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Abstract: The formation of charge transfer (CT) complexes between bioactive molecules and/or
organic molecules is an important aspect in order to understand ‘molecule-receptor’ interactions.
Here, we have synthesized two new CT complexes, procainamide-chloranilic acid (PA-ChA) and
procainamide-2,3-dichloro-5,6-dicyano-1,4-benzoquinone (PA-DDQ), from electron donor procainamide
(PA), electron acceptor chloranilic acid (ChA), and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).
The structures of these two CT complexes were elucidated/characterized using FTIR, NMR, and
many other spectroscopic methods. A stability study of each complex was conducted for the first
time using various spectroscopic parameters (e.g., formation constant, molar extinction coefficient,
ionization potential oscillator strength, dipole moment, and standard free energy). The formation
of CT complexes in solution was confirmed by spectrophotometric determination. The molecular
composition of each complex was determined using the spectrophotometric titration method and
gave a 1:1 (donor:acceptor) ratio. In addition, the formation constant was determined using the
Benesi–Hildebrand equation. To understand the noncovalent interactions of the complexes, density
functional theory (DFT) calculations were performed using the ωB97XD/6-311++G(2d,p) level of
theory. The DFT-computed interaction energies (∆IEs) and the Gibbs free energies (∆Gs) were
in the same order as observed experimentally. The DFT-calculated results strongly support our
experimental results.

Keywords: procainamide; chloranilic acid; DDQ; charge transfer complex; DFT

1. Introduction

Procainamide, 4-amino-N-(2-(diethylamino)ethyl)benzamide (PA, Figure 1), is used
to treat abnormal heart rhythms, namely Wolff–Parkinson–White syndrome (WPWS)-
associated arrhythmias [1,2]. According to the Vaughan Williams classification, it is classi-
fied as a class IA agent with a sodium-channel-blocking effect [1,2].

Recently, extensive care has been given to the development of the formation of charge
transfer (CT) complexes derived from an electron donor and an acceptor molecule. Due
to the intriguing structures; physical and chemical properties; applications in different
fields, especially optical materials [2,3]; drug–receptor interactions [4]; solar energy and
surface chemistry [5]; field-effect transistors; light-emitting devices, lasers, and sensors
and stimuli-responsive behavior [6]; organic semiconductor properties [7,8]; and various
biological applications [9,10], the synthesis of CT complexes is of interest. CT complexes
are formed with unique types of interactions, which are incorporated in the formation of
π-π stacking of the aromatic complexes, hydrogen bonds, and/or electron transfer from
a donor to an acceptor [5,11–13]. The reaction mechanism of electron transfer from the
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donor to the acceptor of the CT complexes was reported by Mullikan [14,15]. It should
be noted that molecular acceptors can be used for the determination of drugs in dosage
forms [16]. Nevertheless, the formation of the CT complexes is echo-friendly, inexpensive,
simple, and easy compared to other techniques [17]. On the other hand, CT complexes are
used to remove and utilize discarded drugs from the environment [18]. Here, we report the
synthesis and characterization of two new CT complexes ‘procainamide-chloranilic acid’
(PA-ChA) and ‘procainamide-2,3-dichloro-5,6-dicyano-1,4-benzoquinone’ (PA-DDQ). The
structures of the CT complexes were elucidated using UV, fluorescence, FTIR, and NMR
spectrometry. Electronic properties and conductometry were evaluated. A spectroscopic
study was carried out to determine the formation constant and stoichiometry of the CT
complexes. In addition, different physicochemical properties of the CT complexes were
assessed to determine their stability. Furthermore, electronic structures were examined
by DFT calculations to determine the frontier molecular orbitals and the relocation of the
electron density.
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Figure 1. Chemical structures of procainamide and its complexes.

2. Experimental Section
2.1. General

All the chemicals were reagent grade. Procainamide (purity > 99.5) was purchased
from Sigma-Aldrich (Darmstadt, Germany), and chloranilic acid and 2,3-dichloro-5,6-
dicyano-1,4-benzoquinone were purchased from Merck (Darmstadt, Germany). Melting
points were determined on a Barnstead electrothermal digital melting point apparatus,
model IA9100, BIBBY scientific limited Stone (Staffordshire, UK). IR spectra were recorded
on a Jasco FT/IR-6600 spectrometer (Tokyo, Japan) in KBr. NMR spectra were taken from
400 MHz premium shielded NMR spectroscopy in deuterated dimethyl sulfoxide (DMSO-
d6) (Agilent Technologies, Santa Clara, CA, USA). UV-vis spectra were measured using a
Genesis G10S UV-Vis spectrophotometer (Thermo Fisher Scientific, Pleasanton, CA, USA),
using acetonitrile as the solvent. All the measurements were performed using various
solvents and quartz cells with a path length of 1 cm. The UV-Vis spectra in the solution
were measured over the range of 200–700 nm. The conductivities of procainamide and its
CT complexes (PA-ChA and PA-DDQ) were measured on an Orion conductometer (Beverly,
MA, USA).
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2.2. Synthesis of CT Complexes PA-ChA and PA-DDQ
2.2.1. Preparation of PA-ChA Complex

A solution of PA (235 mg, 1 mmol) in 20 mL of methanol was added to a solution of
ChA (209 mg, 1 mmol) in 20 mL of methanol. The reaction mixture was stirred for 3 h at
25 ◦C, filtered, washed with ice-cold acetonitrile (20 mL), and dried over anhydrous CaCl2.
Purple solid (yield > 95%). Melting point, 193 ◦C. IR: ν (cm−1): 3523, 3440, 3270, 3151, 3002,
2715, 2670, 2600, 2529, 1637, 1576, 1530, 1500, 1436, 1381, 1344, 1288, 1173, 1124. 1030, 982,
875, 839, 777, 753, 653, and 571 cm−1. 1H-NMR (DMSO-d6, 400 MHz) δ: 9.10 (br, -NH),
8.32 (t, -NH), 7.59 (d, J = 8.8 Hz, 2H), 6.55 (d, J = 8.4 Hz, 2H), 3.54–3.50 (q, -N-CH2, 2H),
3.21–3.15 (m, 3 × -CH2, 6H), and 1.18 (t, J = 7.2 Hz, 2 × -CH3, 6H) ppm.

2.2.2. Preparation of PA-DDQ Complex

A solution of PA (235 mg, 1 mmol) in 20 mL of methanol was added to a solution of
DDQ (227 mg, 1 mmol) in 20 mL of methanol. The reaction mixture was stirred for 3 h at
25 ◦C. The solid formation was filtered, washed with ice-cold acetonitrile (20 mL), and
dried over anhydrous CaCl2. Brown solid (yield > 95%). Melting point, 287 ◦C. IR:
ν (cm−1): 3430, 3248, 2987, 2944, 2581, 2471, 2217, 1653, 1610, 1562, 1507, 1482, 1407,
1320, 1246, 1178, 1145, 1018, 961, 892, 867, 757, 680, and 625 cm−1. 1H-NMR (DMSO-d6,
400 MHz) δ: 11.00 (s, -OH), 10.05 (brs,-NH), 9.56 (s, -OH), 8.90 (t,-NH), 8.88 (t,-NH), 7.98 (d,
J = 8.8 Hz, 1H), 7.88 (d, J = 8.4 Hz, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 3.64
(quint, -N-CH2, 2H), 3.25–3.16 (m, 3 × -CH2, 6H), and 1.22 (t, J = 6.8 Hz, 2 × -CH3, 6H) ppm.

2.3. Stoichiometry

Spectrophotometric titration measurements were carried out for the reactions of PA
with both ChA and DDQ, where acetonitrile was used as a blank solvent at wavelengths
of 515 and 490 nm, respectively. A 0.25, 0.50, 0.75, 1.00, 1.50, 2.0, 2.50, 3.00, 3.50, and 4.00
mL aliquot of a standard solution (1 × 10−3 M) of the appropriate acceptor in acetonitrile
was added to 1.00 mL of 1 × 10−3 M PA (in acetonitrile), and the total volume of the
mixture was 5 mL. The concentration of PA (CD) in the reaction mixture was maintained at
1 × 10−3 M, whereas the concentration of the acceptors (CA) changed over a wide range of
concentrations (from 0.25 × 10−3 M to 4 × 10−3 M) to produce solutions with an acceptor
molar ratio that varied from 1:4 to 4:1. The stoichiometry of the CT complexes was obtained
from the determination of the conventional spectrophotometric titration method.

2.4. Formation Constant

The formation constant of the investigated CT complexes was determined using the
modified Benesi–Hildebrand method [19] using the following Equation (1):

[Ao]/A = 1/EAD + 1/Kc· E× 1/Do (1)

where ‘[Ao]’ is the molar concentration of the acceptor ChA or DDQ, ‘Do’ is the molar
concentration of the donor (PA); ‘A’ is the absorbance of the formed CT complexes at λ
max; ‘E’ is the molar absorptivity of the complexes; and ‘Kc’ is the association constant of
the complexes (L mol−1).

2.5. Spectroscopic Physical Parameters
2.5.1. Oscillator Strength (f ) Transition Dipole Moment (−µe)

Oscillator strength and transition dipole moment were measured using
Equations (2) and (3), respectively.

f = 4.32× 10−9
[
εmax ∆v 1

2

]
(2)

µ = 0.0958

[εmax∆v 1
2

vmax

]1/2

(3)
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2.5.2. Ionization Potential (IP)

Ionization potential (IP) values were recorded using the following equation [20].

IP (eV) = 5.76 + 1.53× 10−4 vCT (4)

2.5.3. Energy of the CT Complexes (ECT)

The energies of the CT complexes (ECT) (eV) were calculated using Equation (5).

ECT = hvCT = 1243.667/λCT (5)

2.5.4. Resonance Energy (RN)

The resonance energy (RN) of the CT complexes was estimated according to
Equation (6) presented by Briegleb and Czekalla [21].

εmax = 7.7 × 10−4/[hv CT/RN] − 3.5] (6)

2.5.5. Dissociation Energy (W) (eV)

Further evidence of the nature of CT interactions of the synthesized CT complexes
was calculated according to Equation (7).

W = IP − EA − ECT (7)

2.5.6. Gibbs Free Energy Change (∆G◦)

Finally, the nature of the interaction of CT complexes was examined using Gibbs free
energy calculation as shown in ∆G◦ Equation (8).

∆G◦ = −RT ln KCT (8)

2.6. DFT Calculations

Single-point density functional theory (DFT) calculations were performed using the
long-range corrected hybrid functionalωB97XD in conjunction with the 6-311++G(2d,p)
basis set. All the DFT calculations were performed using Gaussian 16, Revision C.01 [22]
in the gas phase first, and then the optimized structures were further calculated in the
acetonitrile solvent system using the polarized continuum model (PCM). A vibrational anal-
ysis was carried out for each optimized molecule to ensure that they were in a vibrational
energy minimum and had no imaginary frequencies (Supplementary Materials).

3. Results and Discussion
3.1. Synthesis of CT Complexes PA-ChA and PA-DDQ

The interaction of PA (donor) with ChA/DDQ (as π acceptors) in methanol produced
colored CT complexes with high molar absorptivity. The synthesis of CT complexes was
straightforward as explained in Scheme 1. Electron donor PA in methanol was simply
added to the acceptor molecules (ChA/DDQ) to form colored CT complexes (Scheme 1).

3.2. Electronic Absorption Spectra

CT complexes were characterized using the spectrophotometric method. As shown
in Figure 2, the absorption intensity of the CT complexes was related to the formation of
the radical anion. PA showed peaks at 206 (n→σ* for C-N), 264 (n→π* for C=O), and 299
(n→π* for C=O) nm at the concentration of 8 × 10−5 M; ChA at 230 (n→π* for C=O), 282
(n→π* for C=O), and 431 (n→π* for C=O) nm; and DDQ at 249 (n→π* for C=O) and 380
(n→π* for C≡N) nm at the concentration of 1 × 10−4 M. Absorption maxima for PA-ChA
were found at 246 (n→π* for C=O), 316 (n→π* for C=O), and 525 (n→π* for the visible
region) nm and those for PA-DDQ were found at 246 (n→π* for C=O), 306 (n→π* for C=O),
458 (n→π* for the visible region), 543 (n→π* for the visible region), and 590 (n→π* for the
visible region) nm at the concentration of 4 × 10−4 M (Figure 2). Acetonitrile was used as
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solvent blank for all measurements. The resulting color was stable for more than five hours,
indicating the high stability of these complexes. The band gaps of the formed complex
were calculated from the formula Eg (eV) = hυ = hc/λae (nm) (2) where “h” is Planck’s
constant, c is the velocity of light, and λ is the wavelength. The energy gaps were 2.41 and
2.53 eV for PA-ChA and PA-DDQ complexes, respectively.
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3.3. Molecular Composition of the PA Complexes

The stoichiometry of the investigated complexes was monitored and determined
spectrophotometrically using spectrophotometric titration (Figure 3). As shown in Figure 4,
PA reacts with CHA/DDQ in a 1:1 ratio.
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Figure 4. The 1:1 Benesi–Hildebrand plot of procainamide CT complexes at detectable peaks: (A) for
PA-ChA and (B) PA-DDQ.

3.4. Formation Constant

Upon plotting the values [A]/A against l/[Do], a straight line was obtained
(Figure 4). The molar absorptivity and formation constant in acetonitrile were found to be
0.6 × 103 L mol−1 cm−1 and 1 × 103 L mol−1cm−1 for the PA-CHA complex and
14 × 103 and 0.1 × 103 L mol−1 for the DDQ complex, respectively. Those values in-
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dicate the stability of the CT complexes. The formation constant values show that the
stability of the PA-ChA complex is higher than that of the PA-DDQ complex.

3.5. Spectroscopic Physical Parameters
3.5.1. Oscillator Strength (f ) Transition Dipole Moment (Debye)

As shown in Table 1, relatively high ‘ f ’ values of 0.212 and 0.31 indicate the strong
interactions between PA and ChA/DDQ, and therefore, the CT complexes PA-ChA and
PA-DDQ have high stability. In addition, the transition dipole moment was recorded
as very high (4.82 and 5.62 Debye for PA-ChA and PA-DDQ, respectively), supporting
the formation of strong bonded CT complexes between the donor (PA) and acceptors
(ChA/DDQ).

Table 1. Spectroscopic characteristics of procainamide CT complexes.

Parameters PA-ChA PA-DDQ

Wavelength, nm 515 490
Molar absorptivity (ε), L mol−1 cm−1 0.6 × 103 1 × 103

Formation constant K = L mol−1 1.4 × 103 0.1 × 103

Oscillator strength (f ) 0.212 0.31
Transition dipole moment (Debye) 4.82 5.65

Ionization potential: IP (eV) 18.2 16.61
Energy: hv (eV) 2.41 2.53

Resonance energy: RN (eV) 1.2 1.11
Dissociation energy: W(eV) 14.69 12.18

Gibbs free energy: ∆G (kJ mol−1) −18 kJ mol−1 −11 kJ mol−1

3.5.2. Ionization Potential (IP)

Ionization potential (IP) values were recorded at 18.2 eV and 16.6 eV for PA-ChA
and PA-DDQ complexes, respectively (Equation (4)). A low Ip value of PA (8.7 eV) [23]
compared to the CT complexes indicated its better stability [20]. Therefore, the formation
of CT complexes is preferable while PA is reacting with ChA and DDQ.

3.5.3. Energy of the CT Complexes (ECT)

As presented in Table 1, the values of the energy (ECT) of the CT complexes were found
to be 2.41 and 2.53 eV for PA-ChA and PA-DDQ, respectively (Equation (5)). These very
low ECT values of the CT complexes indicate that the PA-ChA and PA-DDQ complexes’
stability is very high.

3.5.4. Resonance Energy (RN)

The resonance energies (RN) of the CT complexes were found to be 1.2 and 1.11 eV
for PA-ChA and PA-DDQ, respectively (Table 1). The lower resonance energies of the CT
complexes indicates their higher stability.

3.5.5. Dissociation Energy (W)

Further evidence of the nature of CT interactions of the synthesized CT complexes
was found through calculations using Equation (7). The dissociation energy (W) values
were found at 14.69 and 12.18 eV for PA-ChA and PA-DDQ, respectively (Table 1). These
values indicated that the synthesized complexes have strong CT interactions and, therefore,
high stability.

3.5.6. Gibbs Free Energy Change (∆G◦)

As listed in Table 1, the higher negative values suggest that the CT complexes formed
between PA and the acceptors are exergonic. Generally, the values of ∆G◦ become more
negative as the value of KCT increases, where the CT interaction between the donor and
acceptors becomes strong. Thus, the complex composition is subject to a lower degree of
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freedom, and the values of ∆G◦ become higher negative values. The negative value of
∆G◦ pointed out that the interaction between the donor (PA) and the acceptors (ChA
and DDQ) is spontaneous. Their values are −18 and −11 kJmol−1 for PA-ChA and
PA-DDQ, respectively.

3.6. Spectroscopy
3.6.1. Infrared (IR) Spectra
IR Spectra of PA-ChA Complex

From the comparison of the FTIR spectra of PA, ChA, and the PA-ChA complex
(Figure 5), a characteristic C-Cl band at 571 cm−1 for ChA and 572 cm−1 for PA-ChA was
observed, which confirms the complex formation. Furthermore, a red shift of 1664 cm−1 for
ChA was observed at 1530 cm−1 for PA-ChA [24]. Other important peaks are summarized
in Table 2 [25,26]. It should be noted that the vibrational bands for O-H, C-H, aromatic
C=O, and C-O for ChA to PA-ChA have been shifted from 3560 to 3523, 3235 to 3151, 1664
to 1637, and 1207 to 1173, respectively.

Table 2. IR spectral bands of PA, ChA, and their complex (PA-ChA).

PA ChA PA-ChA Complex Possible Assignments

3402 3560 3523 ν(O-H)
3440 ν(N-H)

3320 3270 ν(CONH)
3215 3235 3151 ν(C-H) (aromatic)
2938 3002
2576 2715 ν(+N-H)

2670
2600

2465 2529 ν(+N-H)
1637 1664 1637 ν(C=O)
1599 1631 1576
1542 1530 ν(C=C) (aromatic ring)
1512 1500
1467 1436 ν(C-H) (alkanes)
1392 1369 1381 ν(C-C) (alkanes)
1323 1344 ν(C-C), ν(C-N) (alkanes)
1295 1264 1288 ν(C-N) (alkanes)
1185 1207 1173 ν(C-O)
1145 1124 ν(C-H) (bending)
1027 1030 ν(NH)
964 983 982 ν(C-H) (bending)
839 854 875
806 839
768 752 777
702 690 753 ν(N-H)
652 653 ν(C-N-C)

572 571 ν(C-Cl)

IR Spectra of PA-DDQ Complex

As shown in Figure 6, from the comparison of the IR spectra of PA, DDQ, and the
PA-DDQ complex, a characteristic C≡N band at 2233 cm−1 for DDQ and 2216 cm−1 for the
PA-DDQ complex was observed, which confirms the complex formation [25,26]. Similarly,
a red shift of 1674 cm−1 for DDQ was observed at 1481 cm−1 for DDQ-ChA [24,27]. Other
important peaks are summarized in Table 3.
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Table 3. IR spectral bands of PA, DDQ, and their complex (PA-DDQ).

Procainamide DDQ PA-DDQ Complex Possible Assignments

3402 3430 3430 ν(N-H)
3320 3248 ν(O-H)
3215 2987 ν(C-H) (aromatic)
2938 2944 ν(O-H)
2576 2581 ν(+N-H)
2465 2471 ν(+N-H)

2232 2217 ν(CN)
1637 1674 1653 ν(CO)
1599 1610 ν(N-H)
1542 1554 1562 ν(C=C) (aromatic ring)
1512 1507
1467 1482
1392 1407
1323 1320 ν(C-C), ν(C-O) (alkanes)
1295 1269 1246 ν(C-N) (alkanes)
1185 1173 1178 ν(C-O) (alkanes)
1145 1145 ν(C-N) (alkanes)
1027 1018 ν(NH)
964 961 ν(C-H) (alkanes)
840 897 892
806 801 867
768 757 ν(N-H)
702 722 680 ν(C-N-C)
652 625

3.6.2. NMR Spectra
NMR Spectra of PA-ChA Complex

From the comparison of the proton NMR (1H-NMR) spectra of procainamide (PA)
and the PA-Chloranilic acid (PA-ChA) complex (Figure 7), the formation of the PA-ChA
complex is confirmed. Aromatic protons in positions 2 and 6 of the PA-ChA complex
slightly (0.13 ppm) shifted downfield from 6.52 to 6.65 ppm, and another two aromatic
protons in positions 3 and 5 slightly (0.01 ppm) shifted upfield from 7.59 to 7.60 ppm.
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On the other hand, as shown in Figure 8, -CH2 protons adjacent to -CONH in the
aliphatic region were upfield-shifted (0.04 ppm) from 3.56 to 3.52 ppm, -CH2 protons
adjacent to tertiary amine were downfield-shifted (0.06 ppm), and methyl protons (-CH3)
were also upfield-shifted (0.02 ppm) (Figure 8). In addition to this, -NH2 peaks were
upfield-shifted from 10.29 to 9.10 ppm. These changes in chemical shifts might be due to
changes in the structural configuration of the complex formation.
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NMR Spectra of PA-DDQ Complex

In the case of the PA-DDQ complex, the chemical shifts of aromatic protons were
dramatically downfield-shifted and split into four different chemical shifts. As shown in
Figure 9, aromatic protons of PA were given the chemical shifts at 7.60 ppm as a doublet for
the protons in positions 3 and 5 and 6.52 ppm as a doublet for the protons in positions 2 and
6; on the other hand, aromatic protons of the PA-DDQ complex were given the chemicals
shifts at 7.98, 7.88, 7.45, and 7.20 ppm for the protons in positions 3, 5, 2, and 6, respectively.
It should be noted that the protons in positions 3 and 5 were downfield-shifted to 0.38
and 0.28 ppm, and the protons in positions 2 and 6 were downfield-shifted to 0.92 and
0.88 ppm, respectively.

On the other hand, in the aliphatic region, there is little change in chemical shifts,
similar to the PA-ChA complex. As shown in Figure 10, -CH2 protons adjacent to -CONH in
the aliphatic region were downfield-shifted (0.08 ppm) from 3.56 to 3.64 ppm, -CH2 protons
adjacent to tertiary amine were downfield-shifted (0.09 ppm), and in the case of methyl
protons (-CH3), they were also downfield-shifted (0.02 ppm). Interestingly, -NH2/-OH
peaks were given in 11.01, 10.05, 9.56, 9.00, and 8.89 ppm. These changes in chemical shifts
are obviously due to changes in the structural configuration of the complex formation.
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Figure 9. Comparison of proton-NMR (1H-NMR) spectra of PA and PA-DDQ complex. (A) aromatic
region of PA-DDQ complex; (B) aromatic region of PA.
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3.7. DFT/TD-DFT Calculations
3.7.1. Optimized Geometrical Structures

The DFT interaction energy (∆IE) values were calculated by using Equations (9) and (10)
in the acetonitrile solvent system for the hypothetical modeled complexes (Figure 11, and
the calculated values are summarized in Table 4.

∆IEint = E[PA]⊃
⋂

[DDQ] - (E[PA] + E[DDQ]) (9)

∆IE = E[PA]⊃
⋂

[ChA] - (E[PA] + E[ChA]) (10)

where E[PA]⊃ ⋂[DDQ] and E[PA]⊃ ⋂[ChA] represent the electronic energy of the optimized
structures of PA-DDQ and PA-ChA complexes, respectively, and E[PA], E[ChA], and E[ChA]
represent the optimized energy of free PA, ChA, and DDQ, respectively.
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Figure 11. Optimized structures of PA, ChA, DDQ, and their complexes: (a) PA; (b) ChA; (c) DDQ;
(d) face-to-face I fashion complex of PA with ChA; (e) face-to-face II fashion complex of PA complex
with ChA; (f) edge-to-edge fashion complex of PA with ChA; (g) face-to-face I fashion complex of
PA with DDQ; (h) face-to-face II fashion complex of PA complex with DDQ; and (i) edge-to-edge
fashion complex of PA with DDQ at the ωB97XD/6-311++G(2d,p) level of theory in acetonitrile
solvent system. Close nonbonded contact distances are highlighted in Å.

On the other hand, the Gibbs interaction energy (∆Gint) values were obtained by
using Equations (11) and (12) in the acetonitrile solvent system.

∆Gint = E[PA]⊃
⋂

[DDQ] - (G[PA] + G[DDQ]) (11)

∆Gint = G[PA]⊃
⋂

[ChA] - (G[PA] + G[ChA]) (12)

where G[PA]⊃ ⋂[DDQ] and G[PA]⊃ ⋂[ChA] represent the Gibbs free energy of the optimized
molecular complex of PA with DDQ and ChA, respectively, and G[PA] and G[ChA] represent
the Gibbs free energy of the optimized free PA and ChA, respectively.
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The calculated ∆IE and ∆G values are represented in the following order: face-to-
face I fashion > face-to-face II fashion > edge-to-edge fashion. Negative ∆IE and ∆G
values correlate with favorable interactions. These results strongly suggest that the π−π*
interactions between the two aromatic rings and the hydrogen bond play an important role
in the interaction of the PA with ChA and DDQ, in agreement with the findings of others
and also strongly supporting the results of our experimental free energies changes (∆G)
([PA]⊃ ⋂[ChA] =−4.3× 103 and [PA]⊃ ⋂[DDQ] =−4.08× 103 kJ mol−1). The face-to-face
I fashion of the PA-ChA and PA-DDQ complexes are thus considered to be stable structures
based on the experimental and theoretical findings.

Table 4. DFT-calculated electronic binding interaction energies (∆IE kJ/mole) and ∆G (kJ/mole) for
the PA complex with ChA and DDQ compounds at theωB97XD/6-311++G(d,2p) level of theory in
acetonitrile solvent.

Complexation Mode Interaction Energy ∆IE (kJ mol−1) Gibbs Interaction Energy
∆G (kJ mol−1)

Face-to-face I fashion for PA⊃ ⋂ChA −64.21 −7.70

Face-to-face II fashion for PA⊃ ⋂ChA −56.90 18.05

Edge-to-edge fashion for PA⊃ ⋂ChA −30.08 39.89

Face-to-face I fashion for PA⊃ ⋂DDQ −61.40 −3.03

Face-to-face II fashion for PA⊃ ⋂DDQ −55.90 14.74

Edge-to-edge fashion for PA⊃ ⋂DDQ −30.55 32.36

3.7.2. HOMO–LUMO Analysis

The structures were drawn in GaussView 6.0.16 program. The highest occupied molec-
ular orbitals (HOMOs) in which electrons are located and the lowest unoccupied molecular
orbitals (LUMOs) were calculated based on the most stable geometry of the complexes. The
HOMO of a chemical species is therefore nucleophilic or electron-donating, and the LUMO
is electrophilic or electron-accepting. According to Koopmans’ theorem [28], the energy of
the HOMO (EHOMO), which is indicative of nucleophilic components, is correlated with
the ionization potential’s negative value (IP = −EHOMO).

The energy of the LUMO (ELUMO) is related to the electron affinity’s negative value
(EA = −ELUMO) and is a measure of the susceptibility of the molecule or species toward the
reaction with nucleophiles. A large HOMO-LUMO gap signifies that the chemical species is
extremely stable and has low reactivity. The HOMO-LUMO energy values shown in Table 5
can be used to calculate a number of other significant and valuable quantum chemical
properties. These include global hardness (η), global softness (S), electrophilicity index (ω),
electronegativity (χ), and chemical potential (µ), all of which give a measure of chemical
reactivity. The hardness value (η) is a qualitative indication of its low polarizability and
can be computed using Equation (13):

η =

[
ELUMO − EHOMO

2

]
=

[
IP − EA

2

]
(13)

On the other hand, “soft” molecules are highly polarizable, have modest HOMO-
LUMO energy gaps, and can be calculated by using Equation (14):

S =

[
2

ELUMO − EHOMO

]
=

[
2

IP− EA

]
=

1
η

(14)
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Electronegativity

The ability to attract electrons is a characteristic of a chemical’s electronegativity (χ)
and determines how chemically reactive it is, which can be computed using Equation (15):

χ =

[
ELUMO − EHOMO

2

]
=

[
IP + EA

2

]
(15)

Chemical Potential

The chemical potential (µ) is the ability for an electron to be taken out of a molecule,
and it can be determined using Equation (16):

µ =

[
EHOMO − ELUMO

2

]
= −

[
IP + EA

2

]
(16)

Electrophilicity Index

The electrophilicity index (ω) measures the strength of the electron flow between a
donor and an acceptor in a substance’s electron acceptors. The mathematical expression for
ω is as follows in Equation (17).

ω =
χ2

2η
=


(

EHOMO−ELUMO
2

)2

(ELUMO EHOMO)

 =


(

IP +EA
2

)2

IP− EA

 (17)

Table 5. HOMO-LUMO gap (∆Egap), ionization potential (IP), electron affinity (EA), electronegativity
(χ), chemical potential (µ), hardness (η), softness (S), electrophilicity index (ω), dipole moments (dm),
and polarizability (α) of the PA, ChA, DDQ, and their complexes at theωB97XD/6−311++G(d,2p)
level of theory in acetonitrile solvent.

EHOMO
(eV)

ELUMO
(eV)

∆Egap
(eV)

IP
(eV)

EA
(eV)

χ
(eV)

µ
(eV)

η
(eV)

S
(eV)

ω
(eV)

dm
(Debye)

Polarizability
(α)

PA −7.97 −0.81 7.16 7.97 0.81 4.39 −4.39 3.58 0.28 2.70 5.58 248.81
ChA −10.18 −3.18 7.00 10.18 3.18 6.68 −6.68 3.50 0.29 6.37 0.01 151.11
DDQ −8.02 −3.03 4.99 8.02 3.03 5.52 −5.52 2.50 0.40 6.11 10.27 463.23

Face-to-face I fashion for
PA⊃ ⋂ChA complex −8.04 −1.95 6.09 8.04 1.95 4.99 −4.99 3.04 0.33 4.10 6.58 408.18

Face-to-face II fashion for
PA⊃ ⋂ChA complex −8.05 −2.01 6.04 8.05 2.01 5.03 −5.03 3.02 0.33 4.18 5.75 418.10

Edge-to-edge fashion for
PA⊃ ⋂ChA complex −7.86 −2.21 5.65 7.86 2.21 5.03 −5.03 2.83 0.35 4.48 10.13 403.93

Face-to-face I fashion for
PA⊃ ⋂DDQ complex −8.08 −3.06 5.02 8.08 3.06 5.57 −5.57 2.51 0.40 6.18 10.56 467.96

Face-to-face II fashion for
PA⊃ ⋂DDQ complex −8.08 −2.96 5.12 8.08 2.96 5.52 −5.52 2.56 0.39 5.94 10.35 465.30

Edge-to-edge fashion for
PA⊃ ⋂DDQ complex −7.91 −3.26 4.66 7.91 3.26 5.59 −5.59 2.33 0.43 6.70 6.05 431.41

The molecular electrostatic surface potentials [29] of PA, ChA, DDQ, and PA complexes
with ChA and DDQ are shown in Figures 12 and 13. The relative polarities and reactive
sites of the species-negative ESP are shown in red, and the order of increasing electrostatic
potential (i.e., highest negative value) is red > orange > yellow > green > blue. The carbonyl
oxygen (-C=O) atom of PA, which is illustrated in red in Figures 12 and 13, has a high
electron density and is the preferred site for electrophilic attack and interaction with
the nucleophilic partly positive charged hydrogen atoms (blue color). The yellow color
indicates the slightly rich electron regions, and the green reflects more neutral zones. The
HOMO and LUMO properties and the quantum chemical properties of PA, ChA, DDQ,
and PA complexes with ChA and DDQ are summarized in Table 5.
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Figure 12. Molecular electrostatic potential (MEP) maps of HOMO and LUMO structures of PA,
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DDQ, and their 1:1 complex: (a) PA; (b) DDQ; (c) face-to-face I fashion complex of PA with DDQ;
(d) face-to-face II fashion complex of PA complex with DDQ; and (e) edge-to-edge fashion complex
of PA with DDQ at theωB97XD/6-311++G(2d,p) level of theory in acetonitrile solvent system.
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As shown in Table 5, the electronegativity (χ) for ChA is 6.68 eV and for DDQ is
5.52 eV, which indicates that ChA and DDQ have the ability to form CT complexes with
PA. In addition, the electrophilicity index (ω) of ChA is 6.37 eV and for DDQ is 6.11 eV,
which also suggests the formation of CT complexes with PA. The stability between the
PA-ChA and PA-DDQ complexes was measured using their HOMO-LUMO gaps (∆Egap),
and the face-to-face I fashion for PA⊃ ⋂ChA complex was found to be 6.09 eV, while the
Face-to-face II fashion for PA⊃ ⋂DDQ complex was found to be 5.12 eV.

3.7.3. Theoretical Electronic Absorption Spectra

The predicted electronic spectra of the resultant complexes of PA with ChA and
DDQ after being calculated using the first six single-point calculations in the acetonitrile
solvent system at the TD-DFT/wB97XD/6-31+G(d,2p) basis set level of theory are shown
in Figure 14. The spectra were plotted by applying a Gaussian broadening of 0.333 eV
half-width at half height. The theoretical electronic absorption spectra of the donor (PA)
and acceptors (ChA/DDQ) as well as synthesized CT complexes (PA-ChA/PA-DDQ) are
shown in Figure 14. A strong absorption band at 250 nm was observed for PA, while weak
absorption maxima for ChA or DDQ were observed at 291 and 276 nm, respectively. On
the other hand, two broad bands at 426 nm (excitation energy of 2.91 eV and oscillator
strength of 0.041) and 622 nm (excitation energy of 1.99 eV and oscillator strength of 0.142)
were observed for the two new CT complexes PA-ChA and PA-DDQ, respectively, in the
acetonitrile solvent system at 298 K.
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Figure 14. DFT calculated UV-Vis spectra of PA, ChA, DDQ, and their complexes: (A) PA; (B) ChA;
(C) DDQ; (D) face-to-face I fashion complex of PA with ChA; and (E) face-to-face I fashion complex of
PA complex with DDQ at the ωB97XD/6-311++G(2d,p) level of theory in acetonitrile solvent system.

4. Conclusions

Two new CT complexes (PA-ChA and PA-DDQ) have been synthesized from an elec-
tron donor PA and an electron acceptor ChA/DDQ using a simple, easy, and economically
inexpensive synthetic method. The formation of the complexes was confirmed by various
spectroscopic analysis techniques. The DFT-computed calculation strongly supports our
experimental results.

Supplementary Materials: The following data are available online at https://www.mdpi.com/
article/10.3390/pr11030711/s1, DFT/TD-DFT calculation files.
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