can be used to measure the stability of the proposed
method compared with the other methods. Zero standard deviation means that the method
can provide the same solution over a limited number of trials. Under the experiments,
IPOG-MVMO obtained the best result in 46 out of 84 cases, or 54.76%, and there were
12 cases of zero standard deviation, 10 of which were uniform functions. Based on the
function type, the unimodal function was the type with the highest stability, and the best
result was obtained in 11 out of 15 cases, whereas the multimodal functions yielded the
best result in 26 out of 45 cases. Unfortunately, the composition functions method yielded
the best result only in nine out of 24 cases, which was greater than the other methods,
but most of the cases were in 10 dimensions. For the number of dimensions, the method
yielded the best result in 20 cases (71.43%), 11 cases (39.29%), and 15 cases (53.57%), in
10, 30, and 50 dimensions, respectively. Without taking the composition functions into
consideration, it seems that the number of dimensions had a minor impact on the stability
of the method, because, as previously mentioned, the composition method worked well
only in 10 dimensions.

5. Conclusions

In this study, IPOG-MVMO, a combination of the interior point method (IPM), the
opposite gradient method (OGM), and mean-variance mapping optimization (MVMO),
was proposed to identify a solution for the continuous real-world optimization problem.
IPM and OGM were combined with the original MVMO in the area of an IPM local search
and then a new population was created using the opposite gradient concept. This procedure
ensured that the newly created population was located somewhere close to the minimum
value so that a better solution could be obtained using MVMO. For experiments, creating a
new population close to the minimum value to obtain an accurate and fast solution by using
the local search strength of IPM and OGM’s solution convergence was a key step in this
study. When these two approaches were combined with traditional MVMO, the best cost
was achieved, which was better than using a single technique, i.e., MVMO. It was important
to generate a new population near the minimum in the optimization problem, which can
be applied to optimization problems in many areas, such as energy saving for tissue paper
mills through energy efficiency scheduling, and the optimal scheduling of energy and
ancillary services. Future research will focus on the hybridization of IPOG-MVMO and
other techniques, and improving the algorithms to ensure compatibility with combinatorial
real-world problems.
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