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Abstract: This study introduces particle filtering (PF) for the tracking and fault diagnostics of complex
process systems. In process systems, model equations are often nonlinear and environmental noise
is non-Gaussian. We propose a method for state estimation and fault detection in a wastewater
treatment system. The contributions of the paper are the following: (1) A method is suggested for
sensor placement based on the state estimation performance; (2) based on the sensitivity analysis of
the particle filter parameters, a tuning method is proposed; (3) a case study is presented to compare
the performances of the classical PF and intelligent particle filtering (IPF) algorithms; (4) for fault
diagnostics purposes, bias and impact sensor faults were examined; moreover, the efficiency of fault
detection was evaluated. The results verify that particle filtering is applicable and highly efficient for
tracking and fault diagnostics tasks in process systems.

Keywords: state estimation; particle filtering; intelligent particle filter; fault detection; carbon-
removal wastewater treatment process; cascade reactors

1. Introduction

This paper offers an insight into the topic of state estimation with a particle filter algo-
rithm and its practical applications in process systems by considering the fault diagnostics
of a wastewater treatment cascade reactor benchmark in particular.

The monitoring and fault diagnostics of complex process systems is extremely chal-
lenging for engineers. In practice, not every state variable is available from measurements.
However, knowing their values is desired, e.g., in process control or fault diagnostics.
Applying state estimation is an excellent solution to the problem.

State observers can estimate unmeasured state variables based on measured ones. The
simplest and most widely used state observer is the Kalman filter (KF). However, it is only
usable if the system can be described with a linear state space model, and the model and
measurement noise follow a Gaussian distribution. In other cases, the extended Kalman
filter (EKF) is promising. This method is based on the local linearization of nonlinear model
equations. However, if the nonlinearity of the model is high, it does not work well as a
state observer [1].

Complex process systems are usually nonlinear and environmental noise is not Gaus-
sian. In this case, particle filtering is suggested to solve state estimation problems [2].
While KF and EKF are based on the covariance matrix of the estimation error and solve
an optimization problem, a particle filter is a Monte Carlo simulation. As this method not
only yields the estimated states but their probability density, the technique can be quite
well applied for fault detection purposes [3].

Although particle filter algorithms are widely used in robotics and electronics [4,5],
their utilization in chemical processes is far less. The method has been used for single
continuous stirred tank reactors (CSTRs) a couple of times [6,7], mainly for the purposes of
process control [8,9], but rarely applied in cascade reactors and fault diagnostics. A recently
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developed version of the algorithm is intelligent particle filters (IPFs) [10], but they have
yet to be applied for the state estimation of reactors.

The aim of this research is to test the applicability of PF in complex process systems for
state monitoring and fault diagnostics purposes. The present study examines a benchmark
wastewater treatment process that well represents the aforementioned issues.

The novelty of this paper is the provision of an efficient state estimation method
for cascade reactors, which is usable in fault diagnostics as well. The PF algorithm is
implemented and a method suggested for optimal sensor placement according to the state
estimation performance. An extensive sensitivity analysis is also proposed to determine the
best settings of PF and increase the efficiency. Since intelligent particle filters (IPFs) in the
field of process engineering are a research gap in the literature, one was also implemented
in this cascade reactor system and its performance compared to general PF. A PF-based
fault detection method was also implemented and evaluated [3]. This method was tested
to determine whether it is applicable in dynamic systems or not. Bias as well as impact
sensor faults were examined and a tuning method proposed.

The contributions of this paper follows the points below:

• The interpretations of particle filter and intelligent particle filter algorithms are given
in detail. It is shown why they are convenient for achieving the set state estimation
and fault detection goals.

• A dynamic analysis of the wastewater treatment technology benchmark is proposed
and PF implemented.

• According to the state estimation performance, a method is suggested for determining
optimal sensor placement.

• A sensitivity analysis is conducted and a technique given for tuning the PF.
• The performances of the general PF and IPF are compared.
• The estimation results are used for the purposes of fault detection of bias and impact

sensor faults.

Beyond all these achievements, a MATLAB toolbox is provided that covers the content
of this paper as well as promotes reproduction of the results and application of the method.

As for the road map of this paper, in Section 2, the methodological background of
the research is introduced. In Section 2.1, the state estimation problem is formalized. The
particle filter algorithm is presented in Section 2.2, and its application in fault diagnostics
is introduced in Section 2.3. In Section 2.4, some ideas are given about the necessity of
tuning the algorithms. The experimental results are provided in Section 3. The benchmark
wastewater treatment process is introduced in Section 3.1 and its dynamic analysis proposed
in Section 3.2. In Section 3.3, the implementation of PF and different case studies are shown,
including a sensor placement and a parameter tuning problem; moreover, the performance
of PF and IPF are compared. The fault diagnostics results are presented in Section 3.4.
Finally, in Section 4, the main conclusions are summarized and possible future research
directions determined.

2. Methodological Background

In this section, the methodological background of this research is introduced. The state
estimation and fault detection problems are defined, the PF and IPF algorithms described
in detail; moreover, the applied fault detection technique is explained.

2.1. Formalization of the State Estimation Problem

In complex process systems, not every state variable is measured because they are
immeasurable or the minimum number of sensors is applied to reduce costs. Furthermore,
measured data are usually noisy because every measurement has an element of uncertainty.
However, the exact values of the state variables must be known, e.g., in process control.
State observers are able to solve these outlined problems.

The algorithms they use can estimate the unmeasured states according to the measured
ones. For the systems where model equations are nonlinear, the application of a particle
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filter state observer is suggested. In contrast to the more commonly used Kalman filter,
the PF does not require the model equations to be linear nor supposes a Gaussian model
and measurement noises. Preliminarily, only the initial state and state space model of the
process system are needed.

Since PF estimates states according to the model of the system, besides measurement
noise, the uncertainty of the model is also a factor that has to be considered. PF can handle
these uncertainties, as these two types of noises are incorporated in the applied state
space model:

xk = f (xk−1, uk−1) + vk (1)

yk = h(xk, uk) + wk (2)

where xk denotes the state vector, yk stands for the measurement vector, uk represents the
input vector, vk and wk are the model and measurement noises, respectively, at time k, f ()
refers to the state transfer function and h() represents the measurement function.

Since PF estimates the unmeasured states according to the measured data, it is essential
to determine which state variable is most suitable to measure because the accuracy of the
estimation depends on it. Otherwise, the parameters of the particle filter algorithm itself
have to be tuned. These questions have to be answered before using the PF to achieve the
best estimation performance.

In process systems, different faults can occur. One of the most common are sensor
faults which is a key issue in PF-based state estimation. This means that the information
gained from the process is incorrect. As the operation of the observer is based on the
measured data, the estimations of the state variables will also be faulty. However, for the
same reason, this is not perceptible without implementing a fault diagnostics algorithm.

The probabilistic approach of the PF allows the faults to be perceived. PF not only
yields the most probable values but the probability density of the states too. With a carefully
chosen fault decision function, incorrect operation of the sensor can be detected in time
from this additional information collected. Therefore, it is possible to repair or replace the
faulty sensor and accurately continue the state estimation.

The aforementioned concept is shown in Figure 1.

Figure 1. Particle filter state observer-based fault detection scheme of a process. The particle filter
state observer computes the unmeasured states in light of the measured sensor data and the inputs of
the process. According to the fault decision function, the faults can be detected and alarms generated.
Faults can be technological faults, parameter uncertainties or sensor faults.

2.2. Particle Filter-Based State Estimation

A particle filter (PF) is a kind of Monte Carlo simulation in which a set of particles
represents the different states of the system.

The particles are distributed according to the system and measurement noises in the
state space. The coordinates of the particles are the state variables, and every particle has a
weight that represents the probability of the particle. At every time step, the PF computes
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the probability of each particle according to the given new measurement data, thereby
calculating the estimated states.

The algorithm of the general particle filter consists of three parts: the prediction step,
the correction step, and the resampling step. The method is described in more detail in this
section of the paper. An intelligent particle filter (IPF) is an improved version of the general
particle filter that uses a genetic algorithm in the resampling step to achieve a higher level
of efficiency. This subject is covered below as well.

2.2.1. Description of the PF Algorithm

In order to use a particle filter, the state-space model of the process (Equations (1) and (2)),
the initial states and the measurement data of at least one state variable must be known.

The initial state is defined by a set of randomly drawn particles from the state space
around the real initial state. This set of particles is defined by their localization at the state
space and their weights as {xi

0, ωi
0}

Ns
i=1, where Ns denotes the number of particles. Similarly,

the set of particles at time k is represented by {xi
k, ωi

k}
Ns
i=1. The initial weights of the particles

are equal.
The posterior probability density function, the so-called posterior pdf, is sought at

every time step during the estimation. The prior pdf is given at every k. It is represented by
the initial set of particles at time k = 1. If k > 1, the prior pdf at k equals the estimation result
of the last time step, that is, the posterior pdf at k− 1. The prior pdf can be approximated
to a sampled density:

p(xk | y1:k) ≈
Ns

∑
i=1

ωi
kδ(xk − xi

k) ≡ {x
i
k, ωi

k}
Ns
i=1 (3)

where xk refers to the estimated state vector, ωi
k represents the normalized weights of the

particles and y1:k stands for the measured data points from the first to the kth time step. In
order to determine the posterior pdf, the task is to estimate these weights at every time step.

The first step of the particle filter algorithm is the prediction step. Every particle
progresses forward by one time step; thus, the following pdf is calculated:

p(xk+1 | y1:k) = {xi
k+1, ωi

k}
Ns
i=1 (4)

The new xi
k+1 state vectors can be determined using the state transfer function and the

ωi
k weights remain the same in this step of the algorithm.

The second step of the algorithm is the correction step. The new ωi
k+1 weights are

estimated from the previous ones (ωi
k) recursively according to the new measurement data

and normalized as:

ωi
k+1 =

ωi
k · p(yk | xi

k)

∑Ns
i=1 ωi

k · p(yk | xi
k)

(5)

Since xi
k+1 remains the same in this step of the algorithm, the posterior pdf is defined as:

p(xk+1 | y1:k+1) = {xi
k+1, ωi

k+1}
Ns
i=1 (6)

The prediction and correction steps are repeated iteratively. Although these two steps
provide the core of the algorithm, different problems can occur during the estimation,
so additional steps are required. These improved algorithms will be introduced in the
following subsections.

The derivations of the equations above are available in [1,11]. The prior pdf was used
as an importance function and a Markov process assumed.
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2.2.2. Resampling-Based Improvement of the PF Algorithm

Using only the prediction and correction steps iteratively, a degeneracy problem is
faced after a few time steps. One or a few particles will have large weights and all the
others will be negligibly small. This phenomenon leads to less accurate estimation results
with an unnecessarily high computational effort. To avoid this problem, a resampling step
in the algorithm must be used.

The set of particles can be evaluated in terms of degeneracy with the effective
sample size:

Ne f f =
1

∑Ns
i=1 (ω

i
k)

2 (7)

If Ne f f is below an Nt threshold after the correction step, resampling takes place. In
other cases, the current particle set is good enough to continue the estimation with the
prediction step. Nt is conveniently chosen as half the value of Ns. While more than half of
the particles are effective, the estimation is sufficiently robust.

Resampling means that a new particle set is produced. The new particles are chosen
from the old ones. Every xi

k is drawn with the probability of ωi
k-normalized weight, so the

probability density of the particle set remains the same as before. The weights of the new
particles are identical.

Four main resampling methods exist: multinomial, stratified, systematic, and residual
resampling. Systematic resampling was used in the present research, which is shown as
the most favorable in [12]. A detailed description of this method is given in Appendix A.

2.2.3. A New Variant of PF: The Intelligent Particle Filter (IPF)

Besides the degeneracy problem, sample impoverishment is another inconvenience of
general particle filters. Therefore, the variance in the particle states is relatively small, so
many particles will be located in almost the same place. This phenomenon can mislead the
estimation and reduce the level of accuracy. A good solution to the problem is to apply an
intelligent particle filter (IPF).

This algorithm implements a genetic algorithm between the correction and resampling
steps in order to increase the diversity and broaden the range of particles. A description of
the algorithm is given in Algorithm 1.

As can be seen in Algorithm 1, the genetic algorithm in the PF consists of two main
steps: crossover and mutation. During the crossover step, the small-weight particles are
modified into larger ones. The α parameter determines how strong the effect of small-
weight particles is during the modification.

On the other hand, the mutation step extends the range of the particles and further
increases the level of diversity. It has a pM parameter that defines the probability of
modification.

The two parameters of Algorithm 1 (α and pM) have to be tuned before using the
method, depending on the system to be estimated.

In this paper, the performance of the PF and IPF are compared. It is shown that by
using an IPF, the accuracy of the estimation is somewhat increased. The metric we used to
evaluate the performances of the two methods is the one proposed in [10]:

eav =
1

Nr · T

Nr

∑
r=1

T

∑
k=1

erk (8)

where Nr denotes the number of simulations, T refers to the time steps in one simulation
and euk stands for the absolute value of the difference between the estimated and real states.
We calculated eav for each state variable and made our conclusions in this manner.
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Algorithm 1 Genetic algorithm-based part of the intelligent particle filter [10]
(1) Calculate Ne f f from the normalized particle weights after the correction step.
(2) Set the particles in descending order according to their weights.
(3) Choose the weight that belongs to the Ne f f th particle and classify the particles into the

“large weight” group if ωi
k > ω

Ne f f
k and "small weight" group in all other cases. xl

kH denotes

large-weight particles and xj
kL the small-weight ones.

(4) Crossover step: modify the small-weight particles and make them more efficient by an
arithmetic crossover:

xj
kC = αxj

kL + (1− α)xl
kH (9)

where xj
kC refers to the new particle that xj

kL is replaced by and α ∈ [0, 1]. For every
small-weight particle, a large-weight one is randomly selected.
(5) Mutation step: further modify the small-weight particles and broaden their range:

xj
kM =

{
2xl

kH − xj
kC i f rL ≤ pM

xj
kC i f rL > pM

(10)

where rL ∈ [0, 1] is drawn from the uniform distribution and pM denotes the mutation
probability.
(6) Reevaluate the ωi

k particle weights.

2.3. Incorporation of the PF Method in Fault Diagnostics

One of the main application areas of particle filtering is fault diagnostics, which forms
the main subject of this paper.

The main steps of the proposed method are summarized in Figure 2. After the dynamic
analysis of the benchmark system, the PF is implemented. Now, the measured state variable
must be chosen and the PF algorithm appropriately tuned. After these preliminary steps,
the method can be tested for fault detection problems.

Figure 2. Outline of the main steps of the proposed method. The proposed approach covers the tasks
from the creation of the dynamic model through the implementation of the PF to its application in
fault detection.

Traditional fault detection techniques are based on forming residuals. These methods
calculate the difference between the estimated and measured states as well as detect faults
according to this value. However, these methods require multiple sensors (e.g., simplified
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observer scheme (SOS)) or even multiple state observers (e.g., generalized observer scheme
(GOS)), leading to increases in computational and instrumentation costs [13].

Knowing the probability distribution of the states, i.e., the weights of the particles at
every time step, enables faults to be detected. Some practical examples can be seen in a
three-tank and a helicopter system in [10,14], respectively. However, very few papers in
the literature have dealt with the chemical engineering application in operational units.

In the present work, the method proposed in [3] was applied, which is based on the
sum of the log-likelihood of particle weights which decreases if a fault occurs.

First of all, the measurement function has to be evaluated for each particle, i.e., the
likelihood of the measurement, assuming that the state represented by the particle is the
real state. The next step is to determine its average in terms of particles:

Lk =
1

Ns

Ns

∑
i=1

p(yk | xi
k) (11)

The model parameters are assumed to be constant.
The normalized decision function is defined as:

dk =
1
M

k

∑
j=k−M+1

ln(Lj) (12)

where M denotes the so-called sliding window and k stands for the time at that moment.
If −dk is higher than a threshold h, a fault is detected and an alarm generated. In this

paper, the method introduced in [10] is used to determine h, which selects the −dk that
belongs to the 98% confidence interval of the fault-free operation as a threshold. Selecting
a proper threshold is a trade-off. The lower h is, the more false alarms are generated.
However, if h is too high, faults are detected later after their occurrence, and some faults
even can be missed. Thereby, 98% confidence interval of −dk in fault-free operation seems
an appropriate choice as false alarms (type I error) are generated only the 2% of fault-free
cases; moreover, faults are detected quite early after the occurrence.

A log-likelihood-based fault detection method is also used for chemical engineering
examples in [15]. However, this work only examines the processes and the fault detection
technique in steady-state cases using general PF. We tested the method simultaneously
with the dynamic behavior of the benchmark system by applying the PF and IPF state
estimation algorithms and proposed an analysis in the cases of impact and bias additive
sensor faults.

2.4. Challenges of Tuning the Algorithms

From the aspect of increasing the efficiency of estimation and fault detection, it is
essential that the algorithms work with the proper parameters. In the present case, the PF
and even the fault decision function have tunable parameters.

On the one hand, the number of particles (NS) in the PF is crucial. As PF is a Monte
Carlo simulation, one of its main disadvantage is the high simulation time that mainly
depends on this parameter. Therefore, a smaller value of NS is preferable. However,
reducing Ns decreases the accuracy of the estimation. In Section 3.3.2, a tuning method is
proposed concerning this topic.

On the other hand, it is also important to tune M in the fault decision function that
refers to the sliding window. A higher value of M yields a more filtered −dk signal but
can cause detrimental effects on the fault detection efficiency. Section 3.4.2 gives a detailed
analysis of this subject.

3. Results and Discussion

In this section, some ideas about the technology that was chosen to implement the
aforementioned experiments are given. Results are also presented.
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Firstly, the dynamic analysis of the system is presented and the test ranges determined.
Afterwards the implementation of PF and its sensitivity analysis are conducted. Some ideas
are also given about the optimal location of sensors according to the state estimation perfor-
mance. The estimation efficiency is increased by implementing an IPF and its performance
is also compared with that of the PF in this section. At the end of this study, the results of
PF-based fault detection experiments are shown and a method given for tuning the sliding
window parameter.

The above-mentioned experiments were executed on the dynamic model of an organic-
carbon-removal wastewater treatment process in which nonlinear behavior excludes the
use of the Kalman filter.

3.1. Introduction of the Wastewater Treatment Process

In our research, we examined the behavior of the standard reactor cascade (SRC)
model of the organic-carbon-removal wastewater treatment technology. Since the reactions
that take place in the reactors can be modeled by Monod growth kinetics, the process
accurately represents the nonlinear behavior of complex systems [16].

The task of this process is to remove the carbon content of sewage using microor-
ganisms. The system consists of two bioreactors in series and a settling unit, as is seen in
Figure 3. In the reactors, biological organic carbon removal from the wastewater takes place.
The feed flows into Reactor I with the recycled stream. The effluent of this unit forms the
influent of Reactor II. The purified wastewater flows into the settling unit, which separates
the light and heavy phases. A part of the heavy phase is recycled to enhance efficiency. The
reactors are assumed to be well stirred and aerated; moreover, their volumes are equal.

Figure 3. Block diagram of the standard reactor cascade (SRC) of the wastewater treatment process.
The figure contains the names of the flows above the arrows and the flowrates below the arrows.
F refers to the flowrate, R denotes the recycle ratio, Si and Xi represent the concentrations of the
substrate and microorganisms (i stands for the number of the reactors), and w is the waste fraction.

Four state variables can be determined during the process, namely the concentrations
of the substrate and microorganisms in both reactors. However, measuring all these
concentrations is expensive. This problem can be avoided by using a state observer. In this
case, it is sufficient to install only one sensor and estimate the other three concentrations,
thereby reducing investment costs. As the wastewater treatment process is nonlinear, a
particle filter is suggested as a state observer.

Although this wastewater treatment process was thoroughly analyzed under steady-
state conditions, a dynamic analysis was not carried out [16]. As the temporal behavior
of the system was examined, firstly, its dynamic behavior needed to be analyzed and its
physical constraints determined.

Since the biochemical reactions in the process can be described by Monod growth
kinetics, the four model equations of the system can be defined as:

V
dS1

dt
= F(S0 − S1) + RF(S2 − S1)−V

µmS1X1

Ks + S1
· 1

β
(13)
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V
dX1

dt
= −FX1 + RF(CX2 − X1) + V

µmS1X1

Ks + S1
−VkdX1 (14)

V
dS2

dt
= F(1 + R)(S1 − S2)−V

µmS2X2

Ks + S2
· 1

β
(15)

V
dX2

dt
= F(1 + R)(X1 − X2) + V

µmS2X2

Ks + S2
−VkdX2 (16)

where bottom indexes refer to the parameters of the first (1) and second (2) reactors, V
denotes the reactor volume, and S and X stand for the concentrations of the substrate and
microorganisms. The input variables of the system are the feed concentration S0, flowrate
F, and recycle ratio R. The other parameters of Equations (13)–(16) along with their names
and values can be seen in Table 1.

Table 1. Constant parameters of the model equations. We used the parameter values in [16]. The
reactor volume used is from [17].

Label Name Value

µm maximum specific growth rate [day−1] 1
β yield factor [mg MLSS/mg COD] 0.5

Ks Monod constant [mg COD/L] 100
C concentration factor [-] 1.5
kd death coefficient [day−1] 0.028
w waste fraction [-] 0.1
V reactor volume [m3] 125

C denotes the so-called concentration factor that refers to the performance of the
settling unit. Its minimum value is C = 1, which means that the unit functions as a recycling
unit. For the experiments, an intermediate value for C was chosen which determines the
maximum value of R as follows:

Rmax =
1− wC
C− 1

(17)

where w denotes the waste fraction, which is an empirical constant. Rmax = 1.7 in the
present case.

3.2. Dynamic Analysis of the System

The system has three input variables: S0, R, and F. The reason why S0 changes is the
fluctuation in the composition of the sewage over time. R and F are manipulated variables
that the operators in the plant can handle to achieve the required level of performance.
However, these variables have physical constraints to preserve the stability of the washout
solution and avoid process failures [16].

The maximum value of F can be calculated from the critical residence time which
is a function of R and S0, as introduced in [16]. The detailed equations can be found in
Appendix B.

Fmax determines the boundary of the washout phenomenon. The values of Fmax belong
to the R and S0 values that were examined and are shown in Table 2.

As can be seen in Table 2, Fmax depends very little on S0. However, R has a great effect
on it which must be considered when choosing the setpoints.
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Table 2. Maximum values of F given different R and S0 values. The same feed concentration
S0 = 4000 mg COD/L was used as in [16]. Another two values above and below this value were
chosen. Regarding R, the same values were used as in [16].

S0 [mg COD/L] R = 0.5 [-] R = 1.0 [-] R = 1.5 [-]

3000 267 438 916
4000 270 442 923
5000 271 444 928

After examining the constraints, the dynamic model and simulation of the system
were created in MATLAB. Equations (13)–(16) were discretized and solved. As a first step,
validation of the model was necessary. With parameters C = 1.5 and R = 1.5, the system
achieved 90% carbon removal when the residence time was about 0.1545 days, which is
in line with the results in the literature [16]. The setpoint changes and results are shown
in Figure 4:
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Figure 4. The input and state variables over time.According to Table 2, F ≤ Fmax in every pe-
riod of time. Equations (13)–(16) were discretized and solved iteratively with a sampling time of
dt = 0.01 days to acquire the model outputs. The initial state vector was x0 = [S1,0 X1,0 S2,0 X2,0] =

[4000 6400 4000 6600].

It can be concluded that the system is underdamped and yields a first-order response
following the changes to R, F, and S0. The time constants of the process are a few days long
as wastewater treatment is a slow process. They are higher in the periods when F is close
to the value of Fmax. Another interesting observation is that changes to S0 cause sudden,
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impulse-like responses in S1 and S2, but the stationery values of S2 stay almost unchanged.
This can be explained by the fact that S0 directly affects the substrate concentrations;
however, once the microorganism concentration adapts to this change, the process can
achieve nearly the same level of performance as before.

Regarding the dynamic experiments above, the model and the set of input variables
are suitable for further investigations.

3.3. Implementation of the Particle Filter

After analyzing the dynamic behavior of the system, a particle filter state observer
was implemented to see if the state estimation task was feasible. We used a MATLAB
implementation based on [1] and modified it according to the current research goals.

First of all, since the program had to be validated, it was tested to see if the estimated
states followed the real states. State S2 was measured first, as it is the most important of the
four, being the one to be controlled. A total of 50 particles was used for the estimation.

The particle paths and the median of the particle states are in line with the real state
represented by blue lines, as can be seen in Figure 5. Although only the first 40 days were
illustrated due to visibility, conclusions are the same throughout the entire time period.

Figure 5. Comparison of the estimated and real states. The concentrations of the substrate are shown
in mg COD/L and of the microorganisms in mg MLSS/L. Deviations of σv = 10 and σw = 25 were
used for noises.

Regarding the performed experiments, this MATLAB implementation of the PF works
well and is suitable for further examinations.
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3.3.1. Method of Sensor Placement

The next emerging issue is to determine which state variable is the most suitable
to measure. Despite the fact that an explicit cost function is not available, the different
configurations are comparable according to the estimation errors. Therefore, PF is used,
the basic performance of which is satisfactory as introduced before. The placement of the
sensor is determined by these measures before the PF is fine-tuned in Section 3.3.2.

Online COD and suspended solids sensors are also used in wastewater treatment,
such as in [18], of different accuracies, namely: 5% for the former and about 2% for the
latter. These values were used to define the standard deviations of the measurement noise
in the simulation. Different measuring ranges in the two cases were also considered, so
σw = 25 was used for the COD and σw = 140 for the suspended solids sensors.

Regarding the above-mentioned issues, the estimation performance was examined in
all four cases by using 50 particles as well. For the evaluation, Equation (8) was used to
calculate the estimation error.

According to Table 3, the cases when the concentration of microorganisms was mea-
sured produced much lower estimation errors because they are more sensitive to changes
in the input variables, as seen in Figure 4. Therefore, if the measured state is chosen from
them, PF can provide a more accurate estimation. Another reason is that the measurement
noises are relatively lower in these cases. The estimation performances are almost the
same when comparing X1 and X2 as measured states. However, since the accuracy of S2 is
the most crucial state in terms of the process control, X1 is measured in this wastewater
treatment model.

Table 3. Error of the estimated states (eav) at different sensor locations. The error values were
calculated as an average of Nr = 10 simulations over the first 40 days (with a sampling time of
dt = 0.01 days corresponding to T = 4000 time steps). NS = 50.

Measured State eav(S1) eav(X1) eav(S2) eav(X2)

S1 [mg COD/L] 7.17 25.45 4.99 26.44
X1 [mg MLSS/L] 4.43 17.37 4.23 17.36
S2 [mg COD/L] 5.67 25.58 6.80 26.49
X2 [mg MLSS/L] 4.42 16.52 4.31 17.62

Another interesting observation is that by considering the rows in Table 3 separately,
the same types of concentrations are almost identical. Moreover, any variation is always
for the benefits the unmeasured state, e.g., when measuring S1, the estimation of S2 is more
accurate than that of S1.

It is important to note that the results described above pertain to the actual process
model with the current parameters. For example, the value of the measurement noise has a
significant impact on them. However, besides the given parameters and state-space model,
the optimal sensor location can be determined by the aforementioned method.

3.3.2. Sensitivity Analysis of the PF

As the previous example illustrated, some assumptions and parameters of the process
significantly affect the effectiveness of state estimation. On the other hand, the parameters
of the particle filter itself are also worth tuning. It was stated in Section 2.4 that NS exhibits
an opposite effect on the estimation accuracy and simulation time. Therefore, this section
aims to determine its optimal value for the present system.

Regarding the results of Section 4, we chose X1 as a measured state and executed the
estimation using four different values of Ns. The results are depicted in Figure 6.
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Figure 6. The average estimation (absolute) errors (eav) and the simulation time for different numbers
of particles (Ns). NS = 10, 30, 50, and 100 were simulated. The presented simulation times refer to
the duration of one simulation (T = 4000). The number of simulations is Nr = 10.

During the evaluation, estimation errors were considered against the simulation
time. The estimation errors decrease exponentially and become nearly constant beyond
a determined value of NS. On the contrary, the simulation time increases linearly as the
number of particles rises. According to the curves of Figure 6, the optimal NS is about 30.
Below this value, estimation errors increase rapidly, while above it, they remain nearly
constant. For further investigations, this value will be used.

In the presented case study, the simulation time is not a crucial factor as the time
constant of the system is a few days. However, for the state estimation of more complex
systems with a shorter time constant, hundreds of particles may be needed and the simula-
tion time can be a constraint, since it should always be lower than the sampling time of
the system.

According to these principles, the Ns parameter of the PF can be tuned in a similar
manner, even for other processes.

3.3.3. PF and IPF Comparison

The simulation time and estimation errors are conflicting factors, as was seen in
Section 3.3.2. The question arises whether estimation accuracy could be increased without
significant growth in the simulation time. A good opportunity in this regard is to test
IPF in the present environment, which improves the level of efficiency by handling the
phenomenon of sample impoverishment of general PF. IPF has not yet been applied
in biochemical systems nor reactors. Its performance is tested in this section, besides
setpoint changes.

The MATLAB program was coded according to the algorithm shown in [10]. In order
to be used, firstly, the two parameters (α, pM) of the algorithm had to be tuned. This task
was executed in a similar manner to the above-mentioned issues: by keeping in mind the
average error, the optimal set of the parameters was determined. With this method, α = 0.2
and pM = 0 were derived. Therefore, for the purpose of increasing the accuracy of the
estimation, the particles only need to be better distributed in the same interval and it is not
necessary to broaden it. From this result, it can be concluded that sample impoverishment
is not a severe problem in this system. However, the level of efficiency could also be
increased in this case by distributing the particles better.
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The tuned parameters were used to test the performance of the IPF compared to that
of the PF.

The results are shown in Table 4. It can be seen that the IPF performs better in all
states but particularly in X1 and X2. Although the IPF contains one more calculation step,
the simulation times are almost identical because of the number of resamplings in the two
cases. Investigating this issue, the average number of resamplings was 170 in the case of
the PF and 158 in the case of the IPF (Nr = 10). Therefore, if the IPF is used, resampling is
needed less frequently.

Table 4. Comparison of the PF and IPF with regard to the average error (eav) and simulation time.
Nr = 10, NS = 30, T = 4000.

PF IPF

eav(S1) [mg COD/L] 5.50 5.09
eav(X1) [mg MLSS/L] 17.96 15.55
eav(S2) [mg COD/L] 5.34 4.88

eav(X2) [mg MLSS/L] 18.12 15.72
Simulation time [s] 14.89 14.26

Regarding the results of this section, it is recommended to use IPF instead of general
PF to enhance the estimation accuracy.

As Figures 7 and 8 present, the aforementioned conclusions also have pertinence in
the case of different Ns values. Furthermore, it can be concluded that Ns = 30 is still the
optimal value of the number of particles, even if IPF is applied.

To check if IPF’s performance is better than the PF’s even besides more setpoint
changes, a longer part of the simulation was even used to compare the two algorithms in
the case of the optimal Ns = 30. It contained three setpoint changes so that the dynamic
behavior could be examined more profoundly. The conclusions were the same as above,
namely the estimation error and number of resamplings were also lower in the case of IPF.

With this method, differences in the performances of the two algorithms can be
investigated and the optimal value of the Ns parameter determined.

Figure 7. Comparison of PF and IPF: the estimation errors (eav) of the substrate concentrations and
the simulation time regarding the different numbers of particles. The curves belonging to PF are
represented by dashed lines and those belonging to IPF by continuous ones. The red and green
colors refer to the S1 and S2 state variables, respectively. The other parameters are the same as before
(NS = 10, 30, 50, 100; T = 4000; Nr = 10).
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Figure 8. Comparison of PF and IPF: the estimation errors (eav) of the concentrations of microorgan-
isms and the simulation time regarding the different numbers of particles. The curves belonging to
PF are represented by dashed lines and those belonging to IPF by continuous lines. The orange and
yellow colors refer to the X1 and X2 state variables, respectively. The other parameters are the same
as before (NS = 10, 30, 50, 100; T = 4000; Nr = 10).

3.4. Application of PF and IPF in Fault Diagnostics

With the carefully chosen and tuned MATLAB implementation of the particle filter,
different fault detection problems can be solved. General PF and the IPF were also tested
for this aim, and a comparison is presented in this section.

As state estimation with particle filters is based on the information gained from the
process, it is essential to have fault-free measurement data. If the sensor is faulty, the
estimation will be inaccurate, and it is not observable according to the estimation results.
However, the particle filter is able to indicate the faults by following the method described
in Section 2.3.

Fault occurrence is evaluated according to the −dk value which is the negative sum
of logarithms of the particle weights. If a faulty measurement occurs, the sum of the
particle weights decreases, so −dk increases. With a carefully chosen threshold, the fault
can be detected.

First of all, the fault-free operation was tested, and the threshold belonging to its 98%
confidence interval determined. Results are similar in the cases of general PF and IPF. The
distribution of −dk values along with the threshold are shown in Figure 9 in the case of
the IPF.

3.4.1. Analysis of the Fault-to-Signal Ratio

A sensor fault can be modeled by an additive constant in the measurement function:

yk = h(xk, uk) + wk + f (18)

where f represents the fault. One of the main factors in fault detection is the fault-to-signal
ratio. Therefore, the lowest value of f that can already be detected must be determined.

Four different values of f were examined: 5, 10, 15, and 20% of the value of measured
state X1 at the first stationary state. The fault occurred on the 25th day and lasted until
the 55th day, as is shown in Figure 10. Furthermore, two setpoint changes were modeled
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around the 33rd and 66th days, one within the faulty time interval and the other after the
fault had been rectified.

Figure 9. Fault-free operation with the IPF: the histogram, empirical probability density function
(pdf), and cumulative distribution function (cdf) of −dk. Threshold h is denoted by a vertical line.
The sliding window is M = 50. T = 8000.
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Figure 10. Operation with a fault: setpoint changes and the fault. The fault refers to the case of a 15%
fault which is 990 mg MLSS/L. T = 8000.

The results are illustrated in Figure 11. It can be seen that −dk is quasi-constant during
fault-free operations, so setpoint changes do not have an effect on it and the dynamic
behavior of the process does not influence the efficiency of fault detection. Otherwise, the
moment of fault occurrence is detected in all cases. However, −dk is once again quickly
below the threshold in terms of the 5% and 10% faults. In the case of the 15% and 20%
faults, it is above the threshold for almost the whole duration of the fault. As can be seen in
Figure 11, results are similar in the cases of general PF and IPF.
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Figure 11. Operation with a fault: results according to different fault amplitudes belonging to general
PF and IPF. One of the setpoint changes occurs within the fault duration and one once it has been
resolved, as is seen in Figure 10. The threshold is h = 6.57, calculated by the 98% confidence interval
of the fault-free operation. Sliding window is M = 50. T = 8000.

The aforementioned difference between the small and large fault amplitudes is ex-
plained by Figures 12 and 13. These results show that in the case of minor faults, the
estimated state is in line with the measured values after the fault occurs. However, in the
case of the 20% fault, a residual error is recorded not only between the estimated and real
states but even between the estimated and measured states. General PF and IPF behave
similarly even in this case.

On the one hand, the reason for this phenomenon is that during the resampling step,
the PF chooses new particles from the set of the prior particles. If the change is very
significant, resampling cannot follow it. On the other hand, the particles try to converge
with the real state as the state space model is deterministic.

For the aforementioned reasons, −dk does not return to below the threshold while the
fault lasts.

Once the fault has ceased, −dk returns to its initial value in all the cases in Figure 11;
moreover, the rectification of the fault is indicated by a spike.

It was noticed that in the case of minor faults, only the beginning and the end of the
faulty time interval could be detected. However, considering the number of resamplings,
information could be gained about the existence of the fault. As is shown in Table 5, since
the average number of resamplings per day is higher while the fault lasts, the duration
of the fault can be unambiguously determined by following the tendency of −dk and the
number of resamplings.
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Figure 12. Real, measured, and estimated values of the state variable X1 by the 5% fault. The value
of the 5% fault is 330 mg MLSS/L. T = 8000.

Table 5. Average number of resamplings per day by different values of the faults in case of the IPF.
T = 8000.

Fault [%] Before the Fault [#/Day] During the Fault [#/Day] After the Fault [#/Day]

5% 3.64 5.70 4.56
10% 3.84 10.73 4.68
15% 3.64 18.93 5.04
20% 3.80 27.43 5.64

The effect of the setpoint changes is insignificant. In the case of the fault-free interval
(setpoint change in S0), the setpoint change is not perceptible in Figure 11. The setpoint
change in F while the fault occurs is also negligible. For further investigations, the case
of the 15% fault was chosen as it is the lowest that gives an alarm throughout the entire
duration of the fault according to −dk. As general PF and IPF showed similar behavior,
henceforth the IPF is used to present the results.



Processes 2023, 11, 823 19 of 25

0 10 20 30 40 50 60 70 80

Time [day]

6000

6500

7000

7500

8000

8500

9000

9500

X
1
 [m

g 
M

LS
S

/L
]

Measurement
Estimated state IPF
Real state
Estimated state PF

0 10 20 30 40 50 60 70 80

Time [day]

0

500

1000

1500

F
au

lt 
[m

g 
M

LS
S

/L
] 20% fault

Figure 13. Real, measured, and estimated values of the state variable X1 by the 20% fault. The value
of the 20% fault is 1320 mg MLSS/L. T = 8000.

3.4.2. Tuning the Sliding Window

In the fault decision function (Equation (12)), the M sliding window parameter func-
tions as a smoothing parameter. The effect of this parameter on the noisiness of the −dk
signal is shown in Figure 14. If M is small, the fluctuations in −dk are large, while if M is
larger, −dk is more filtered.

To determine the optimal value of M, impact faults were also considered. The results
are shown in Figure 15. It can be concluded that the larger M is, the less acute the spikes
are and the intensity of the fault signal decreases.

According to these aspects, if the aim is to rapidly detect impact faults and sudden
changes, a smaller M is suggested. However, if the duration of the bias fault is wanted to
be indicated, a larger M is preferred. In the present case, M = 50 is optimal to detect both
bias and impact faults.
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Figure 14. Sensitivity analysis by the sliding window (M): bias faults. Bias sensor faults are defined
in the same way as above. M = 10, 20, 50, and 100 time steps. The 15% fault was used, that is,
990 mg MLSS/L. T = 8000.

Besides the conclusions already made, the aforementioned experiments also point out
that the implementation of IPF instead of general PF does not require changes to be made
to the fault detection method. It can also be applied as in the case of general PF and is able
to detect both bias and impact faults with high efficiency.

The threshold values used above, calculated by the 98% confidence interval, are
summarized in Table 6. As the M sliding window functions as a smoothing parameter, the
larger M is, the narrower the distribution of −dk that results. Therefore, h decreases as
M increases.

Table 6. Summary of h threshold values.

M [#] h [-]

10 6.87
20 6.71
50 6.57

100 6.50

In this section, a PF-based fault detection technique was introduced. Based on the
given method, it is feasible to determine the h threshold of alarm generation as well as
tune the value of the M sliding window according to how the system responds to bias and
impact sensor faults. To detect the existence of bias faults more accurately, the number of
resamplings should also be considered.
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Figure 15. Sensitivity analysis by the sliding window (M): impact faults. The fault occurs from
the 25th to the 26th day. M = 10, 20, 50, and 100 time steps. The 15% fault was used, that is,
990 mg MLSS/L. T = 8000.

4. Conclusions

In complex process systems, a state observer is required to estimate the unmeasured
states. As these systems are often nonlinear, a particle filter (PF) is suitable for the task.

The present research work aimed to investigate the applicability of a particle filter
state observer in process systems for the purposes of state estimation and fault diagnostics
tasks through a case study. The PF was validated for and implemented in the system as a
state observer; moreover, unmeasured states were estimated based on the measured one.

One contribution of the paper is a method obtained to determine the optimal sensor
placement. Based on the principles declared in this paper, the method is usable in all cases
by applying the actual state-space model and parameters.

Another novelty is a technique for tuning the PF and a proposed sensitivity analysis.
To increase the estimation accuracy, a new variant of the PF, the genetic algorithm-based
IPF, was implemented and tested under setpoint changes. A case study was presented to
compare the performances of the two algorithms.

The completed state estimation algorithm was also tested for fault detection problems.
A PF-based fault detection technique was implemented and evaluated. The effect of the
setpoint changes was examined and a tuning method presented for the sliding window by
also taking into consideration the bias and impact faults.

As applications of PF in process engineering are scarce, this area formed the subject
of our research. The aforementioned experiments were executed in a carbon-removal
wastewater treatment process that consists of a two-element reactor cascade and a settling
unit. After validating the wastewater treatment model, according to the dynamic analysis
of the system, a proper set of setpoint changes was determined considering the physical
constraints of the process. This scenario was used for further investigations.

The PF performed well in the benchmark system since the estimated states closely
followed the real ones. According to the average values of the estimation errors (eav), the
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preferable measured state variable was chosen. Considering the simulation time and eav
values, the optimal value of the Ns parameter of the PF was determined. An IPF was
implemented in the system and compared with the general PF. This improved method
reduced the estimation errors and even the number of resamplings.

As for fault detection, bias and impact sensor faults were extensively analyzed. The
thresholds of alarm generation were determined according to the−dk output of the decision
function and sensor faults with various amplitudes were examined to evaluate the efficiency
of fault detection. A comparison was also made between general PF and IPF from fault
detection aspects. The M parameter of the decision function was also tuned; moreover,
it was declared that the number of resamplings is also worthwhile following. With the
applied method, bias and impact faults were also detected highly efficiently.

In the future, several research directions are plausible, as the field of particle filtering
is very diverse and understudied. For example, fault detection performance could be
examined for actuator and process faults. It would also be interesting to investigate the
applicability of the technique with regard to estimating inputs or parameters. In terms of
chemical engineering, other operational units could be studied or PF could be tested with
regard to process control.
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Abbreviation
The following symbols are used in this manuscript:

xk estimated state vector at time k
yk measurement vector at time k
uk input vector at time k
vk model noise at time k
wk measurement noise at time k
f () state transfer function
h() measurement function
NS number of particles
xi

0 initial state vector of the ith particle
ωi

0 initial weight of the ith particle
xi

k estimated state vector of the ith particle at time k
ωi

k weight of the ith particle at time k
y1:k measurement data points from time 1 to time k
δ() Dirac delta function
Ne f f effective sample size
Nt threshold of Ne f f
xl

kH large-weight particles before crossover step at time k
xj

kL small-weight particles before crossover step at time k
xj

kC new particles after crossover step at time k
xj

kM new particles after mutation step at time k
α parameter of the IPF’s crossover step
pM parameter of the IPF’s mutation step

https://github.com/abonyilab/ParticleFilter_in_FDI
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Nr number of simulations
T number of time steps
euk absolute error at time k in the uth simulation
eav average absolute error
Lk average likelihood of the measurement by particles at time k
M sliding window
dk normalized fault decision function at time k
h fault threshold
F flowrate
R recycle ratio
Si substrate concentration in the ith reactor
Xi concentration of microorganisms in ith reactor
S0 substrate concentration of the feed entering the first reactor
w waste factor
t time
V reactor volume
µm maximum specific growth rate
β yield factor
KS Monod constant
C concentration factor
kd death coefficient
n volume ratio of the two reactors
bSRC parameter for calculating critical residence time
τ∗min dimensionless critical residence time
Si,0 initial substrate concentration in the ith reactor
Xi,0 initial concentration of microorganisms in the ith reactor
σv deviation of the model noise
σw deviation of the measurement noise
f fault
# count of occurences

Appendix A. Systematic Resampling

After the correction step, the ωi-normalized weights of the particles become available.
As they are normalized, the cumulative sum of the weights is:

Q(m) =
m

∑
i=1

ωi ∈ [0, 1] (A1)

where 1 ≤ m ≤ NS.
During the systematic resampling, the [0, 1] interval is divided into NS subintervals

equidistantly. From every subinterval, a zj number is chosen. z1 is randomly drawn from
the uniform distribution on (0, 1], and the others are determined by z1:

zj = z1 +
j− 1
NS

, j = 2, 3, . . . , NS (A2)

These zj (j = 1, 2, . . . , NS) values are used to select the new particles from the old ones.
xm is chosen when:

Qm−1 < zj ≤ Qm (A3)

Therefore, the particles are selected with a probability equal to their weights. The new
particles are considered to be of equal weights.

Appendix B. Derivation of the Critical Residence Time and Fmax

The critical residence time can be calculated in the following way:

bSRC = (4Cn + (1− n)2)R2 + 2(2Cn + (1− n)2)R + (1− n)2 (A4)
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τ∗min =
1 + S0

KS

2( S0
KS
− (1 + S0

KS
) kd

µm
)
· (1 + n)(1 + R)−

√
bSRC

n
(A5)

where τ∗min refers to the dimensionless critical residence time and n denotes the volume
ratio of the two reactors. As the reactor volumes are assumed to be equal, n = 1 in the
present case, therefore, Equations (A4) and (A5) are simplified to the following forms:

bSRC = 4CR2 + 4CR (A6)

τ∗min =
1 + S0

KS

2( S0
KS
− (1 + S0

KS
) kd

µm
)
· (2(1 + R)−

√
bSRC) (A7)

Fmax can be calculated from τ∗min:

Fmax =
Vµm

τ∗min
(A8)
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