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Abstract: Innovations in food drying processes are usually aimed at reducing drying time and
improving the overall properties of dried products. These are important issues from an economic
and environmental point of view and can contribute to the sustainability of the whole process. In this
study, the effects of ultrasonic treatment on the drying kinetics of pumpkin pulp are investigated, and
mathematical models to predict the drying kinetics are analyzed and optimized. The results show
that ultrasonic pretreatment significantly reduces drying time from 451 to 268 min, with optimal
processing parameters at 90% of the maximum ultrasonic power and a processing time of 45 min.
The total color change of the samples was the lowest at the obtained optimal processing parameters.
Based on the values (RMSE and R2) of the investigated mathematical drying models, it was found that
the Weibull model is the best fit for the experimental data and is considered suitable for the drying
kinetics of ultrasonically pretreated pumpkin samples. In this study, an artificial neural network
with 15 neurons in hidden layers was also used to model the drying process in combination with
ultrasound pretreatment. The network had a performance of 0.999987 and the mean square error was
8.03 × 10−5, showing how artificial neural networks can successfully predict the effects of all tested
process variables on the drying time/moisture ratio.

Keywords: pumpkin; drying; ultrasonics; mathematical models

1. Introduction

The pumpkin belongs to the wide family of cucurbits (Cucurbitaceae), and the three
most common varieties of pumpkin are called Cucurbita maxima, Cucurbita moschata, and
Cucurbita pepo [1,2]. Europe is the second-largest producer with approximately 4.9 million
tons of pumpkin, which is about 17.5% of world production [3]. However, since pumpkin is
mainly used for seeds, decorative purposes, and as animal feed, large amounts of waste and
by-products are generated during industrial processing. In general, seeds represent 10%
of the total weight, whereas about 90% of pulp and peel are discarded, having previously
been considered as waste [4]. The pulp and peel contain many functional compounds such
as polyphenols, carotenoids (mainly β-carotene), vitamin C, low-energy sugars, and a large
amount of dietary fiber [5]. Pumpkin, as a cultivar that is widespread throughout the world,
is recognized as one of the three medicinal plants beneficial for diabetes [6]. The chemical
and biochemical composition of pumpkin has been extensively researched and it has
been proven that pumpkin is a rich source of vitamins and minerals [7], essential nutrients,
phenols, flavonoids, and carotenoids [8], and antioxidants [9]. Thus, pumpkin has beneficial
effects on human health [8], reduces the risk of neurodegenerative, cardiovascular, and
cancer diseases [10] and prevents osteoporosis and hypertension [11,12].

Drying is the most commonly used method for food preservation and extending its
shelf life [13,14]. Due to rising energy prices, food drying is an energy-intensive process
that consumes up to 15% of energy in all food industries combined [15]. There is a growing
interest in the use of ultrasound in co- or pre-processing for drying. The use of ultrasound
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in the treatment of food raw materials, wastes and by-products shows promising results
for versatile applications, both in primary research and in industry [16–20].

In general, sonication/ultrasound represents a sound that is inaudible to humans be-
cause the ultrasound frequency starts at 18 kHz, which is inaudible to humans. Ultrasound
with such power is used in a wide variety of applications, such as extraction, emulsification,
homogenization, sieving, sedimentation, micronization, pasteurization, cell disruption,
drug delivery, sterilization, wastewater treatment, and in general food processing [21–24].

Low-frequency ultrasound (18–100 kHz), with low to high intensities, expressed by the
diameter of the probe (5–1000 W/cm−2), is most commonly used for treatments. Among
these ultrasound parameters, the propagation of sound waves showed great potential [25].
When the research aims at the gentle propagation of ultrasound waves considering the
applied intensities, ultrasound baths (indirect treatment) are used as devices, while on the
other hand, when high intensities are required, devices with directly immersed probes
(direct treatments) are used [26].

Figure 1 shows the most common ultrasonic devices used for food processing.
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Figure 1. Most common ultrasonic setups: (A) bath with probes mounted bellow: (B) directly
immersed probe: (C) continuous flow sonication with cooling.

Each of the presented ultrasound devices is equipped with the following four basic
elements: An ultrasound generator, an ultrasound transducer, a probe or probes depending
on the system and a treatment chamber as well. The main mechanism of ultrasonic work
in the liquid medium is based on the generation and implosion of gas cavitation bubbles
in the treated liquid medium. Cavitation bubbles are created in the vicinity of the liquid
treated by the ultrasonic waves, which are subjected to rapid and alternating pressure
with high amplitude. In the physics of sound, there are negative and positive pressure
cycles, i.e., during the negative half of this phenomenon, the treated sample is stretched,
while in the positive half it is compressed. The resulting microbubbles vary in size during
the negative and positive pressure cycles until the final phenomenon, implosion, occurs.

When the bubbles implode, they release enormous amounts of energy in the form of
high pressure (up to 100 MPa) and high temperatures (up to 5000 K) [27]. However, the
release of all the accumulated energy results in local pressure and temperature changes
that dissipate in the liquid in the chamber. This local energy propagates into the liquid
environment and causes structural, chemical, and physical changes in the immersed sam-
ple [28]. In addition, ultrasound has the advantage of non-thermal technology and thus
has a positive impact on the environment.
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Ultrasound as a pretreatment in food drying is gaining increasing attention, as it does
not only shorten the drying time, but also helps to reduce energy consumption [29,30].
The mechanical and thermal effects of ultrasonic cavitation can shorten drying time by
altering or destroying the cellular matrix. It can also contribute to the removal of the wax
coating [31]. Both effects lead to an improvement in the mass and heat transfer with each
further drying process (vacuum, microwave, conventional, etc.) [32–34]. The drying process
usually has two or three periods. The first is a period in which the drying rate is constant
(so that the drying curve is practically linear), followed by a period of decreasing drying
rate. During the second period, the water evaporates from the surface of the material, while
the water inside the material diffuses to the surface through the pores of the cell matrix.
Ultrasonic treatment increases the size and number of pores, thus accelerating mass transfer
and shortening the drying time. Mathematical models have been used to describe the
kinetics of mass transfer in convective drying processes as a function of drying conditions,
such as temperature or pressure. Modeling the drying process can help improve drying
efficiency, shorten drying time, and thus improve time and energy efficiency as well as the
sustainability of the drying process. Modeling is a much simpler and faster method for
predicting optimal process parameters and conditions to achieve desired outcomes, such as
product quality. It is also a tool to design and size dryers for specific requirements. Many
authors have already analyzed and improved mathematical models for drying various
food products such as apples, kiwi and other fruits [35–37]. Some limitations and problems
with the drying models are that most models are based on a two-step procedure. In the
first step, the best model was calculated based on the dependence between water content
and drying time, and various errors such as R2 or χ2 were obtained for each model. The
second step involves the calculation of model constants and coefficients as a function of
process parameters such as drying temperature, air velocity, etc. This approach leads to
the continuous development of minimally-modified models that excellently describe the
drying curves for a specific drying process. This is due to the obtained coefficients, which
have no physical meaning or relation to physical processes such as mass and heat transfer.
Therefore, such coefficients cannot be correlated with process parameters. Efforts have been
made to create more general empirical mathematical models, with some success. However,
relatively new modeling techniques such as the use of artificial neural networks have much
greater potential to capture a larger number of parameters. Such heuristic models may be
better suited to complex and nonlinear processes such as drying combined with ultrasonic
(pre)treatment.

The main objective of this study is to select and develop mathematical models for
the drying of pumpkin and to optimize the parameters of ultrasonic drying to minimize
the drying time. Based on the results, standard empirical models will be compared to the
obtained artificial neural networks.

2. Materials and Methods
2.1. Plant Materials

Fresh pumpkin fruits (Cucurbita moschata) that were uniform in size and undamaged
were selected in late August (about 110 days after ripening) and purchased at the local
market. Because pumpkins can vary significantly in size and other physical characteristics,
those selected from the obtained batch were measured. The pumpkins were pear-shaped
and elongated, with weights of 2.41 ± 0.35 kg and lengths of 30.72 ± 2.48 cm.

Fruits were transported to the laboratory, washed with tap water, and stored in the
refrigerator at 4 ± 1 ◦C until further use. Before starting the experiment, the fruits were
removed from the refrigerator and stored at room temperature (23 ± 1 ◦C) for about 45 min
to acclimate them to room temperature [38,39]. The fruits were then washed, peeled, and
cut in half lengthwise with a stainless-steel knife. The seeds and fibrous strands were then
separated from the pulp. The pulp was cut into uniform pieces 4–5 mm thick and 15 mm
long using a mechanical slicer.
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The initial moisture content of the fresh pumpkin was determined by oven drying
at 105 ◦C for 24 h using an electric conduction oven (VO200 PM200 Memmert GmbH,
Büchenbach, Germany), as described in AOAC [40]. Three repeated measurements were
performed.

2.2. Ultrasound Pretreatment

The prepared pumpkin samples were immersed in an ultrasonic bath filled with 7 L
of distilled water (Elmasonic P 300 H, Elma–Hans Schmidbauer Gmbh & Co., Singen,
Germany). Sonication was performed at a constant frequency of 37 kHz for amplitudes
at 30, 60, and 90%. The processing times were 30, 45, and 60 min. The container with the
sample was placed in the same position and the water level in the bath tank was kept at
a height of 270 mm [41]. During the treatment, stainless steel meshes were placed on the
samples to reduce movement.

2.3. Drying Experiment

Before drying, the water content of each pumpkin was measured using an infrared
dryer (LJ16, Mettler-Toledo, Leicester, UK). The average water content of the pumpkin pulp
was 92.10 ± 2.18%.

Samples were dried in a VO200 PM200 conduction vacuum dryer (Memmert
GmbH + Co. KG, Schwabach, Germany) at a temperature of 60 ◦C [42] and atmospheric
pressure of 1000 mBar. The 360 g of samples was divided into two batches and dried on two
stainless-steel shelves (180 g each). Stainless-steel meshes were placed on the samples for
better heat transfer and a larger contact surface. Water loss during drying was measured
every 10 min using a laboratory balance (Mettler Toledo ME1002TE, Columbus, OH, USA).
Drying was carried out until a constant mass was reached.

2.4. Color Measurement

The color of the fresh and dried samples was determined using a colorimeter (Konica
Minolta CM-3500d, Tokyo, Japan). The total color change (∆E) was the parameter used for
the overall color difference evaluation between a dried and a fresh sample. Based on the
referent sample (fresh pumpkin), ∆E was calculated based on the following equation:

∆E =

√(
Lre f − L

)2
+
(

are f − a
)2

+
(

bre f − b
)2

where L indicates lightness, a is the redness, and b is the yellowness; Lref, aref and bref are
values for the referent sample; and L, a and b are values of the investigated samples.

2.5. Mathematical Modeling

Mathematical models were selected from the already established simple and more
complex models used for the prediction of drying kinetics based on the obtained data,
which are presented in Table 1.

Table 1. Mathematical models for convection drying.

Model Equation References

Page MR = exp(−ktn)

[35,36]
Modified Page MR = exp(−(kt)n))

Weibull MR = exp((−t/α)β)
Modified two-term MR = a*exp(−k*t) + (1 − a)*exp (−k*a*t)

MR—moisture ratio; a, k—coefficients, n—drying exponent.

Two artificial neural networks (ANN) were trained in Statistica software based on
the drying data obtained. As in the modeling, the output variable for both ANNs was the
moisture ratio (MR). The input variable for the first ANN (further labeled as ANN-1) was
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based on the optimal parameters for the process variables based on the statistical analysis.
For the second ANN (labeled as ANN-2), data obtained for all process variables (process
time 30, 45 and 90 min; amplitude 30, 60 and 90%) were used. Two-thirds of the data was
used for training and one-third was used for the validation of the model.

2.6. Data Analysis

All analyses were performed using Statistica 13 software (Tibco Statistica 13.3.0).
Values were compared using mean comparisons, ANOVA analysis, and Tukey HSD post
hoc test to determine significance. The models presented in Table 1 were fitted using
non-linear estimation regression analysis based on the Levenberg–Marquardt method.
Evaluation of fit of the selected thin layer drying models was based on the coefficient of
determination (R2) and root mean square error (RMSE). The highest R2 (closer to unity)
value and a low RMSE (closer to zero) value were the primary criteria for the selection of
the best model [37].

3. Results and Discussion
3.1. Modeling

One way to differentiate mathematical models for predicting drying kinetics can be
based on their perceived complexity. Most basic models, such as that of Page of Lewis, use
only one parameter, while more complex models, such as that of Midilli, may have three
or more parameters. This could significantly improve fitting to experimental drying data,
especially for not-so-standard drying curves compared to those usually observed in the
conventional thin-layer drying of fruits and vegetables. In our drying experiments with
ultrasonic pretreatment, curves such as sigmoidal curve I and II were obtained. However,
due to the very large number of models in the literature and the often insignificant differ-
ences in results and errors, it is inefficient and unnecessary to test them all. In order to avoid
random selection of the appropriate models and to reduce the time required for the analysis,
the selection of the models was based on a review of thin-layer drying models [43,44]. For
the purpose of screening and to reduce the number of models presented, the Lewis model
was tested; however, we did not observe an adequate fit to the experimental data obtained
for the ultrasonically processed samples, with the highest R2 = 0.817 (at 30%, 30 min). Some
other commonly used models such as the Wang and Singh, Geometric, and Singh model
were also discarded as these also were not optimal for the drying curves. Therefore, among
the simpler models, only the Page and the modified Page model and among the more
complex models, the modified two-term model and the Weibull model were selected for
modeling.

The calculated coefficients of determination and RMSE values are shown in Tables 1–4.
It is evident that despite having only one coefficient, the goodness of fit for untreated
samples was best for Page’s model with an R2 of 0.9995.

While the Page model still shows a good fit for the ultrasound pretreatment of the
drying process, increasing the ultrasound amplitude leads to a decrease in the coeffi-
cient of determination and an increase in the RMSE. The Weibull model showed the
best fit for ultrasound treatment with a minimal R2 = 0.9906 for 60% of the amplitude
and maximal R2 = 0.9991 at 40% of maximal amplitude, which is consistent with other
research papers [37–39,45]. The modified two-term model with three variables, which was
expected to fit the experimental data best, demonstrated a good enough fit to be used, but
the much simpler Page and modified Page models were better. The goodness of fit of all
the models tested is in direct correlation to the ultrasound amplitude, since an increase
in amplitude leads to a decrease in R2 values. It is also directly related to the duration of
ultrasound treatment, with minimal R2 obtained for samples with a treatment duration of
60 min. All models show a minimal but visible underestimation of the moisture ratio in the
constant rate period and a slight overestimation in the falling rate period, as can be seen in
Figure 2 for untreated and treated samples.



Processes 2023, 11, 469 6 of 13

Table 2. Coefficient of determination and RMSE of selected mathematical models—30 min treatment.

Model US Power/% R2 RMSE

Page

0 0.9995 0.0010
30 0.9623 0.0056
60 0.9784 0.0051
90 0.9442 0.0078

Modified Page

0 0.9990 0.0015
30 0.9624 0.0062
60 0.9790 0.0060
90 0.9457 0.0083

Weibull

0 0.9990 0.0006
30 0.9917 0.0011
60 0.9974 0.0020
90 0.9940 0.0019

Modified two-term

0 0.9997 0.0018
30 0.9602 0.0035
60 0.9762 0.0029
90 0.9418 0.0054

Table 3. Coefficient of determination and RMSE of selected mathematical models—45 min treatment.

Model US Power/% R2 RMSE

Page
30 0.9981 0.0018
60 0.9675 0.0044
90 0.9334 0.0178

Modified Page
30 0.9957 0.0014
60 0.9652 0.0033
90 0.9314 0.0081

Weibull
30 0.9991 0.0015
60 0.9933 0.0025
90 0.9978 0.0042

Modified two-term
30 0.9929 0.0030
60 0.9635 0.0187
90 0.9373 0.0231

Table 4. Coefficient of determination and RMSE of selected mathematical models—60 min treatment.

Model US Power/% R2 RMSE

Page
30 0.9801 0.0029
60 0.9860 0.0043
90 0.9421 0.0082

Modified Page
30 0.9759 0.0033
60 0.9814 0.0027
90 0.9373 0.0195

Weibull
30 0.9952 0.0019
60 0.9906 0.0014
90 0.9968 0.0034

Modified two-term
30 0.9747 0.0034
60 0.9816 0.0027
90 0.9288 0.0109
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processing time, with Weibull model.

3.2. Optimal Pre-Treatment Parameters

The final dried products are shown in Figure 3. The change in color of the samples
was statistically significant (from ∆E = 3.95 ± 0.98 for samples treated at 30% for 30 min
to lowest color change ∆E = 3.35 ± 0.52 for samples treated at 90% for 60 min (Table 5).
As the difference in the color of the samples treated during 30 and 60 min treatments
at 90% amplitude was not statistically significant, a shorter processing time seems to be
more suitable. However, compared to the duration of ultrasound pre-treatment, it can be
observed that the dried pumpkin was lighter (L*) after 45 and 60 min than after 30 min
of sonication. These results could be explained by the fact that the ultrasound treatment
leads to cavitation, which causes a structural change in the enzymes responsible for the
undesirable brown color (polyphenol oxidases), and consequently inhibits the browning of
the pumpkin. The relation of ultrasonic parameters to the drying time is presented in Table 6.
As expected, the drying time without ultrasound treatment was the longest (452 min), and
it can be observed that each ultrasound parameter tested significantly reduced the drying
time. A possible consequence of the mechanical and thermal effects of cavitation on all
treated samples is the change of the pumpkin matrix and consequently the enlargement
of the pores. It also leads to a decrease in the adhesion of water molecules bound to the
cell walls [38]. Numerous studies have reported that cavitation phenomena cause a change
in the structure of the product and in this way facilitate the faster removal of moisture
from the product. Liu et al. reported how the microstructure of purple-fleshed sweet
potatoes changed after ultrasonic treatment, showing more microchannels and expanded
intercellular spaces. Chao et al. also confirmed that ultrasound pretreatments significantly
accelerated the drying rate of seed-used pumpkin due to cell-structure destruction [46–49].
A larger number of larger pores also leads to an increased mass transfer of water during
drying and shortens the drying time.
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Figure 3. Dried pumpkin slices. (A–C)—30% amplitude, 30, 45 and 60 min processing time;
(D–F)—90% amplitude, 30, 45 and 60 min, respectively.

Table 5. Relationship between ultrasonic parameters and color change in samples.

US Power/% Sonication Time/min Total Color Change/∆E

30 30 3.95 ± 0.98a
30 45 4.11 ± 1.19b
30 60 3.87 ± 0.55a

60 30 4.26 ± 0.12b
60 45 4.18 ± 1.07b
60 60 4.17 ± 1.12b

90 30 3.63 ± 0.58a
90 45 3.40 ± 0.57c
90 60 3.35 ± 0.52c

abc—different superscript letters within columns are significantly different (p < 0.05).

Table 6. Relationship between the ultrasonic parameters and drying time.

US Power/% Sonication Time/min Drying Time/min

0 0 451.67 ± 7.64a
30 30 361.67 ± 2.89b
30 45 356.66 ± 2.89c
30 60 351.67 ± 2.89c

60 30 358.33 ± 2.89b
60 45 346.67 ± 2.89c
60 60 343.33 ± 2.89c

90 30 349.00 ± 5.00d
90 45 322.33 ± 2.89e
90 60 320.67 ± 2.89e

abc—different superscript letters within columns are significantly different (p < 0.05).

The statistical analysis of the studied ultrasound parameters, shown in Figure 2,
revealed that the shortest drying time was obtained at a maximum ultrasound amplitude
of 90% for 45 min. With these parameters, the water content in the samples after drying
was 8%, which is within the expected range. Further increasing the processing time had
no statistically significant effect on the drying time nor caused an additional reduction in
water content.

One factor that had an impact on the longer drying times that correlated with the longer
processing times was the initial greater mass of water after processing, and consequently,
before drying. This may be related to the phenomenon of water penetration into the cellular
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structure of the samples due to disequilibrium processing (as in the extraction process
where ultrasound is widely used). A higher water content of the samples after a 60 min
treatment compared to a 30 or 45 min treatment may significantly increase the drying
time, and there is no significant difference between samples treated for 45-min and 60 min,
regardless of amplitude. Figure 2 shows the comparison of drying time for untreated
samples and samples treated with the optimum processing parameters. It is evident
that both constant rate and falling rate periods were affected by the ultrasonic treatment,
confirming previous claims about the effects of cavitation on the matrix, changing the
microstructure, and increasing mass transfer rates. The optimal parameters determined for
ultrasonic treatment are consistent with the results of other studies on ultrasonic drying.
Soquetta et al. show that ultrasonic pretreatment significantly changes the drying time of
beets due to the influence of the released mechanical and thermal energy on the structure of
the beets [46]. Jarahizadeh et al. showed that the application of ultrasound has a significant
effect on the constant rate period during drying, which is also related to the increase in the
mass diffusion rate due to the enlarged pores caused by cavitation [49]. This phenomenon,
caused by cavitation bubbles, results from the formation of microchannels and potential
changes in the cell membrane and proves to be interesting when large amounts of water
need to be removed from pumpkins or other fruits and vegetables [50].

3.3. Artificial Neural Networks

After testing different transfer functions, both neural networks were obtained using
multilayer perceptron with the BFGS training algorithm. The ANN-1 network for optimal
parameters (90% for 45 min) consists of 10 hidden neurons, with a validation performance
of 0.999991. The mean square error was 9.02 × 10−6. It is evident that the MSE was much
lower compared to the Weibull model, as shown in Figure 4, indicating a better fit than any
of the analyzed mathematical models. This is consistent with studies by various authors
who have compared ANN with empirical models [51,52].
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The ANN-2 network, consisting of 15 neurons in hidden layers, had a performance
of 0.999987. The mean square error was 8.03 × 10−5. It can be concluded that artificial
neural networks can be successfully used to model the drying process in combination with
ultrasound pretreatment. Moreover, both ANNs (Figures 4 and 5) were significantly more
accurate than the standard empirical models tested. It should be taken into consideration
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that empirical models such as Weibull were based on only one set of process parameters,
while the significantly better ANN-2 network considered all process parameters as inputs.
This shows that ANN-2 can successfully predict the effects of all tested process variables on
the drying time/moisture ratio, thus eliminating the need for multiple models that could
become useless even with minor changes in the drying process. Due to the minimal errors
and R2 > 0.999, both ANN models can replace mathematical models for ultrasonic drying
of pumpkin slices, regardless of the process parameters used.
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4. Conclusions

The drying of pumpkin pulp using ultrasonic pretreatment shows that increasing
processing power by up to 90% significantly reduces drying time. An increase in the
ultrasonic processing time negatively influences the drying process, so that prolonging
drying time beyond 45 min only leads to increasing energy costs. The performed analysis
of the mathematical models shows that the Page model has the best fit for drying the
untreated samples, while the Weibull model has the best fit for the ultrasonically pretreated
dried samples. This model can further be used as a basis for estimating drying parameters
and potentially for the design of ultrasonic drying processes or equipment. Color change
of samples was evident, but minimal. The lowest color change was obtained using optimal
processing parameters. However, the best fit to the process parameters was obtained using
the artificial neural network, which was found to be more accurate in predicting the effects
of process parameters on the drying process.
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