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Abstract: Particle formation in fluidized beds is widely applied in an industrial context for the
solidification of liquids and size enlargement of granular materials. The two main size-enlargement
mechanisms are layering growth and agglomeration. For continuous process configurations with
sieve-mill-recycle and layering growth only, the occurrence of undesired self-sustained oscillations
in the particle size distribution under certain process conditions is well-known. This contribution
investigates the stability of the practically relevant process with additional particle agglomeration by
means of a model-based numerical bifurcation analysis. It is shown that the occurrence of stable limit
cycles is inhibited by an increased rate of particle agglomeration for a variety of different process
conditions and different agglomeration kinetics. These results enhance the understanding of the
agglomeration and layering growth dynamics and are relevant for the process design and operation.
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1. Introduction

Agglomeration and layering growth in fluidized beds are efficient particle formulation
and size enlargement processes for solid materials, due to good particle mixing and high
mass and energy transfer rates. The possibility to influence product particle properties
such as size and porosity directly by a variety of different process variables [1] and create
a high-quality product is important from an industrial point of view. Therefore, these
processes are applied widely for the production of agricultural, chemical, pharmaceutical
and food products such as fertilizers, milk powder and fine chemicals. In the layering
growth process a solution is sprayed continuously on the surface of the fluidized particles.
After the solvent has dried a new solid layer remains whereby the particle size increases
slowly during the course of the process and an onion-like structure is formed as presented
schematically in Figure 1. In contrast to this the size of the particles increases rapidly due to
agglomeration of particles. When two wet particles collide in the turbulent fluidization air
stream, there is a chance of aggregation due to viscous and capillary forces acting between
the wet surfaces [2]. After the drying of the solution a solid connection between the two
particles is formed as pictured in Figure 2. Layering growth is usually applied for the
solidification of wet materials while agglomeration is desired if the size of particles has
to be increased quickly, however depending on the process configuration and setting of
process parameters both subprocesses can occur simultaneously [2,3].

For large scale production, these processes are operated continuously and often
equipped with a sieve-mill cycle which serves for the separation, grinding and recy-
cling of oversized particles. This configuration is more economic due to the reuse of the
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oversized particles. However, the recycle may also introduce instability in the form of
self-sustained oscillations. These have been reported for layering growth in simulation
studies of well-mixed process models [4,5] and models with zone-formation [6] and con-
firmed experimentally [5,7,8]. In all of the latter contributions porous sodium benzoate
particles were produced over the course of 25 and 36 h respectively resulting in undamped
oscillations of the mean particle size between the milled particle size and a maximal value.
From a practical point of view such oscillations have to be avoided for a stable process
operation by choosing proper process parameters or by implementing stabilizing process
control methods [9–11]. The occurrence of oscillations is mainly related to the size of the
milled particles (or the milling grade) and also seems to be a result of the control of the
total bed mass [12] which, however, is indispensable from the operational point of view.
In fluidized bed configurations where agglomeration is the dominant size enlargement
mechanism stable oscillations have not been observed to the best knowledge of the authors.
The question regarding processes where both size enlargement mechanisms occur has been
investigated by the authors in the conference contribution Otto et al. [13] by means of
numerical bifurcation analysis. It has been shown in different simulation scenarios, that
generally, shifting size enlargement from pure layering growth to agglomeration, tends
to dampen oscillations and stabilize the whole process. The aim of the present contribu-
tion is to give a more detailed description of the underlying process model, to extend
the previous results to a larger set of bifurcation parameters and give explanations of the
observed phenomena.

Figure 1. Layering growth subprocess resulting in an onion-like particle structure.

Figure 2. Agglomeration subprocess resulting in a blueberry-like particle structure.

The second and third section are concerned with the description of the population bal-
ance process model and the parameter bifurcation algorithm, respectively. The contribution
concludes with the presentation and discussion of bifurcation plots for various parameters
in the fourth chapter and a short summary in section five.

2. Process Model

In this contribution a plant configuration with sieve-mill-recycle is investigated where
particles are added to and withdrawn continuously from the fluidization chamber. The with-
drawn particles are separated into three fractions by two sieves. Particles meeting the
desired product size specification are withdrawn while oversized particles are milled and
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re-fed to the process chamber together with the undersized fraction. A schematic represen-
tation of the plant with an additional external particle feed is presented schematically in
Figure 3.

ṅout

ṅover

ṅprod

ṅfines

ṅfeed

ṅmill

Figure 3. Schematic representation of the process chamber and periphery. Particles are fluidized
in the chamber by an upwards facing air stream. Particles are withdrawn (ṅout) and sieved into
three fractions (ṅover, ṅprod, ṅfines). The latter ones are feed back to the fluidization chamber and feed
particles are added. The product particles are removed from the process while oversized particles are
milled and then fed back to the fluidization chamber (ṅmill).

A well-established framework for the mathematical description of agglomeration and
layering growth processes is population balance modeling [14]. Here the evolution of a
particle population, distributed with respect to some internal or external properties x, such
as size, shape or spatial coordinates, is described by a nonlinear partial differential equation,
the so-called population balance equation (PBE). The current state of the population is
given by the number density function (NDF) n(t, x), describing the number of particles at
time t in the infinitesimal interval (x, x + dx) of the internal coordinates. For well-mixed
systems such as fluidized beds it is reasonable to assume that there are no spatial gradients
in the bed, therefore spatial coordinates can be neglected. An important internal granule
property is the characteristic size, since many other important properties such as the angle
of repose or the porosity are correlated to it. In fluidized bed processes it is convenient to
assume that all particles are spherical, thus their respective size can be characterized by
either the particle diameter L or the according volume v, given by

v =
π

6
L3. (1)

While layering growth is most commonly described in terms of the particle diame-
ter [15–17], the agglomeration term is predominantly given with respect to the volume
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coordinate [14,18]. In the present contribution we choose to transform the layering growth
term and model the complete PBE in volume coordinates, i.e., x = v and n = n(t, v).
The solution of the agglomeration term requires the application of efficient numerical tech-
niques guaranteeing conservation of total mass and correct computation of particle number.
For those approaches the description of the particle density with respect to particle volume
is convenient, whereas the layering growth term can be discretized using a first-order
upwind scheme regardless of the choice of the internal coordinate.

The PBE describing the evolution of n(t, v) is obtained by balancing all the particles
streams into and out of the fluidization chamber according to Figure 3 and adding sink and
source terms reflecting layering growth and agglomeration, yielding

dn
dt

= ṅagg + ṅgrowth + ṅfeed − ṅout + ṅfines + ṅmill. (2)

In the subsequent paragraphs the right-hand side terms of Equation (2) are described in
detail in accordance with Radichkov et al. [4], Heinrich et al. [15] and Neugebauer et al. [5]
as well as Otto et al. [13].

The diameter-based layering growth is described by the advection type equation

˙̃ngrowth(t, L) =
∂ñ(t, L)

∂t
= −G̃

∂ñ(t, L)
∂L

(3)

where G̃ with
[
G̃
]
= m s−1 describes the diameter-independent growth rate and is given by

G̃ =
dL
dt

=
2ṁinj

ρAp
(4)

which can be found e.g., in Heinrich et al. [15]. Here, ṁinj describes the injection rate of
binder mass, ρ the binder density and Ap the total particle surface defined by

Ap = 62/3 π1/3
∫ ∞

0
v2/3n(v)dv . (5)

It is assumed that the binder solution is distributed uniformly on all particles and
that the solvent evaporates completely. In order to transform Equation (4) to a volume-
based formulation

ṅgrowth(t, v) :=
∂n(t, v)

∂t
= −G

∂n(t, v)
∂v

, (6)

the volumetric growth rate G has to be computed from G̃ for which the relationships

G̃ =
dL
dt

, G =
dv
dt

=
dv
dL

dL
dt

(7)

as well as Equation (1) and (4) are utilized, resulting in

G = π

(
6v
π

)2/3 ṁinj

ρAp
. (8)

Notably, the growth rate is inversely proportional to the total particle surface, resulting
in slow particle growth for beds with high surface.

The particle size enlargement by agglomeration is modeled using the following inte-
gral terms

ṅagg =
1
2

∫ v

0
β(t, u, v− u)n(t, u)n(t, v− u)du−

∫ ∞

0
β(t, v, u)n(t, v)n(t, u)du , (9)

where the first term on the right-hand side describes the ‘birth’ of new agglomerates
due to coalescence and the second term describes the ‘death’ of the two parent parti-
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cles [14,18]. The kinetic rate of this second order process is given by the agglomeration
kernel β(t, u, v− u) describing the rate of successful agglomeration events depending on
the volume of the involved particles. Due to the complex interaction of different mechanical
and thermodynamical micro-processes leading to the aggregation of two agglomerates,
the function β depends on various process, plant and material parameters. For example,
the viscosity of the binder affects the inter-particle forces during particle collision and the
temperature of the fluidization medium affects the drying behavior of the binding agent
on the particle surface and thereby the formation of solid bridges between the primary
particles [1,2,19]. Hence, modeling of β is a challenging task with different approaches
of varying complexity to be found in the literature [2,20–23]. In order to investigate the
influence of different agglomeration kinetics on the stability and at the same time keep the
model simple, the rather general kernel function

β(u, v) = β0
(uv)a

(u + v)b (10)

is applied in this contribution. With the free parameters a, b and β0, the latter also called
agglomeration efficiency, different shapes of the kernel function and hence different types
of agglomeration kinetics can be approximated [24]. In the nominal case a = b = 0 the
kernel function becomes β(u, v, ) = β0, corresponding to a volume-independent agglomer-
ation rate.

The feed of external nuclei, also called primary particles is model by

ṅfeed =
Ṅfeed

σfeed
√

2π
exp

(
− (v− vfeed)

2

2σ2
feed

)
(11)

under the assumption the total number of feed particles Ṅfeed is distributed normally
around the nominal volume vfeed.

It is assumed that particles are withdrawn from the fluidization chamber without
internal separation, i.e.,

ṅout = Kn, (12)

where K denotes the withdrawal rate. The computation of K will be explained at the
end of this section. The withdrawn particles are sieved externally using two sieves with
opening diameters L1 > L2 in order to separate particle within the desired product size
range L2 < L < L1 from over- and undersized ones. The non-ideal separation functions
characterizing the sieves are modeled by cumulative Gaussian functions

T̃i(L) =
1

σi
√

2π

∫ L

0
exp

(
− (λ− Li)

2

2σ2
i

)
dλ , i ∈ 1, 2 (13)

where σi determines the selectivity of separation. By introducing Equation (1), the volume-
dependent separation functions T1(v) and T2(v) are obtained. The fines particle fraction,
given by

ṅunder = (1− T1)(1− T2)ṅout (14)

is fed back directly into the fluidization chamber without time delay for further size
enlargement. The product fraction

ṅprod = (1− T1)T2ṅout (15)

is removed from the process, while the oversized fraction

ṅover = T1ṅout (16)
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is milled into fine particles to serve as new nuclei. For simplicity it is assumed that the
milled particles are distributed according to the Gaussian mill function

q̃0,mill(L) =
1

σmill
√

2π
exp

(
− (L− Lmill)

2

2σ2
mill

)
(17)

with milling grade Lmill and variation σmill. From the number conservation the volume-
based mill distribution is obtained as

q0,mill(v) = q̃0,mill(L)
dL
dv

. (18)

The number density distribution of milled particles is obtained by equating the mass
of oversized and milled particles [5,15]:

ṅmill = q0,mill

∫ ∞

0
vṅover dv∫ ∞

0
vq0,milldv

. (19)

From a practical point of view it is crucial to keep the total particle bed mass within
certain boundaries in order to maintain the fluidization state. Hence, the system is described
as a differential-algebraic system with the additional conservation equation

0 = mbed,0 − ρp

∫ ∞

0
vn(t, v)dv, (20)

where mbed,0 is the desired bed mass and ρp is the particle density. The integral term on the
right-hand side describes the first moment of the particle size distribution and corresponds
to the total particle volume in the fluidization chamber. Differentiating Equation (20) and
inserting the PBE (2) yields the ideal withdrawal rate

K =

∫ ∞

0
v
(

ṅgrowth + ṅfeed

)
dv∫ ∞

0
vṅproddv

, (21)

compensating for the increase in bed mass by binder and external nuclei addition.
The model presented above has been validated without the agglomeration term and

some small adjustments in e.g., Neugebauer et al. [5], the agglomeration process model has
been validated experimentally but without recycle in Otto et al. [25].

3. Bifurcation Analysis

This section is concerned with the bifurcation analysis extending the results from
Radichkov et al. [4], Dreyschultze et al. [6] and Neugebauer et al. [5] for the process with
agglomeration. For the bifurcation analysis the DAE system defined by Equations (2)
and (20) has to be solved numerically, typically achieved by application of a moment
method [26] or the discretization of the volume coordinate [27,28]. In this contribution we
choose the finite volume scheme presented in Singh et al. [28] which achieves high accuracy
of the NDF compared to the moment methods and is straightforward to implement as well
as numerically efficient compared to more complex discretization methods. The resulting
N-dimensional system of ordinary differential equations is implemented in Matlab and
solved using the build-in function ode15s for stiff DAE systems.

Since the aim of this contribution is to investigate the stability behavior of the pro-
cess with layering growth and agglomeration, relevant bifurcation parameters have to be
identified. Previous contributions have established the mean size of milled particles Lmill
to be the most important variable regarding the occurrence of limit cycles in the process,
therefore we adopt it as the first bifurcation parameter. In order to investigate the influence
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of particle agglomeration it is recognized that the rate at which aggregation events between
two granules occur is directly determined by the agglomeration efficiency β0. The influence
of other plant and process parameters is evaluated by investigating three samples in each
case. The two-dimensional bifurcation analysis is reduced to a series of one-dimensional
problems by discretizing β0 logarithmically in the interval [β0,min, β0,max]. For every value
of β0 a parameter continuation [29] w.r.t. Lmill in the interval [Lmill,min, Lmill,max] is con-
ducted. The parameter continuation starts in the stable region with Lmill = Lmill,max, where
the initial steady state NDF is obtained by solving the process model on the time interval
[0h, 100h]. Afterwards Lmill is decreased by a small step ∆L and a prediction for the corre-
sponding steady state is given using a tangent predictor [29]. The prediction is corrected
by using it as initial guess for minimizing the sum of squares of the time derivatives by a
Levenberg–Marquardt algorithm implemented in the Matlab function lsqnonlin. The pro-
cedure, where the NDF function is constrained to positive values, is repeated iteratively
until Lmill = Lmill,min is reached. In order to determine the stability of the steady state,
the process model is linearized and eigenvalues are computed. In the case of at least
one real part greater than zero, the corresponding steady state NDF is unstable and the
existence of a stable limit cycle is tested by time integration. The bifurcation parameters are
presented in Table 1.

Table 1. Parameters for the numerical bifurcation analysis.

Parameter Min Max Number of Grid
Points

β0 1× 10−14 s−1 2× 10−14 s−1 42
Lmill 0.1 mm 0.8 mm 141

4. Results

As a basis for subsequent investigations, the stability analysis is carried out for the
nominal case, where the plant and layering growth related parameters presented in Table 2
correspond to those given in Radichkov et al. [4], Dreyschultze et al. [6] and Bück et al. [30].

Table 2. (Nominal) simulation parameters.

Parameter Value Unit

N 200 -
mbed,0 100 kg

ρp 1600 kg m−3

minj 100 kg h−1

ṁfeed 72 kg h−1

Lfeed 1 mm
σfeed 0.15 mm

L1 1.4 mm
σ1 0.055 mm
L1 1.0 mm
σ2 0.065 mm

σmill 0.1 mm
Linit 1 mm
σinit 0.1 mm

The stability plot for the nominal parameter case is presented in Figure 4. The mill
grade interval is chosen as Lmill ∈ [0.1, 0.8]. Larger particles are already part of the product
size interval and smaller particles are undesired since in a practical fluidized bed they
might be removed form the chamber by the exhaust air. In the area colored white, one
stable steady state solution exists while in the black area the PDE solution converges to a
stable limit cycle around an unstable equilibrium. For β0 = β0,min = 1× 10−14, the amount
of agglomeration events is negligibly small and the bifurcation results correspond to the
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results presented for the layering growth only case in Radichkov et al. [4] and Dreyschultze
et al. [6], where a zone of instability is limited by two supercritical Hopf-bifurcation points
located at Lmill = 0.2 mm and Lmill = 0.61 mm. For increasing values of β0 both bifurcation
points are shifted towards smaller mill grades until the left one reaches its minimum mill
grade value at β0 ≈ 5.5× 10−13. Further increasing β0, the two bifurcation points are
moving towards each other and collapse at β0 ≈ 8× 10−13. For even larger values of β0 no
self-sustained oscillations are observed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.810−14

10−13

10−12

Lmill/mm

β
0/

s−
1

Figure 4. Stability map for the nominal parameter case. In the white region a stable steady states
exists, in the black region an unstable stable steady state and a stable limit cycle exist.

In the following an explanation for the vanishing of the self-sustained oscillations with
increasing agglomeration rates is developed. To this end, the oscillation of the NDF in the
layering growth only case is described in three steps in accordance with Radichkov et al. [4]:

1. Beginning from a narrow particle size distribution, presented in Figure 5 (left), with a
high fine particle mass fraction, the average particle diameter and the particle growth
rate are small due to the high particle surface. Since the oversized mass fraction is
small, a limited amount of particles is milled and only few new nuclei are formed.
Therefore, the particle size distribution stays narrow.

2. Due to the particle growth the size distribution shifts towards larger particles and the
average particle diameter rises. The fines mass fraction decreases while the product
mass fraction increases (Figure 5, middle). Due to the narrow shape of the particle size
distribution a large amount of particles reaches product size in a short time interval.
Since the total bed mass is conserved only some of them are withdrawn and the
particles grow further into the oversized range.

3. The oversized particles are withdrawn and milled and a large amount of new nuclei
is formed in a short time interval (Figure 5, right). Since the total particle surface
increases quickly the growth rate decreases accordingly and the narrow particle size
distribution of the first phase is formed.

For the oscillation cycle described above it is crucial that the number density func-
tion stays narrow during the size enlargement, leading to two distinct “phases” where a
uni-modal NDF either mainly grows or is mainly milled and fed back to form a new peak
around the milling diameter. When Lmill is larger than the upper Hopf-bifurcation point,
the oversized diameters and Lmill are too close for the emergence of distinct phases. For val-
ues of Lmill below the lower bifurcation point, the amount of new nuclei generated by the
milling and the accordingly large total surface slow down the growth such that a large
amount of particles can be withdrawn as product before reaching the oversized range. Thus,
the formation of a second mode of nuclei is prevented and a stable equilibrium emerges.
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0.5 1 1.5 2
0

2

4

L/mm

q 0
/

m
m

−
1

Phase 1

0.5 1 1.5 2

L/mm

Phase 2

0.5 1 1.5 2

L/mm

Phase 3

Figure 5. Normalized number density distributions q0(L) during the oscillation cycle described
above with Lmill = 0.45 mm. The vertical lines mark the milling diameter as well as the product and
oversize sieve diameters.

In contrast to narrow particle size distributions, described above, wide particle size
distributions can simultaneously grow in the small diameter region and be milled and
fed back in the large diameter region leading to a flow equilibrium and therefore a stable
distribution. It is well-known that the different mechanisms of layering growth and
agglomeration promote narrow and wide size distributions, respectively. Due to the
convection term describing the layering growth (6) the particle size distribution largely
maintains its shape and only shifts to the right. The agglomeration term (9) however
allows, depending on the specific agglomeration kernel, for the combination of two parent
particles forming an agglomerate twice the volume quickly leading to a stretch of the initial
number density function and therefore, in general, to a stabilization of the process dynamics.
The larger the agglomeration efficiency is, the wider the NDF becomes. For 1× 10−13 <
β0 < 8× 10−13 and Lmill < 0.2 mm however, agglomeration leads to the emergence of
oscillations. In the granulation only case, the high total surface of milled particles slows
down the growth and enables a stable equilibrium, here particle aggregation quickly
reduces the particle surface and allows quick growth even if the milled particles are small.

In [11,31] the dynamics of a rotary drum granulation setup with sieve-mill recycle and
size-enlargement due to layering and agglomeration have been investigated. The process
model is quite similar to the present one, however an additional spatial coordinate along the
rotational axis is introduced. Although no detailed bifurcation analysis with respect to the
agglomeration efficiency has been conducted, self-sustained oscillations have been observed
for process configurations where the milled particle size (crusher gap) is below some critical
value. The proposed explanations are in accordance with the results presented above.

In the following, the influence of additional process and plant parameters on the
occurrence and stability of equilibria is investigated. By varying the Kapur kernel pa-
rameters a and b the shape of the agglomeration kernel is changed. The agglomeration
kernels depicted in Figure 6 show that an increase of the parameter b between b = 0 and
b = 0.3 results in preferential agglomeration of small particles by increasing their agglomer-
ation rate. The resulting bifurcation plots are presented in Figure 7, showing that the region
of instability shrinks slightly. Since the variation of the parameter b increases the total
agglomeration rate over all volumes, the results support the general finding that increased
agglomeration dampens oscillations.
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10−3 10−1 101

10−3

10−1

101

v/mm3

u/
m

m
3

b = 0

10−3 10−1 101

v/mm3

b = 0.1

10−3 10−1 101

v/mm3

b = 0.2

10−3 10−1 101

v/mm3

b = 0.3

0

0.5

1

1.5

2

Figure 6. Agglomeration kernels β(u, v) for variations of b. Colors indicate rate of agglomeration for
different volume combinations.

0.2 0.4 0.6 0.810−14

10−13

10−12

Lmill/mm

β
0/

s−
1

b = 0.0

0.2 0.4 0.6 0.8

Lmill/mm

b = 0.1

0.2 0.4 0.6 0.8

Lmill/mm

b = 0.2

0.2 0.4 0.6 0.8

Lmill/mm

b = 0.3

Figure 7. Stable (white) and unstable (black) regions for variations of b.

The layering growth rate G is directly proportional to the binder injection rate minj.
Therefore, increasing the latter results in faster particle growth and more particles in the
oversized fraction, preventing the formation of the stable equilibrium for mill diameters
smaller than 0.2 mm due to the mechanism described above described above. Decreasing
minj has the inverse effect as presented in Figure 8. The lower growth rate allows for
the withdrawal of most particles in the product region, in turn minimizing the oversized
fraction such that no new mode of milled particles is created.

0.2 0.4 0.6 0.810−14

10−13

10−12

Lmill/mm

β
0/

s−
1

ṁinj = 80 kg h−1

0.2 0.4 0.6 0.8

Lmill/mm

ṁinj = 90 kg h−1

0.2 0.4 0.6 0.8

Lmill/mm

ṁinj = 100 kg h−1

0.2 0.4 0.6 0.8

Lmill/mm

ṁinj = 110 kg h−1

Figure 8. Stable (white) and unstable (black) regions for variations of the binder injection rate.

The feed of external nuclei creates new nuclei for agglomeration and layering. The main
reason for the occurrence of self-sustained oscillations is that only few new nuclei are added
in the “growing phase” and the NDF maintains its narrow shape. Therefore, reducing the
number of new nuclei by decreasing the feed rate ṁfeed promotes the occurrence of limits
cycles and the expansion of the unstable region as presented in Figure 9.
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0.2 0.4 0.6 0.810−14

10−13

10−12

Lm/mm

β
0/

s−
1

ṁfeed = 0 kg h−1

0.2 0.4 0.6 0.8

Lm/mm

ṁfeed = 44 kg h−1

0.2 0.4 0.6 0.8

Lm/mm

ṁfeed = 72 kg h−1

0.2 0.4 0.6 0.8

Lm/mm

ṁfeed = 90 kg h−1

Figure 9. Stable (white) and unstable (black) regions for variations of the external particle feed rate.

The quality of the product particles is mainly determined by their average diameter
and its variation which can be improved by varying the sieving diameter if required.
Hence, a change of the sieve diameter L2 around its nominal value L2,nom = 1 mm is
investigated and presented in Figure 10. It can be seen that, in general, larger values shift
the unstable region towards larger mill diameters. Due to the reduced product size range,
oscillations are possible for larger mill grades and the upper Hopf-bifurcation points are
shifted to the right. On the other hand, the stable region left to the lower bifurcation points
is also more pronounced. One reason for this might be the increased time span milled
particles have before they reach product size allowing for the NDF to broaden by addition
of external nuclei.

0.2 0.4 0.6 0.810−14

10−13

10−12

Lmill/mm

β
0/

s−
1

L2 = 0.9 mm
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Figure 10. Stable (white) and unstable (black) regions for variations of the sieve diameter.

5. Conclusions and Outlook

The present contribution investigates the stability of a fluidized bed granulation pro-
cess with particle size enlargement due to layering growth and agglomeration for a process
configuration with sieve-mill-recycle. Based on the well-known occurrence of self-sustained
oscillations in the number density function for pure layering growth, a numerical bifur-
cation analysis shows that the process exhibits no oscillations and only one stable steady
state if the agglomeration rate is beyond a critical upper limit, independently of the milling
parameters. If the process is operated below this limit, the application of stable process con-
trol is recommended. This result is obtained for different variations of additional process
parameters such as agglomeration kernel parameters, binder injection rate, external particle
feed rate and sieve diameters. It is worth noting, that similar results have been obtained in
drum granulation with simultaneous agglomeration and layering [11]. The findings can be
used as a basis for the design of a stable continuous process and show whether additional
process control may be required for a constant quality product.

Future research directions may include the a refinement of the process model including
additional particle properties such as porosity and the incorporation of a more detailed
model for the agglomeration and layering growth kinetics. Furthermore, experimental
confirmation of the predicted bifurcation phenomena development and implementation of
sophisticated process control for the stabilization of unstable dynamics are of interest.
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Abbreviations
The following abbreviations are used in this manuscript:

PBE population balance equation
NDF number density function

Nomenclature
The following variables are used in this manuscript:

a agglomeration kernel parameters β0 agglomeration efficiency
b agglomeration kernel parameters β agglomeration kernel
m mass σ standard deviation
ṁ mass flow rate ρ density
n volume-based number density function
ñ diameter-based number density function 1 lower sieve
q normalized density function 2 upper sieve
t time
u particle volume agg agglomeration
v particle volume growth layering growth

feed particle feed
A particle surface fines fine particles
G volume-based growth rate inj binder injection
G̃ volume-based growth rate max maximum
K withdrawal rate mill particle mill
L particle diameter min minimum
N number of discretization classes out particle outlet
Ṅ number flow rate over oversized particles
T separation function p particle

prod product particle
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