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Abstract: The data distribution of the vibration signal under different speed conditions of the gearbox
is different, which leads to reduced accuracy of fault diagnosis. In this regard, this paper proposes
a deep transfer fault diagnosis algorithm combining adaptive multi-threshold segmentation and
subdomain adaptation. First of all, in the data acquisition stage, a non-contact, easy-to-arrange,
and low-cost sound pressure sensor is used to collect equipment signals, which effectively solves
the problems of contact installation limitations and increasingly strict layout requirements faced by
traditional vibration signal-based methods. The continuous wavelet transform (CWT) is then used to
convert the original vibration signal of the device into time—frequency image samples. Further, to
highlight the target fault characteristics of the samples, the gray wolf optimization algorithm (GWO)
is combined with symmetric cross entropy (SCE) to perform adaptive multi-threshold segmentation
on the image samples. A convolutional neural network (CNN) is then used to extract the common
features of the source domain samples and the target domain samples. Additionally, the local
maximum mean discrepancy (LMMD) is introduced into the parameter space of the deep fully
connected layer of the network to align the sub-field edge distribution of deep features so as to reduce
the distribution difference of sub-class fault features under different working conditions and improve
the diagnostic accuracy of the model. Finally, to verify the effectiveness of the proposed diagnosis
method, a fault preset experiment of the gearbox under variable speed conditions is carried out.
The results show that compared to other diagnostic methods, the method in this paper has higher
diagnostic accuracy and superiority.

Keywords: acoustic signal; fault diagnosis; adaptive multi-threshold segmentation; subdomain
adaptation; variable speed condition; local maximum mean discrepancy

1. Introduction

Due to the rapid development of industrial intelligence, data monitoring and deep
intelligence algorithms are widely used in equipment health monitoring, especially in
fault diagnosis [1-3]. The process of fault diagnosis mainly includes data acquisition, data
preprocessing, feature extraction, and classifier diagnosis. At present, in terms of data
acquisition, most of the fault diagnosis models use the vibration signal of the equipment as
the original training sample. Mariela Cerrada et al. [4] realized gearbox fault diagnosis by
extracting the time and frequency features from the vibration signal of the spur gearbox and
combining them with the genetic algorithm and the random forest classifier. Wen et al. [5]
designed a novel convolutional network, which took the vibration datasets of motor bear-
ings, self-priming centrifugal pumps, and axial piston hydraulic pumps as the original
input and then used the deep learning ability of the network to achieve fault diagnosis
of different equipment. Hou et al. [6] proposed a novel feature selection method that can
eliminate redundant and invalid interference information in the vibration signal of the bear-
ing and ensure the best feature subset with low computational complexity. Although the
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vibration signal can directly reflect vibration excitation during operation of the equipment,
in the process of data acquisition there are disadvantages, such as high requirements for the
placement of the vibration sensor, the ease with which it may fall off, and high installation
cost. As a non-destructive testing technology, the acoustic signal method can collect data
without affecting the installation of the sensor and has the advantages of low consumption
cost and easy layout while acquiring equipment fault signals. Adam Glowacz [7] analyzed
the fault acoustic signal of a single-phase asynchronous motor and developed and imple-
mented a method of acoustic signal feature extraction, with the fault diagnosis of the motor
bearing finally realized through the KNN classifier. Yao et al. [8] proposed a novel fault
diagnosis algorithm for planetary gearboxes based on acoustic signals, and the proposed
comprehensive characteristic parameters can significantly improve the accuracy of fault
diagnosis compared to single characteristic parameters. Wail M. Adaileh [9] proposed
an experimental study on the detection of engine faults using acoustic signals through
analysis of the domain parameters, such as RMS amplitude, peak amplitude, and energy
for condition monitoring, and fault diagnosis of internal combustion engines.

In terms of data preprocessing and feature extraction, because of the rapid devel-
opment of deep networks in recent years, their powerful deep self-learning capabilities
have been widely used. More and more studies use raw 1D fault signals or simple 2D
time—frequency transformed images as training samples. Gao et al. [10] used the continu-
ous wavelet transform (CWT) of complex Morlet wavelets to obtain the time—frequency
characteristics of the vibration signal through joint time—frequency analysis and obtained
the input of the deep network through normalization. Wang et al. [11] used short-time
Fourier transform (STFT) to transform the raw vibration signal of the device to obtain
the corresponding time—frequency map. The features of the time—frequency map are then
adaptively extracted using a convolutional neural network (CNN). Gu et al. [12] proposed
a hybrid fault diagnosis method for rolling bearings based on CWT and CNN, which is
suitable for small sample diagnosis. Zhang et al. [13] used STFT transform theory to obtain
input images, introduced a scaled exponential linear unit (SELU) function in the network
to avoid excessive ‘dead’ nodes during training, and used hierarchical regularization to
obtain better training results. Although the diagnosis method of time—frequency images
combined with a deep network has obtained good diagnosis results, the single signal time—
frequency conversion cannot effectively highlight the fault characteristics of the sample.
In this regard, some scholars have introduced the theory of threshold segmentation in
image preprocessing, trying to highlight the edge factors of different key components
in image samples. Threshold segmentation is a method of processing an image into a
high-contrast, easy-to-recognize image with a suitable pixel value as a boundary. Therefore,
it can effectively distinguish the target interest boundary in time-frequency image samples.
Rakoth Kandan Sambandam et al. [14] combined the dragonfly optimization algorithm and
the threshold segmentation algorithm to obtain the global optimal solution of segmentation
by effectively exploring the solution space. Shan et al. [15] segmented massive infrared
images based on chroma-saturated luminance space to distinguish defective device images
and extracted defective device regions from the images. Finally, the improved residual
network is trained for fault feature learning through an online mining method. Manikanta
Prahlad Manda et al. [16] effectively calculated the threshold for image segmentation based
on the concept of one-dimensional histogram approximation, and finally verified the excel-
lent performance of the method on various infrared images. The above research results
show that the threshold segmentation algorithm can effectively improve the boundaries of
different components in image samples, thereby improving the accuracy of classification.

In the classification stage of fault diagnosis, in recent years, fault diagnosis algorithms
based on deep learning have shown they can adaptively learn and mine the deep-level
features of data and achieve better diagnosis results than traditional feature engineer-
ing [17,18]. However, most of the deep learning diagnosis algorithms currently assume
that the training data and the test data have the same probability distribution, which is
often untenable in the actual industrial environment where the operating environment is
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changeable and the working conditions are complex. For example, changes in operating
conditions, such as equipment speed, load, normal aging, and deepening damage to faulty
parts, will lead to real-time changes in the distribution of data. At this point, when a new
data stream is entered, the diagnostic accuracy of the model trained on the historical data
will decrease. In recent years, the concept of transfer learning has been put forward to solve
the above-mentioned limitations in the fault diagnosis of industrial equipment and has
been widely used. The basic problem is how to solve new fields (target domain). Obviously,
a certain similarity between the source domain and the target domain is a major premise
of transfer learning. Therefore, the main work of transfer learning is to reduce the feature
difference between the data in the source domain and the target domain and improve
the transferability between the data so as to achieve the purpose of knowledge transfer
and reduce the amount of data participation in the target domain [19-21]. In addition,
transfer learning takes full advantage of deep learning in expressing high-dimensional
abstract features of data. Deep learning methods represented by deep networks map two
sets of data with similar but different distributions into a high-dimensional shared feature
space and use transfer methods to minimize inter-domain differences when the edge distri-
bution of the data becomes clearer [22]. Among them, domain adaptation, as one of the
subdomains of transfer learning, mainly solves the problem of knowledge transfer between
two domains with the same feature space and label space (isomorphic domain) through
distance measurement. The metrics for distance measurement include maximum mean
difference (MMD), KL divergence, and Wasserstein distance, among others. Yang et al. [23]
used conditional domain adversarial (CDA) domain adaptive networks and joint maxi-
mum mean deviation standard (JMMD) to align the source and target domains, effectively
realizing cross-domain diagnosis under different operating conditions. Xiao et al. [24]
used convolutional neural networks to extract multi-level features of the device’s original
vibration signal. Further, the maximum mean difference (MMD) can be added during
the training of the network to impose constraints on the parameters of the CNN, thereby
reducing the distribution differences in the characteristics of the source and target domain
data. Zhu et al. [25] used the Kuhn—-Munkres algorithm to improve the calculation process
of the Wasserstein distance, which can better learn transferable features between labeled
and un-labeled signals from different forms of devices. Finally, the effectiveness of the
proposed method is verified under different mechanical parts and transmission scenarios.
The above research shows that transfer methods, such as domain adaptation based on the
distance metric method, can effectively reduce the feature difference between the source
domain and the target domain and realize the knowledge transfer between the same or
similar types of devices, which solves the above-mentioned key constraint of constant
data distribution in practical industrial environments. However, in practice, the data in
different domains not only have significant differences in marginal distributions, but also in
conditional distributions. By aligning the marginal distribution of data in different domains,
the invariant eigenvectors of the domain can be learned. However, if the differences in
conditional distribution between different domain data are not taken into account, the
optimal cross-domain classification hyperplane will be difficult to obtain. In response,
Wang et al. [26] built a subdomain adaptive transfer learning network by stacking two
convolutional building blocks to extract transferable features from raw data. Pseudo-label
learning is then modified and the target subdomain of each class is constructed, which
reduces the marginal and conditional distribution deviations and improves the classifica-
tion performance and generalization of the network. Tian et al. [27] used a multi-branch
network structure to respectively match the feature space distribution of each source do-
main and target domain in order to align the subdomain distributions in the same category
of different domains and diagnose the device status. Wang et al. [28] proposed a joint
subdomain adaptive network (JSAN) that reduces the difference between two domains
by jointly local maximum mean disparity, improving the diagnostic accuracy. The above
study shows that the conditional distribution difference between subdomains is also an
important factor to be considered in domain adaptive diagnosis.
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Inspired by the above research, we propose a gearbox acoustic signal fault diagnosis
algorithm based on adaptive multi-threshold segmentation and subdomain adaptation to
solve the problem of cross-domain adaptive fault diagnosis under the condition of variable
gearbox speed. The main innovations in this article are as follows:

(1) Signal monitoring using acoustic sensors makes it easier to collect fault signals
from gearbox equipment without contact.

(2) The combination of a gray wolf optimization algorithm (GWO) and symmet-
ric cross entropy (SCE) can realize the adaptive multi-threshold segmentation of CWT
time—frequency map samples of the gearbox, thereby enhancing the boundary of target
fault characteristics.

(3) We design a subdomain adaptive network model based on a CNN structure and
add the local maximum mean discrepancy (LMMD) metric criterion to the fully connected
layer parameter space in the deep network. At the same time, the differences in the
data distribution of sub-categories within the domain are considered before the difference
is eliminated.

Finally, we verify the effectiveness and superiority of the method with the dataset
from the gearbox variable speed experiment. The rest of the paper is organized as follows:
Section 2 introduces the relevant theories in detail. Section 3 discusses the proposed fault
diagnosis model and diagnosis process. Section 4 provides the process of preparing gearbox
fault data, and the results of the fault diagnosis experiment are analyzed and discussed.
Finally, the conclusions of this paper are elaborated in Section 5.

2. Methodology
2.1. Transfer Learning

Transfer learning is a new type of deep learning whose goal is to extract similar
components (transfer components) between different but related domains so as to transfer
knowledge from one domain to another. Among them, the original data domain and the tar-
get interest domain are called the source domain and the target domain, respectively [29,30].
To facilitate the description, the concepts of domain and task are first introduced. A domain
Q) consists of two parts, a d-dimensional feature space x and a marginal probability distri-
bution P(X), where X is a set of n samples, and each sample corresponds to a feature vector
in the space x, thatis X = {xy,x2,- -+ ,x,} C x. Therefore, a domain can be represented
by QO = {x, P(X)}. Further introduce the concept of tasks, a task Y consists of a label
space ¢ and a class prediction function f(-). When given a feature vector, the class pre-
diction function f(-) can predict its corresponding class label f(x). From the probabilistic
point of view, the label category can be denoted as P(y|x), so the task can be denoted as
Y= {¢,P(Y|X)}. After the source domain )5 and learning task Y g, target domain Q and
learning task Y 7 are determined separately, Qs # Q7 or Y's # Y1, that is, the distribution
of the source domain and the target domain is different, transfer learning will use the tasks
and knowledge of the source domain to help improve the computational performance of
the target prediction function f(-) for the target domain data (see Figure 1) [31,32].

2.2. Subdomain Adaptation

Usually, in the transfer learning fault diagnosis of mechanical equipment, the data of
the source domain and the target domain can be the data of the same equipment under
different working conditions, or the data of the same model of different equipment. The
tasks to be solved in both domains are the same, that is, both domains have the same
fault category and classification tasks. Such transfer tasks are called domain adaptation
and they are an important branch of transfer learning (see Figure 2) [33]. This paper
intends to implement migration diagnosis under different rotational speed conditions on
the same rotating mechanical equipment, that is, the feature space dimension and fault
label space of the source domain and target domain data are the same. Most of the current
diagnosis algorithms only consider the alignment of the global marginal distribution
between the source domain and the target domain. However, the lack of distinguishing
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the conditional distributions between the same subclass of faults will lead to a decrease
in the accuracy of transfer fault diagnosis (as shown in Figure 3a). On this basis, the
concept of subdomain adaptation is further proposed, that is, when the global distribution
of the source domain data and the target domain data is roughly the same, the conditional
distribution between the subdomain fault data is further aligned [34]. This will reduce the
distribution difference of sub-type fault data under different working conditions of the
equipment, thereby improving the accuracy of fault diagnosis (as shown in Figure 3b).

Source domain ——— Target domain

Relevant

QS QT

Source learning task — Knowledge Target learning task

Y T

s

Figure 1. Schematic diagram of transfer learning.
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Figure 2. Domain Adaptive Schematic.

2.3. Continuous Wavelet Transform (CWT)

CWT has good localized analysis ability and multi-resolution analysis ability for
equipment fault signals and has the characteristic of window adaptation compared to time—
frequency conversion methods such as STFT. It uses a limited length wavelet base with
an attenuation effect and locates the time node at which the signal frequency component
appears via telescopic transformation and translation of the wavelet. For a series of time
series, the wavelet function can move in the time dimension and compare the window
signals at different positions one by one to obtain the wavelet coefficients. The larger
the wavelet coefficients, the better the fitting degree of the wavelet and the signal. In the
calculation, the convolution of the wavelet function and the window signal are used as
the wavelet coefficient under the window. Therefore, the length of the window and the
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length of the wavelet are the same. In the frequency domain, the length and frequency of
the wavelet are changed by stretching or compressing the length of the wavelet to realize
the wavelet coefficients at different frequencies. Correspondingly, the window length also
varies with the wavelet length. Combining the wavelet coefficients at different frequencies,
the wavelet coefficient map of the time—frequency transform is obtained. The specific
calculation process is as follows [35].

& @ Category 1

-t v Tt :
* P K 0”;:" il
-> * b ;
* e x %% e s X * % Category 2
> 7k L
* x sliigh
Source domain Target domain
(Working condition 1) (Working condition 2)
* ke * - * K
- i * ek
s it * ** /‘ & . 3 ki
* o i ] P y
s I *® o Kok
- * * * i EPS * *
* x e * e SEt e
< * kg ** * ok k
. * * Lt e e T
- * & .x

Global adaptation
Subdomain adaptation

(b) ()

Figure 3. Subdomain adaptation schematic: (a) source and target domain conditions; (b) global
adaptation; (c) subdomain adaptation.

Assuming that both the input signal x(¢) and the wavelet basis function () satisfy
x(t) € L2(R), ¢(t) € L?>(R), and L?(R) represents a square-integrable real number space,
the continuous wavelet transform of the input signal x(¢) can be expressed as [36]:

WT(a,7) = = [ x()9( )t = (x(0) ue(t) 0
pue(t) = 2=y () @

In the formula, 2 and T respectively represent the scale parameter and displacement
parameter in the wavelet transformation. Further, the displacement and scale expansion of
the wavelet base in the transformation process are represented by ¢, (t). ¢(t) represents
the complex conjugate value of i(t), and the symbol (x, y) represents the inner product
operation. The frequency domain form of wavelet transform can be expressed as,

WTy(a,T) = 2—\/5/ x*(v)-p*(a,v)-el"'dv ©)]

In the formula, x*(v) represents the Fourier transform of the signal x(t); ¥*(a,v)

represents the complex conjugate value of the Fourier transform of the wavelet basis
function ¢ (t).

2.4. Adaptive Multi-Threshold Segmentation
2.4.1. Symmetric Cross Entropy (SCE)

Cross-entropy is used in Shannon information theory to measure the difference be-
tween two probability distributions. Suppose j(x) and o(x) are two distributions dis-
tributed on the probability space (), then the cross-entropy of pu(x) to o(x) is defined
as [37]: X

M) = X ) tog £

xeQ)

4)

(x)
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where ji refers to the correct distribution and ¢ refers to the approximate estimated distri-
bution. Cross entropy is used to estimate the distance difference between distributions.

However, considering that it does not have distance symmetry, Brink et al. [38] de-
veloped the concept of symmetric cross entropy (SCE). SCE essentially adds the forward
Kullback divergence and the backward Kullback divergence, which makes the cross en-
tropy symmetrical and thus allows it to become a real distance measure. The expression of
symmetric cross entropy is:

N L p), K o(x)
D(x)—g)hi(zlnm—i—y(x)ln ; )—l—i:;:rlhi(llnm—f—a(x)ln ; ) (5)

On this basis, image adaptive multi-threshold segmentation is carried out with SCE as
the standard. Even if Formula (5) takes the minimum value of x to be the optimal threshold,

x* =argmin(0 <x < L—-1){D(x)} (6)

Generalizing at most thresholds is performed to find a set of thresholds (xq, - - -, x;)
that minimize the entropy value.

x(1, --+, n)" =argmin{Dy+ Dy + -+ Dy} ()

2.4.2. Gray Wolf Optimization Algorithm (GWO)

The gray wolf optimization algorithm (GWO) is a swarm intelligence optimization
algorithm that was proposed by Mirjalili et al. from Griffith University in Australia
in 2014 [39]. The algorithm is inspired by the hunting activities of gray wolves and
has the characteristics of few parameters, strong convergence performance, and easy
implementation. In recent years, the GWO algorithm has been widely and successfully
applied in parameter optimization, image classification, and other fields. The algorithm
divides the wolves into four levels («, B, §, and w) according to the hierarchy of the wolf
society, as shown in Figure 4.

a

P
)

Figure 4. Subdomain adaptation schematic.

The three gray wolves closest to the prey are named «, § and ¢ in order from near
to far, corresponding to the optimal solution, the second optimal solution and the third
optimal solution of the fitness function respectively; the remaining gray wolves are named
uniformly as w, corresponding to other candidate solutions. «, 8 and § guide w to search
for prey, w update location around «, § and J. The entire hunting optimization process is
shown in Figure 5, which mainly includes:
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~——r @ wolf

Figure 5. The hunting optimization process diagram of gray wolves.

(1) Surrounding the prey. The behavior of surrounding the prey can be represented by
the following computational procedure [40]:
B |C-x,(0) - (1)
D = |C-Xp(t) — X(t ‘
- — ®)
X(t+1) = X,(t) - A-D

In the formula, D represents the dlstance between the prey and the gray wolf, A and

C are the coefficient vectors, Xp and X represent the position vector of the prey and the
gray wolf, respectively, and ¢ is the current number of iterations.

(2) Attacking and searching for prey. Since the locations of the wolves in relation to
the prey is unknown, the location update of w during the hunting process is guided by «,
and . The behavior of attacking prey can be described as:

— - =
D, =|C1- Xy — X
— - = —
Dg = |G Xp— X 9)
— - =5 =
Ds=|C3-X5s — X
- = —
In the formula, D,, Dﬁ, D; represent the distances from w to «, B and J respectively, C

e " —
is a random number with a value of [0, 1], D,, D/g, D, and D; represent the current location

of , B, 0 and w:

— - - =
X1 = sz(t) Ar- (Da)
— - - =
Xo = X‘B(f) As- (D/g) (10)
— - - =
X3 = X;(t) — As+(Ds)
S X4 X+ X
X(t+1) = 21 F 32+ 3 (11)

w moves to «,  and § according to the direction and step size specified in Formula (10),
and Formula (5) represents the final position of w. «, § and ¢ predict the location of the
prey, w randomly update the location around the prey. When the prey stops moving, the
gray wolf completes the hunting behavior by attacking the prey.
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2.4.3. Adaptive Multi-Threshold Segmentation Based on GWO-SCE

Due to the differences between different picture samples, especially in the time—
frequency pictures with changing working conditions, it is more difficult to highlight the
fault features. Therefore, the intelligent optimization algorithm can be used to optimize
the threshold value to achieve the effect of adaptively obtaining the best threshold value.
According to the SCE threshold segmentation principle in Section 2.4.1, to obtain the final
threshold, it is necessary to find the corresponding minimum entropy value. Therefore,
choose H(x) as the optimized fitness function:

H(x)=x(1, ---, n)" = argmin{Do+ Dy + -+ Dy} (12)

H(x) represents the image cross entropy at different thresholds, and the optimization
goal of the algorithm is to find an optimal set of thresholds so that the corresponding H(x)
values are minimized. When the GWO algorithm iteration is over, it is considered that
H(x) gets the smallest optimization value and that the fault feature boundary in the image
has been effectively highlighted. When the threshold number changes from 1 to 4, the
corresponding optimal fitness function values are constantly getting smaller: 1.0343 x 10°,
49 x 10°,2.54 x 10°,1.78 x 10°, respectively. When the threshold number is 4, the value of
H(x) is the smallest and the segmentation effect is the best.

Further, to verify the effectiveness of the GWO-SCE adaptive multi-threshold segmen-
tation method, we take the Lena image as an example (Figure 6a) and set the number of
threshold segmentations to 1, 2, 3, and 4, respectively, with the optimization boundary
set to [0, 255] (because the pixel value of the image ranges from 0 to 255). The number of
wolves is set to 50, and the maximum number of iterations is set to 100. The experimental
results are shown in Figure 6b—e.

It can be concluded from the experimental results in Figure 6 that the algorithm
quickly achieved convergence and reached the minimum value of the fitness function at
the 100th iteration, which indicates that the GWO-SCE algorithm has effective optimization
ability. When the threshold number changes from 1 to 4, the corresponding optimal
fitness function values are constantly getting smaller: 1.0343 x 10°, 4.9 x 10°,2.54 x 10°,
1.78 x 10°, respectively. According to the entropy value theorem, the smaller the entropy
value, the more information the image contains. Therefore, after optimization, the key
information and features in the image are effectively highlighted and segmented, which is
very useful for the learning and application of transferable features of image samples using
deep networks.

2.5. Convolutional Neural Network (CNN)

The convolutional neural network is a unique neural network structure that was
discovered when the neurons for local perception and direction selection were studied
in the brains of cats. It is also a commonly used network in deep learning. It has strong
feature learning ability, can effectively avoid the loss of local information, and performs
well in the field of image classification. Its basic structure consists of an input layer, a
convolutional layer, a pooling layer, a fully connected layer, and an output layer, as shown
in Figure 7 [41,42].

Among them, the calculation formula of the convolutional layer is:

. o
ve= (L v Kz tbl) (13)

xeX
where X represents the input image set, z represents the z-th output image, j represents
the number of layers of the neural network, yﬂc_l represents the input of the j-th layer, y,

represents the output of the j-th layer, K}, represents the convolution kernel, b’ represents
the bias, f(-) represents the activation function.
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Figure 6. Adaptive multi-threshold segmentation results of the Lena image. (a) Lena image; (b) single
threshold segmentation and GWO iteration results; (c) two threshold segmentations and GWO
iteration results; (d) three threshold segmentations and GWO iteration results; (e) four threshold
segmentations and GWO iteration results.

FC2
FC1

Conv 1 Conv 2
Output Layer

Figure 7. Basic structure diagram of a CNN.

In the pooling layer, the max pooling function or the average pooling function is used
for feature mapping, thereby reducing the dimension of the feature map and the amount
of training calculations; however, this does not change the number of feature maps. The
calculation formula of the pooling layer is:

vk = f(wxdown (ymn) + by) (14)
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where vy represents the k-th output image, i, represents the feature map with output size
m x n, wy represents the weight connection coefficient, by represents the bias, and down ()
represents the pooling function.

In a deep network, being fully connected means that neurons in each layer establish a
weighted relationship with neurons in the previous layer.

The number of input images for the fully connected layer is [ and the size is m X n.

First, the input / image matrices are expanded in columns and then connected end to
end according to the output order of the previous layer. Thus, it is spliced into [ X m X n,
a one-dimensional feature column vector that is finally mapped to the corresponding
category of the output layer. The mapping expression between the fully connected layer
and the output layer is:

Y = f(wex + by) (15)

where y, represents the g-th value of the output layer, x represents the feature vector, wg
represents the weight connection coefficient (weight value), by represents the bias, and the
activation function is generally the Softmax function. Finally, the output of the fully con-
nected layer is divided into corresponding categories through the Softmax function [43,44].

2.6. Maximum Mean Difference (MMD)

The maximum difference in means is based on a nuclear two-sample test that rejects
or accepts the null hypothesis p = g for the observed sample, which is defined as a
nonparametric distance measure in the reproducing kernel Hilbert space (RKHS) that
measures the difference in the distributions of two datasets. In recent years, MMD has
been widely used in the field of domain adaptation to perform cross-domain adaptation of
features through minimization of the MMD distance between the source domain ()g and
target domain Q). The square of the MMD distance between the source dataset and target
domain dataset is defined as [45,46]:

ns nt 2
DR(Qs, 0r) = [t & ¢(X) 3 L ¢(X)]
17!5 ng s s 1715 ng " ¢ 2 ng N . ;
=5 L KXLX) 4+ Y K(XEXD - 55 LY K(X, XD
Si=1j=1 ti=1j=1 i=1j=1

where H is the RKHS and ¢ : Qs, Q7 — H and K(+, -) are Gaussian kernel functions.
K(Qs, Qr) = exp(—[|Qs — Q1] /267) (17)

In the formula, ¢ is the bandwidth of the kernel function, which can take multiple
different values to calculate the MMD and superimpose its calculation results to form the
so-called multi-core MMD.

3. CNN-Based Subdomain Adaptive Fault Diagnosis

Aiming at the inconsistency of characteristic distribution of fault state signal data
collected under the different operating conditions of gearboxes, a subdomain adaptive
depth transfer diagnosis method is proposed. The method mainly consists of two parts:
transfer fault feature extraction and subdomain adaptation. Self-designed CNNs can be
used to extract common features of samples; the subdomain adaptation uses the adaptive
layer to learn the transfer knowledge, uses the local maximum mean discrepancy (LMMD)
metric for conditional distribution difference calculation, and aligns the subdomains to
achieve gearbox transfer learning for different operating conditions.

3.1. Subdomain Adaptive Deep Network Model

Based on quantitative research on feature transferability in deep convolutional net-
works, the general feature extraction layer mainly extracts the general features of the source
domain data and the target domain data, and the difference between the two domains is
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mainly reflected in the fully connected layer (adaptive layer). Based on this theory, the
subdomain adaptive network model proposed in this paper is shown in Figure 8. The
number of layers and the network parameter settings are shown in Table 1.

- B I BP
e FC3
Conv1 | Conv2 | Conv3 | FC1 | ES 2 |

: . Output Layer

i k | k | k w [ w
— || [LMMD

arameter
] | | : |

. sharing ; | “7\
i | b | b | b ; | b | b

Conv 1 Conv 2 Cony 3 FC 1
Output Layer

General feature extraction layer Subdomain adaptation layer

Figure 8. Subdomain adaptive network model.

Table 1. Subdomain adaptive network structure and parameter settings.

Layers Tied Parameters Activation Functions Output Size
Input / / 224 x 224 x 1
Convl Kernels: 3 x 3 x 16, Bias: 16 x 1 ReLU 222 x 222 x 16
Pooll S:2x2 / 111 x 111 x 16
Convl Kernels: 3 x 3 x 32, Bias: 32 x 1 ReLU 109 x 109 x 32
Pool2 S:2x2 / 55 x 55 x 32
Convl Kernels: 3 x 3 x 64, Bias: 64 x 1 ReLU 53 x 53 x 64
Pool3 S:2x2 / 27 x 27 X 64
Flatten / / 729 x 64
FC1 Weights: 7 x 1, Bias: 512 x 1 ReLU 512 x 1
FC2 Weights: 512 x 128, Bias: 128 x 1 ReLU 128 x 1
FC3/Classification Weights: 128 x 7, Bias: 7 x 1 Softmax 7x1

After the CWT time—frequency map samples of different speeds are put into the
network, the convolutional layer extracts and learns the general features of the image.
Further, the first layer of the fully connected network is set as the adaptive layer, and the
LMMD metric is used for subdomain adaptation. Finally, a Softmax classifier performs fault
diagnosis on the target domain’s work—case dataset. The objective function f optimized
during training is:

1 ng A
F=min—Y J(f(X5), Y{) +Au)_di(p, q) (18)
f nsi3 IeL

In the formula, J(-, -) is the cross entropy loss function, zg\l(, -) is the subdomain
adaptation function, and the total number of adaptive layers is denoted by L. In this
paper, the LMMD metric is added to the first fully connected layer, thus L = 1. As a
nonparametric distance estimation between two distributions, MMD is mainly used to
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measure the difference between the source domain distribution and the target domain
distribution; for the subdomain adaptation problem, LMMD needs to be introduced:

2 Czuzm (X)) = Ll p(x)I, (19)

In the formula, w° and wj° are the weights of X} and X; belonging to the c-th class,
respectively, which can be expressed as:

c Yic
Wi = =—— (20)
Z(X]-,Yj)eD Yije

In the formula, ;. is the c-th label of the input vector Y;. Further, the ground-truth
labels are used to calculate the weights of samples in the source domain. For the samples
in the target domain, the deep neural network uses the learned probability distribution to
represent the probability that the sample is recognized as a certain category. The weights
of the target domain are therefore calculated using the predicted labels of the network. In
implementing the adaptation process of deep network layers, the activation factor ' needs
to be known. Given domains subject to probability distributions p and g, respectively, the

g nt
network will generate activations for {u;l } - and {u}l } - in the adaptive layer. Therefore,
1= j=

the subdomain adaptation function is:

n C ns ns sl sl

di(p, q) = ¢ ; ; ; Wi WS K (u;, 1)+
won (21)
ZZ w'e th(I,u) 22 ZwscwtCK(l,u)
i=1j=1 J i=1j=1 ]

In the formula, u! is the activation factor of the I-th layer (I € L = {1, 2, ---, |L|}). In
the network training process, the objective function that needs to be finally optimized is:

ns C sl
F=mind 1 J(F(X0), )+ L L 8 { Y ¥ wrweK, i)+
f — leL c=1 |i=1j=1

L t © wse ot t (22)
ZZWWK(,/]') ZZZWWK( ]')

i=1j=1 i=1j=1

3.2. Fault Diagnosis Algorithm Flow

The complete adaptive diagnosis algorithm flow from this paper is shown in Figure 9.

(1) Carry out the fault preset experiment and perform acoustic signal acquisition
under the variable speed conditions of the gearbox while preprocessing the data to obtain
digital samples.

(2) Perform CWT conversion on the signal to obtain two-dimensional time—frequency
image samples.

(3) Adaptive multi-threshold segmentation is performed on the image samples to
obtain the source domain sample and target domain sample required for the input of the
network model.

(4) The source domain sample and target domain sample are entered into the subdo-
main adaptive network model for training and diagnosis, and the diagnosis results of the
gear box target’s working condition data are obtained.
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Figure 9. Fault diagnosis strategy flowchart.

4. Case Study
4.1. Data Preparation

In this paper, the gear and bearing fault preset experiments are carried out with the
help of a mechanical fault comprehensive simulation test bench. The experimental object is
a secondary spur gearbox (as shown in Figure 10), and the collected acoustic signal data
are used as the follow-up analysis object. The composition of the test bench includes power
and control parts, a bearing fault simulation part, a gearbox fault simulation part, and a
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data acquisition part. This paper mainly conducts the pre-fault experiment on the gearbox
part of the test bench. This part is mainly composed of a secondary reduction spur gear
box (which can realize the preset faults of gears, bearings, and composite cases), magnetic
powder brakes (providing loads), and magnetic powder brake controllers (controlling
load changes).

Power and control part ! : Bearing Failure Simulation Section Gearbox Failure Simulation Section

Magnetic powder
brake controller

Bearing
Inverter ' \
controller =

Speed i Flywheel Magnetic
indicator i it powder brake

Figure 10. Comprehensive fault simulation test bench.

The perspective view and internal structure diagram of the secondary reduction spur
gear box are shown in Figure 11a,b. The number of teeth on the gears, from high-speed to
low-speed shafts, are: 41,79, 36, and 90, respectively. The preset faulty gear is gear 3, and
the faulty bearing is located at the ER-16K bearing at the end cap in Figure 11b. The size
parameters are shown in Table 2. Figure 11c shows the sound pressure sensor used in the
experiment; the sensor is a YSV5001 high-precision ICP sound pressure sensor, which is
mainly composed of an electret head and an ICP preamplifier, and its related performance
indicators are shown in Table 3. These indicators meet the requirements of IEC61672 and
GB/T3661 primary indicators. Figure 11d shows the process of acoustic signal acquisition,
and the part marked in red in the figure is the sound pressure sensor.

Gearl
Aﬁ
Input shaft 1} End cap
'2.\ Intermediate shaft Gear3 / 36 teeth

Qutput shaft

Gear4

(@)

Sound pressure

/ sensor

(<) (d)

Figure 11. (a) Perspective view of the gearbox; (b) internal structure of the gearbox; (c) sound pressure
sensor; (d) view of signal acquisition.
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Table 2. Structural parameters of the ER-16K bearing.

Number of Rolling Elements  Rolling Body Diameter/inch Pitch Diameter/Inch Contact Angle/°
8 0.3125 1.516 0

Table 3. Related technical indexes of the sound pressure sensor.

. . Polar Head Output Power Frequency
Indicator Model Pole Size/mm Range/dB Impedance/GQ) Supply/mA Response/Hz
Type YSV5001 12.7 20~146 <110 2~20 20~20K

During the experiment, motor speed was controlled by the motor inverter controller
or the MotorControl motor control software. MotorControl can change the motor speed
by controlling the motor frequency conversion controller to realize the constant speed
and continuous variable speed of the motor. The data acquisition system consists of a
sound pressure sensor and VQ-USB4/LF data acquisition board. The board consists of the
data acquisition board itself and VibraQuest Pro signal analysis software. VibraQuest Pro
is a versatile data acquisition and condition detection system that records signal data in
real-time from data acquisition boards. Figure 12 shows the signal acquisition system and
software used in the experiment.

Ol
WO BG | RMER 9% | @3 6m wm

A TR 712001100 181217122732 O
e

(c)

Figure 12. (a) Data collection systems; (b) motor control software; (c) VibraQuest Pro software.
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In the preset fault experiment in this paper, the fault types for gear settings include
a missing tooth fault, broken tooth fault, and wear fault. The failure types for bearing
settings include an inner ring failure, outer ring failure, and single ball failure. The fault is
processed by pre-processing a deep groove with a width of 0.5 mm on the bearing outer
ring, inner ring, and ball body. The relevant components corresponding to the six fault
conditions are shown in Figure 13. Table 4 details the relevant information of the seven
states of the gearbox under a single working condition.

(a) (b) (c)

(d) (e) ()

Figure 13. (a) Missing gear; (b) broken gear; (c) uniform worn gear; (d) bearing outer fault; (e) bearing
inner fault; (f) bearing rolling ball fault.

Table 4. Gear and bearing fault status types.

Fault Code Fault Type
F1 Missing gear
F2 Broken gear
F3 Uniform worn gear
F4 Bearing inner fault
F5 Bearing outer fault
F6 Bearing rolling ball fault
F7 Health

In the experiment, the combined working conditions of different rotational speeds
are set, and the acoustic signals of the normal state and the six fault states of the gearbox
with different working conditions are collected respectively. In each experiment, the signal
acquisition time was 48 s and the procedure was repeated 10 times. The design of the
combined working conditions of different loads and speeds is shown in Table 4. A total
of 5000 sampling points were used as a vibration sequence sample and 120 samples were
taken for each set of fault data. Further, according to the working condition design in
Table 5, we created six transfer learning tasks, namely A - B, A—+C, A—D,B—=C,
B — D, C — D. The transfer task A — B indicates that the data of working condition A
are the source domain, and the data of working condition B are the target domain.
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Table 5. Design of the experimental conditions.

Condition Code Rotating Speed/rpm Load Current/N-m I;I)umbgr of Source Numb‘er of Target
omain Samples Domain Samples

A 1200 (constant) 5 120 120

B 1500 (constant) 5 120 120

C 1800 (constant) 5 120 120

D 1200~1800 (even speed change) 5 120 120

Further, we use CWT to convert the one-dimensional acoustic signal into a m * 1 * 3—
dimensional RGB color time—frequency map with three channels (m and n are the length
and width of the image, respectively, and three represents the number of primary color
channels). To reduce the amount of computation, the RGB images are converted into
m x» n—dimensional grayscale images. The adaptive multi-threshold segmentation method
from Section 2.4 is used to perform adaptive threshold segmentation on the gray image
samples. The specific processing process is shown in Figure 14. Due to limited article space,
only the sample preparation process for the F5 fault signals under condition A (1200 rpm
and 5 Nm) is listed here. The results of the experiments at different thresholds are shown

in Figure 15.

CWT time-frequency
conversion

—

One-dimensional acoustic signal
CWT time—frequency color diagram

Dimensionality
reduction

Threshold
segmentation

—

CWT time—{frequency threshold CWT time—frequency grayscale image
segmentation image

Figure 14. Processing of image samples.

Figure 15. Cont.
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Figure 15. Adaptive multi-threshold segmentation results of the F5 CWT image: (a) F5 CWT image;
(b) single threshold segmentation and GWO iteration results; (c) two threshold segmentations and
GWO iteration results; (d) three threshold segmentations and GWO iteration results; (e) four threshold
segmentations and GWO iteration results.
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From the experiment results in Figure 15, it can be seen that compared to the original
CWT time—frequency map, the boundary of the image feature components after threshold
segmentation is well highlighted, and with the increase in threshold number, the types and
levels of components are also clearer. The corresponding fitness function values become
smaller, with values of 7.907 x 10°, 4.49 x 106,2.75 x 10°,1.88 x 10°, respectively. That is,
when the threshold number is four, the cross entropy of the image reaches the minimum
value and the fault classification feature information contained in the image is the greatest.
In addition, after the threshold number exceeds five, the calculation amount and calculation
time of sample processing become longer. Therefore, combined with the diagnostic effect
and timeliness, the number of threshold segments is selected as four.

Further, the threshold segmentation results of the seven types of fault signal are shown
in Figure 16. Due to limited article space, we have only listed the processing results of case
A (1200 rpm and 5 Nm). Finally, 120 grayscale samples were obtained from the data of each
fault type under the four speed conditions.

(e) (2

Figure 16. Threshold segmentation processing results for different types of fault signals under case
A: (a) F1 fault; (b) F2 fault; (c) F3 fault; (d) F4 fault; (e) F5 fault; (f) F6 fault; and (g) F7 fault.

4.2. Experimental Results

The source domain samples and target domain samples are entered into the subdomain
adaptive network for training, and the parameter settings of the network during the training
process are shown in Table 6. The average value of 10 fault diagnosis results is shown
in Table 7. Figure 17 shows the network training and loss function curves for different
transfer tasks.

Table 6. Network hyperparameter settings.

Parameter Value

Batch size 42

Learn rate 1 x 10°
Weight decay 0.9

From the above experimental results, in different transfer tasks, the proposed sub-
domain diagnosis fault algorithm can obtain high diagnosis accuracy, and the average
diagnosis accuracy of the target domain reaches more than 99.84%. This shows that the
characteristic knowledge between fault data under different rotational speed conditions
has been transferred well, which proves the superiority of the algorithm in this paper. To
further verify the fault features learned from the deep parameter space of the network,
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the effectiveness of cross-domain feature learning for subdomain adaptation was assessed.
Using t-distributed stochastic neighbor embedding (t-SNE), the visualization is performed
by mapping high-level feature representations from raw feature space to 2D space [47]. The
visualized results are shown in Figure 18.

Table 7. Fault diagnosis results.

Source Domain Training Target Domain Test
Accuracy/% Accuracy/%

A—B 99.81 99.96
A—=C 99.90 99.92
A—D 99.79 99.89
B—=C 99.88 99.92
B—D 99.92 99.95
C—D 99.75 99.84

Transfer Task

Loss
@

0.2 L L L ‘ 12 L L
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[ ]
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Figure 17. Cont.
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Figure 17. Network training and loss function curves under different transfer tasks: (a)transfer task
A — B; (b) transfer task A — C; (c) transfer task A — D; (d) transfer task B — C; (e) transfer task
B — D; (f) transfer task C — D.

The left column of Figure 18 illustrates that, without subdomain adaptive training,
different types of data in the source domain are better classified but data obfuscation occurs
in the target domain. The data distribution difference between the source domain and the
target domain has not been effectively adapted to the domain, indicating that the knowledge
of fault features is not transferred between domains. This resulted in a large number of
diagnostic misjudgments. Observing the column on the right side of Figure 18 leads to the
conclusion that, after the data is adaptively trained on subdomains, the fault features of
the source and target domains are projected to the same region after deep learning and
transfer. It can be observed that not only are the classification characteristics of the source
domain data well distinguished, but the classification characteristics of the target domain
are also consistent with the distribution of the source domain, a high-precision distinction.
Therefore, the accuracy and effect of fault diagnosis have been greatly improved.
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Figure 18. Visualization of fully connected layer transfer features: (a) transfer task A — B; (b) transfer
task A — C; (c) transfer task A — D; (d) transfer task B — C; (e) transfer task B — D ; (f) transfer
task C — D.

4.3. Small Sample Performance Analysis

To verify the diagnosis effect of the proposed fault diagnosis algorithm under the small
sample diagnosis condition, the sample sizes for the source domain and target domain data
in the transfer task were set to 40, 60, 80, 100, and 120, respectively. The average of ten
experimental results is shown in Table 8 and Figure 19.

From the experimental results in Figure 19, it can be clearly concluded that the pro-
posed fault diagnosis algorithm does not experience a large decline in diagnostic accuracy
when the sample size drops sharply. On the contrary, because of the powerful feature
learning ability of the deep network and the adaptive component training in the fully
connected layer, the effective features in the sample can be learned and applied, and the
failure accuracy rate can be maintained above 59%. At the same time, the fluctuation of
diagnostic accuracy indicates that, in fault diagnosis based on deep networks, the accuracy
of fault diagnosis can be improved by increasing the sample size.

4.4. Method Performance Comparison Analysis

To further verify the effectiveness of the diagnostic algorithm proposed in this paper,
other diagnostic models are used for comparative analysis. Model 1 is the traditional
machine learning classifier support vector machine (SVM, G1) [48]. Model 2 is the network
model used in this paper but the samples are not segmented by a GWO-SCE adaptive multi-
threshold, and only the CWT time—frequency transform (G2) is performed [49]. Model 3
replaces the domain distance measurement criterion with MMD (G3) [25]. Model 4 replaces
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the domain distance measurement criterion with the Wasserstein metric (G4) [50]. Model
5is a domain adversarial neural network (DANN) that employs a domain discriminator
to adversarially train the model to learn domain-invariant features (G5) across source
and target domains. The method in this paper is denoted by G6. The average of ten
experimental results is shown in Table 9 and Figure 20, where the training sample size
was 120.

Table 8. Diagnostic performance of the algorithm with different sample sizes.

Transfer Task Sample Size Target Domain Test Accuracy/%
120 99.96
100 92.29
A—B 80 82.19
60 80.36
40 73.35
120 99.92
100 94.62
A—C 80 89.54
60 76.35
40 71.62
120 99.89
100 96.33
A—D 80 84.66
60 76.95
40 69.18
120 99.92
100 89.55
B—C 80 85.49
60 65.95
40 59.54
120 99.95
100 91.44
B—D 80 85.85
60 74.55
40 72.62
120 99.84
100 92.62
C—D 80 86.29
60 76.55
40 63.54
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Figure 19. Diagnostic performance graph of the algorithm under different sample sizes.
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Table 9. Diagnostic performance under different diagnostic methods.

Transfer Task Method Target Domain Test Accuracy/%
Gl 52.97
G2 86.97
G3 90.56
A—B G4 91.09
G5 94.22
G6 99.96
Gl 51.57
G2 85.11
G3 91.92
A=C G4 91.93
G5 95.64
G6 99.92
G1 50.68
G2 87.55
G3 91.94
A—=D G4 90.32
G5 95.01
G6 99.89
Gl 52.82
G2 87.80
G3 91.87
B—C G4 90.97
G5 96.31
G6 99.92
G1 50.62
G2 87.04
G3 91.60
A G4 90.28
G5 94.52
G6 99.95
G1 53.12
G2 84.27
G3 90.84
C—oD G4 91.83
G5 93.85
G6 99.84
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Figure 20. Diagnostic performance graph under different diagnostic methods.
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The following conclusions can be drawn from the above experimental results: (1) As a
machine learning method, SVM cannot learn the deep-level features of image samples and
cannot maintain high diagnostic accuracy when the data distribution of samples changes.
(2) The CWT time—frequency map without threshold segmentation is used in the training
process of the G2 model, and the diagnosis result is lower than that of the G6 model.
This shows that GWO-SCE adaptive multi-threshold segmentation can better highlight
the fault feature boundary of image samples, which can greatly improve the accuracy
of fault diagnosis. (3) The MMD and Wasserstein metric criteria are used in the G3 and
G4 models, respectively, and the conditional distribution between sub-type faults in the
field is not considered, thus the diagnostic accuracy is lower than that of the G6 model.
(4) The domain adversarial training of the G5 model also only considers the reduction
of inter-domain differences, while ignoring the elimination of intra-domain differences.
Therefore, the fault diagnosis effect of the G5 model is also weaker than that of the G6
model. In summary, the fault diagnosis algorithm proposed in this paper has outstanding
effectiveness and superiority in the face of fault diagnosis problems under cross-domain
variable working conditions.

5. Conclusions

The role of fault diagnosis theory in the health management of equipment is increasing.
Aiming at the cross-domain fault diagnosis of gearboxes under variable speed conditions,
this paper proposes a fault diagnosis algorithm for gearboxes based on GWO-SCE threshold
segmentation and subdomain adaptation. Through experimental verification, the following
conclusions are drawn.

(1) This paper uses the sound pressure sensor’s advantages of no contact, easy place-
ment, and low cost to acoustically collect the fault signal of a gearbox, which effectively
solves the problems of traditional vibration acceleration sensors, such as the limitation of
contact-based installation and increasingly strict layout requirements.

(2) The adaptive multi-threshold segmentation method based on GWO-SCE can seg-
ment and highlight the effective fault components in CWT time—frequency images, which
greatly helps the deep network learn the fault feature of the samples and then transfer them.

(3) The subdomain adaptive network adds the LMMD metric in the depth parameter
space, which not only reduces the data distribution difference between the source and
target domains, but also considers the conditional distribution between sub-class fault data.
The experimental results of fault diagnosis show that the network model can complete the
cross-domain transfer diagnosis under the condition of variable gearbox speed with high
diagnostic accuracy.

As a fault diagnosis algorithm combining time—frequency analysis and a deep network,
this research method can provide theoretical support and reference for equipment health
management technology represented by fault diagnosis. In the future, seeking more
effective time—frequency analysis technology, a greater number of targeted domain distance
metrics, and network structures with stronger learning ability should be the direction of
further research.
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