
Citation: Kim, H.-J.; Baek, S.-W.

Application of Wearable Gloves for

Assisted Learning of Sign Language

Using Artificial Neural Networks.

Processes 2023, 11, 1065. https://

doi.org/10.3390/pr11041065

Academic Editors: Wen-Jer Chang

and Jiangxin Wang

Received: 16 February 2023

Revised: 22 March 2023

Accepted: 31 March 2023

Published: 1 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Application of Wearable Gloves for Assisted Learning of Sign
Language Using Artificial Neural Networks
Hyeon-Jun Kim 1 and Soo-Whang Baek 2,*

1 Department of Electronic Information System Engineering, Sangmyung University,
Cheonan 31066, Republic of Korea

2 Department of Human Intelligence and Robot Engineering, Sangmyung University,
Cheonan 31066, Republic of Korea

* Correspondence: swbaek@smu.ac.kr; Tel.: +82-41-550-5543

Abstract: This study proposes the design and application of wearable gloves that can recognize sign
language expressions from input images via long short-term memory (LSTM) network models and
can learn sign language through finger movement generation and vibration motor feedback. It is
difficult for nondisabled people who do not know sign language to express sign language accurately.
Therefore, we suggest the use of wearable gloves for sign language education to help nondisabled
people learn and accurately express sign language. The wearable glove consists of a direct current
motor, a link (finger exoskeleton) that can generate finger movements, and a flexible sensor that
recognizes the degree of finger bending. When the coordinates of the hand move in the input
image, the sign language motion is fed back through the vibration motor attached to the wrist. The
proposed wearable glove can learn 20 Korean sign language words, and the data used for learning
are configured to represent the joint coordinates and joint angles of both the hands and body for these
20 sign language words. Prototypes were produced based on the design, and it was confirmed that
the angle of each finger could be adjusted. Through experiments, a sign language recognition model
was selected, and the validity of the proposed method was confirmed by comparing the generated
learning results with the data sequence. Finally, we compared and verified the accuracy and learning
loss using a recurrent neural network and confirmed that the test results of the LSTM model showed
an accuracy of 85%.

Keywords: artificial intelligence; internet of things; wearable; neural network; RNN; LSTM

1. Introduction

Language is a means of communication for humans that affects the development
of social skills and the establishment of self-identity. Sign language has been used as a
means of communication for the deaf and has its own language system [1]. Sign language
is visual and conveys meanings through hand movements, arm positions, and mouth
shapes [2]. Sign language establishes a sense of belonging and identity for people with
deafness and plays an important role in communication and academic achievement [3].
However, because sign language is a visual language, it is difficult for nondisabled people
who do not know it to understand its meaning. In addition, it is difficult for nondisabled
people without hearing impairments to accurately convey the meaning of sign language
expressions unless they are sign language experts. Some teachers who teach people with
deafness use spoken language and poor sign language expressions to teach classes; for this
reason, people with deafness sometimes do not clearly understand the content being taught.
Thus, a phenomenon has been observed in which students study according to the will of
their parents, peers, and individuals rather than the will of their teachers [4]. When people
with deafness go to normal schools, the services provided usually include sign language
interpreters. However, if you become accustomed to a sign language interpreter, you may

Processes 2023, 11, 1065. https://doi.org/10.3390/pr11041065 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr11041065
https://doi.org/10.3390/pr11041065
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-3668-8057
https://doi.org/10.3390/pr11041065
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr11041065?type=check_update&version=3

Processes 2023, 11, 1065 2 of 20

have difficulty learning your native language [5]. In this way, communication problems
arise between people with deafness who use sign language and nondisabled people who
use spoken language. For this reason, research is being conducted to understand and
classify the sign language expressed by the deaf [6].

Research on sign language recognition is being conducted in two main ways. The first
method uses a sensor to recognize sign language. One frequently used method of using
sensors is inertial measurement units (IMUs). For example, one study used an IMU and
a surface electromyography (sEMG) sensor. In this study, arm gestures were identified
using IMUs, hand gestures, which were discriminated by applying the sEMG sensor, and
a wearable system that recognized American sign language (ASL) in real time. This was
implemented by fusing information from IMU and sEMG sensors [7]. In addition to this, a
study on sign language translation used an IMU and a flex sensor. This study developed
an Android-based mobile application with a text-to-speech function that recognizes the
alphabet, transmits it to a mobile device through Bluetooth communication, and listens to
the received text [8]. Another study used a touch sensor to recognize A–Z and 0–9 in ASL.
In this study, a device for recognizing hand gestures was implemented using eight touch
sensors. A charge-transfer touch-sensor-based gesture recognition glove for ASL translation
was presented, with the advantage of being portable and being possible to implement using
inexpensive hardware [9]. There was also a study on sign language recognition using a
yarn-based stretchable sensor array (YSSA). A highly flexible sensor was used to recognize
sign language and convert the recognized sign language into voice, and it was shown that
a wearable sign language translation system supporting machine learning can accurately
translate ASL hand gestures into voice [10]. One study on sign language recognition used
inertial sensors and magnetometers. A sign language recognition system using a data glove
consisting of a three-axis accelerometer, magnetometer, and gyroscope was presented, and
a study was conducted to output a three-dimensional sign language model on a personal
computer (PC) monitor [11].

The second method is to recognize sign language using deep learning. Accord-
ingly, sign language is recognized using deep learning models, such as the convolutional
neural network (CNN), three-dimensional convolutional neural network (3DCNN), and
LSTM [12–14]. Artificial intelligence has been the most active research area recently. Re-
search on deep learning training using dynamic data is in progress, as is research using
RNN-based deep learning training models according to the characteristics of data that
change over time [15]. When training a training model, some studies train this model
by combining two or more models instead of only one model. Some studies combined
the CNN and the RNN to recognize sign language. This study improved the training
performance of the training model by training spatial features with the CNN and temporal
features with the RNN [16]. In addition, when using a single model, some studies improve
its training performance by changing the structure of the model. These studies improve
training performance by changing and combining the structure of LSTM and the gated
recurrent unit (GRU) [17]. In addition, in the study of sign language recognition using artifi-
cial intelligence, one study improved sign language recognition through the transformation
of training data. Another study improved performance by reinforcing the feature vector of
each hand in the data-preprocessing process. It was suggested that it is possible to solve
the error caused by overlapping hand motions [18]. In addition, one study reduced the
size of the dataset by converting video data into image data and improved sign language
recognition using these data [19].

There have also been studies that apply sign language recognition techniques to
sign language education. Representative examples include studies using humanoids
and animations. In studies using humanoids, the humanoids use sign language so that
humans can understand them [20,21]. Animation-based sign language education, similar
to humanoid education, expresses input words as animations so that students can observe
and reproduce them [22]. This type of sign language education has the advantage of
allowing for the user to learn sign language expressions at the place and time of their

Processes 2023, 11, 1065 3 of 20

choosing. However, because it is a learning method that humans observe and follow, it has
a disadvantage in that it is difficult to learn the exact hand motions or arm positions.

In order to eliminate these drawbacks, some studies have proposed wearable gloves
that operate based on algorithms that use both visual and tactile feedback. The wearable
glove is designed to enhance the effectiveness of education using haptic technology. When
a physical stimulus is applied to the human skin, the brain recognizes this and activates the
relevant muscles. Technologies that use this phenomenon are called haptic technologies.
The term “haptics” is derived from the Greek word “haptikos,” which means tactile sensa-
tion, and haptic technology is a technology that allows for users to feel tactile sensations
by applying force, vibration, and movement [23]. When a stimulus is applied to the skin
with haptic technology, the brain accepts this stimulus. Correspondingly, learning ability
can be improved using the visual and tactile senses [24]. Forms of education using haptic
technology are being studied in many fields, such as medicine, art, and sports. In the
medical field, it is used in subfields, including virtual and dental surgeries [25,26]. In the art
field, there are studies on the use of haptic technology in various subfields, including piano
education [27]. In the sports field, numerous studies have been conducted, including on
tennis exercises [28]. These studies indicate that user education can be improved through
the use of haptics such as vibration.

The wearable glove proposed in this study provides haptic feedback through vibration
and movement. To express sign language words, each finger is controlled by a direct
current (DC) motor and a lead screw. When controlling each finger, the finger angle of
the wearable glove is measured using a flex sensor. When the movement of the arm is
recognized in the input image, the vibration motor vibrates in the direction in which the
arm should move to provide information on the movement direction. Based on this design,
a prototype was produced to confirm that it is possible to control each finger’s angle. The
deep learning model is used to recognize sign language, and the proposed wearable glove
uses the LSTM model. Thus, data on the joint coordinates and joint angles of both hands
and body can be utilized to learn 20 Korean sign language expressions. To express sign
language symbols, both the angle of the finger and all visible parts, such as the position
of the arm and the shape of the mouth, must be controlled. However, in this study, sign
language expressions are limited as only the direction of movement of each finger and
arm are controlled. To evaluate the performance of the sign language recognition model of
the proposed wearable glove, an RNN and LSTM are trained, and accuracy and loss are
measured and compared.

2. Sign Language Training
2.1. Sign Language Training Model

Figure 1 shows the sign language training architecture of the LSTM model. The
wearable glove being used as a sign language training model was trained using LSTM.
LSTM is a type of RNN. In existing RNNs, the current calculation result depends on the
previous calculation result [29]. An RNN is more effective at learning using short sequences.
If the RNN sequence is long, it is not possible to transfer sufficient information from the
previous sequence to the subsequent sequence. LSTM compensates for these disadvantages
of the RNN. LSTM preserves past computational results by leaving meaningful data intact
and erasing meaningless data. As a result, even when learning with a long sequence,
previous calculation results can be used, and learning can proceed. LSTM cells consist of
six parameters and three gates. The six parameters are the input, output, parameter ct−1 of
the previous cell state, parameter ct of the current cell state, parameter ht−1 of the previous
hidden state, and parameter ht−1 of the current hidden state. The input is a parameter to
which data used for learning are input, and the output is a parameter to which results are
output through all gates. The parameter input is used to input the data used for training,
and the parameter output is used to output results after they pass through all the gates. In
addition, ct−1 stores the calculated result in the previous cell and inputs it into the current
cell, and ct stores the calculated result in the current cell and inputs it into the next cell. The

Processes 2023, 11, 1065 4 of 20

cell state has a structure that can maintain the calculated results for a long time. ht−1 is the
parameter in which the value calculated by passing the gate in the previous cell is stored. At
ht−1, new input data xt are combined and passed through the gate, and the calculated result
and output are stored in ht. The forget gate removes unnecessarily calculated results from
the previous cell’s calculated results. The input gate stores information about time t. This
gate combines the newly entered data xt and ht−1 to determine the required computational
result and sends this to the cell state. The output gate determines the value to be output
and calculates and outputs the values of parameters ht−1, xt, and the cell state. As sign
language is a visual language that expresses meaning by changing the shape of the hand
and position of the arm over time, the training was conducted with an LSTM model that is
easy to train over time, and a selection of 20 words was used as the data, as summarized in
Table 1. Considering the time required for learning, the total number of videos was set to
60. The video used for sign language training was 4 or 5 s long on average, and the video
frame was 30 fps.

Processes 2023, 11, x FOR PEER REVIEW 4 of 21

into the current cell, and 𝑐𝑡 stores the calculated result in the current cell and inputs it

into the next cell. The cell state has a structure that can maintain the calculated results for

a long time. ℎ𝑡−1 is the parameter in which the value calculated by passing the gate in the

previous cell is stored. At ℎ𝑡−1, new input data 𝑥𝑡 are combined and passed through the

gate, and the calculated result and output are stored in ℎ𝑡. The forget gate removes un-

necessarily calculated results from the previous cell’s calculated results. The input gate

stores information about time 𝑡. This gate combines the newly entered data 𝑥𝑡 and ℎ𝑡−1

to determine the required computational result and sends this to the cell state. The output

gate determines the value to be output and calculates and outputs the values of parame-

ters ℎ𝑡−1, 𝑥𝑡, and the cell state. As sign language is a visual language that expresses mean-

ing by changing the shape of the hand and position of the arm over time, the training was

conducted with an LSTM model that is easy to train over time, and a selection of 20 words

was used as the data, as summarized in Table 1. Considering the time required for learning,

the total number of videos was set to 60. The video used for sign language training was 4

or 5 s long on average, and the video frame was 30 fps.

Figure 1. Sign language training architecture of LSTM model.

Table 1. Sign language words used in training.

Sign Language Word Total Number of Videos Time of Video (s)
Frames of

Video (fps)

Dog 60 4 30

Police 60 4 30

Stairs 60 4 30

Moon 60 4 30

Bat 60 5 30

Bee 60 4 30

Figure 1. Sign language training architecture of LSTM model.

Table 1. Sign language words used in training.

Sign Language Word Total Number of Videos Time of Video (s) Frames of Video (fps)

Dog 60 4 30
Police 60 4 30
Stairs 60 4 30
Moon 60 4 30

Bat 60 5 30
Bee 60 4 30

Hospital 60 5 30

Processes 2023, 11, 1065 5 of 20

Table 1. Cont.

Sign Language Word Total Number of Videos Time of Video (s) Frames of Video (fps)

Bandage 60 5 30
Teacher 60 4 30

Baby 60 4 30
Apartment 60 4 30
Dizziness 60 4 30
Elevator 60 5 30

Glass 60 4 30
Food 60 4 30
Car 60 4 30
Toy 60 5 30

Thermometer 60 5 30
Friend 60 4 30
Toilet 60 5 30

2.2. Data Preprocessing

Data preprocessing is an essential process for deep learning training. This study used
the MediaPipe Holistic Application Programming Interface (API) to transform data. The
coordinates of each joint and fingertip were extracted using the MediaPipe Holistic API [30].
Figure 2 shows the hand and pose landmarks provided by the MediaPipe Holistic API.
Twenty-one hand landmarks could be extracted, including the coordinates of each joint and
fingertip of the recognized hand during hand recognition. Using the MediaPipe Holistic
API, information for the left and right hands can be recognized separately. Thirty-three
pose landmarks could be extracted, including those for the eyes, nose, mouth, and all joints
of the body.

Processes 2023, 11, x FOR PEER REVIEW 5 of 21

Hospital 60 5 30

Bandage 60 5 30

Teacher 60 4 30

Baby 60 4 30

Apartment 60 4 30

Dizziness 60 4 30

Elevator 60 5 30

Glass 60 4 30

Food 60 4 30

Car 60 4 30

Toy 60 5 30

Thermometer 60 5 30

Friend 60 4 30

Toilet 60 5 30

2.2. Data Preprocessing

Data preprocessing is an essential process for deep learning training. This study used

the MediaPipe Holistic Application Programming Interface (API) to transform data. The

coordinates of each joint and fingertip were extracted using the MediaPipe Holistic API

[30]. Figure 2 shows the hand and pose landmarks provided by the MediaPipe Holistic

API. Twenty-one hand landmarks could be extracted, including the coordinates of each

joint and fingertip of the recognized hand during hand recognition. Using the MediaPipe

Holistic API, information for the left and right hands can be recognized separately. Thirty-

three pose landmarks could be extracted, including those for the eyes, nose, mouth, and

all joints of the body.

Figure 2. MediaPipe Holistic API [31,32] (a) the hand and (b) the body.

Three coordinates can be defined to extract the angles denoted as α, β, and γ, where

α is the starting point of the first vector, β is the endpoint of the first vector and the starting

Figure 2. MediaPipe Holistic API [31,32] (a) the hand and (b) the body.

Three coordinates can be defined to extract the angles denoted as α, β, and γ, where α

is the starting point of the first vector, β is the endpoint of the first vector and the starting
point of the second vector, and γ is the endpoint of the second vector. Vectors a~ and b~

Processes 2023, 11, 1065 6 of 20

obtained through this method are expressed using Equations (1) and (2). The angle θ
subtended by the two vectors can be expressed using Equation (3). Based on this, the joint
angles can be extracted.

a~ = Landmark[α]− Landmark[β] (1)

b~ = Landmark[β]− Landmark[γ] (2)

|a~| × |b~| × cos θ = a~·b~ (3)

The MediaPipe Holistic API can extract data for the left and right hands. The right-
hand information was extracted in the form of right_hand_landmarks, and the left-hand
information was extracted as left_hand_landmarks. Recognized landmarks contain the
coordinates x, y, and z, as well as visibility information. Figure 3 shows the landmarks
of both hands and the skeleton of the hand generated using the MediaPipe Holistic API.
Using the landmark’s x and y coordinates, the corresponding landmark was assigned a
number. When the right hand was recognized, the sentence “right hand” is displayed, and
when the left hand is recognized, the sequence “left hand” was displayed to indicate which
hand had been recognized.

Processes 2023, 11, x FOR PEER REVIEW 6 of 21

point of the second vector, and γ is the endpoint of the second vector. Vectors 𝑎⃗ and 𝑏⃗

obtained through this method are expressed using Equations (1) and (2). The angle θ sub-

tended by the two vectors can be expressed using Equation (3). Based on this, the joint

angles can be extracted.

𝑎⃗ = 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘[𝛼] − 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘[𝛽] (1)

𝑏⃗ = 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘[𝛽] − 𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘[𝛾] (2)

|𝑎⃗| × |𝑏⃗| × 𝑐𝑜𝑠 𝜃 = 𝑎⃗ ∙ 𝑏⃗ (3)

The MediaPipe Holistic API can extract data for the left and right hands. The right-

hand information was extracted in the form of right_hand_landmarks, and the left-hand

information was extracted as left_hand_landmarks. Recognized landmarks contain the

coordinates x, y, and z, as well as visibility information. Figure 3 shows the landmarks of

both hands and the skeleton of the hand generated using the MediaPipe Holistic API. Us-

ing the landmark’s x and y coordinates, the corresponding landmark was assigned a num-

ber. When the right hand was recognized, the sentence “right hand” is displayed, and

when the left hand is recognized, the sequence “left hand” was displayed to indicate

which hand had been recognized.

Figure 3. Two-handed recognition scheme using MediaPipe Holistic API hand landmarks.

Figure 4 shows the landmarks and skeleton of the body generated using the pose

landmarks of the MediaPipe Holistic API. The MediaPipe Holistic API extracts body skel-

etal data as pose landmarks and can extract 33 landmarks in total. Each landmark was

extracted, totaling 11 landmarks on the face, 12 landmarks on the upper body, and 10

landmarks on the lower body. Recognized landmarks had x, y, and z coordinates and

similar visibility information to the hand landmarks. As shown in Figure 4, landmarks

and skeletons can be recognized even if body parts are not recognized.

Figure 3. Two-handed recognition scheme using MediaPipe Holistic API hand landmarks.

Figure 4 shows the landmarks and skeleton of the body generated using the pose
landmarks of the MediaPipe Holistic API. The MediaPipe Holistic API extracts body
skeletal data as pose landmarks and can extract 33 landmarks in total. Each landmark
was extracted, totaling 11 landmarks on the face, 12 landmarks on the upper body, and
10 landmarks on the lower body. Recognized landmarks had x, y, and z coordinates and
similar visibility information to the hand landmarks. As shown in Figure 4, landmarks and
skeletons can be recognized even if body parts are not recognized.

Processes 2023, 11, 1065 7 of 20Processes 2023, 11, x FOR PEER REVIEW 7 of 21

Figure 4. Skeletal recognition using MediaPipe Holistic API pose landmarks.

2.3. Training Data

The data used for the LSTM model were trained using the sign language dataset pro-

vided by the AI-Hub [33]. As listed in Table 1, the data were videos that corresponded to

20 Korean sign language words. For each word, 20 sign language experts performed the

sign language movements and used videos filmed from the anterior, right lateral, and left

lateral sides of each participant. Figure 5 displays the skeletal data of the body and each

hand using the MediaPipe Holistic API for the sign language expression that corresponds

to “car”. The data extracted for each hand consisted of information about the x, y, and z

coordinates and the visibility of each landmark. The data extracted for the body also com-

prised information about the x, y, and z coordinates and the visibility of each landmark,

similar to the data extracted for the hand. A total of 84 pieces of data were extracted for

the hand, and a total of 132 pieces of data were extracted for the body.

Figure 5. Video data used for learning (sign language expression for car).

Figure 4. Skeletal recognition using MediaPipe Holistic API pose landmarks.

2.3. Training Data

The data used for the LSTM model were trained using the sign language dataset
provided by the AI-Hub [33]. As listed in Table 1, the data were videos that corresponded
to 20 Korean sign language words. For each word, 20 sign language experts performed the
sign language movements and used videos filmed from the anterior, right lateral, and left
lateral sides of each participant. Figure 5 displays the skeletal data of the body and each
hand using the MediaPipe Holistic API for the sign language expression that corresponds
to “car”. The data extracted for each hand consisted of information about the x, y, and
z coordinates and the visibility of each landmark. The data extracted for the body also
comprised information about the x, y, and z coordinates and the visibility of each landmark,
similar to the data extracted for the hand. A total of 84 pieces of data were extracted for the
hand, and a total of 132 pieces of data were extracted for the body.

Processes 2023, 11, x FOR PEER REVIEW 7 of 21

Figure 4. Skeletal recognition using MediaPipe Holistic API pose landmarks.

2.3. Training Data

The data used for the LSTM model were trained using the sign language dataset pro-

vided by the AI-Hub [33]. As listed in Table 1, the data were videos that corresponded to

20 Korean sign language words. For each word, 20 sign language experts performed the

sign language movements and used videos filmed from the anterior, right lateral, and left

lateral sides of each participant. Figure 5 displays the skeletal data of the body and each

hand using the MediaPipe Holistic API for the sign language expression that corresponds

to “car”. The data extracted for each hand consisted of information about the x, y, and z

coordinates and the visibility of each landmark. The data extracted for the body also com-

prised information about the x, y, and z coordinates and the visibility of each landmark,

similar to the data extracted for the hand. A total of 84 pieces of data were extracted for

the hand, and a total of 132 pieces of data were extracted for the body.

Figure 5. Video data used for learning (sign language expression for car). Figure 5. Video data used for learning (sign language expression for car).

Processes 2023, 11, 1065 8 of 20

Angle data for each hand and the body were obtained using Equations (1)–(3), as
described in the previous section. The hand and pose landmarks used for angle data
extraction are shown in Table 2, and the extracted vectors are shown in Figure 6. As shown
in Table 2 and Figure 6, 20 vectors were extracted from each hand and 14 vectors were
extracted from the body. The symbols h_0–h_3 represent vectors for the thumb. The vector
from the wrist to the thumb’s carpometacarpal (CMC) joint is h_0, the vector from the
thumb’s CMC joint to the thumb’s metacarpophalangeal (MCP) joint is h_1, the vector from
the thumb’s MCP joint to the thumb’s interphalangeal (IP) joint is h_2, and the vector from
the thumb’s IP joint to the thumb’s tip is h_3. If this process is performed on all fingers,
20 vectors can be extracted in total. For the body vectors, the vectors from the nose to
both ears and the upper body vector were also extracted. The symbols p_0–p_5 denote the
vectors for the right arm, and the symbols p_6–p_11 denote the vectors for the left arm. The
vector from the left shoulder to the right shoulder is p_0, the vector from the right shoulder
to the elbow is p_1, the vector from the elbow to the wrist is p_2, and the vectors from
the wrist to the pinky, index, and thumb are p_3, p_4, and p_5, respectively. The left arm
also extracted vectors from p_6 to p_11 using the same process. The vectors corresponding
to the right and left ears with respect to the nose are p_12 and p_13, respectively. All
the extracted vectors were converted into unit vectors with equalized sizes. The angle
between two unit vectors can be calculated as the dot product of the two vectors, as shown
in Equation (3). The angles calculated for both hands were calculated with the vectors,
from the wrist to the tips of each finger. Fifteen angles could be calculated by calculating
three angles per finger. The angles to the body were calculated in the same way. Five angles
could be calculated from one arm, in addition to the angles from the nose to both ears; thus,
eleven angles could be calculated in total.

Table 2. Vectors extracted and landmarks used.

Hand Landmark Vector Extracted (Hand) Pose Landmark Vector Extracted (Pose)

0, 1 h_0 11, 12 p_0
1, 2 h_1 12, 14 p_1
2, 3 h_2 14, 16 p_2
3, 4 h_3 16, 18 p_3
0, 5 h_4 16, 20 p_4
5, 6 h_5 16, 22 p_5
6, 7 h_6 12, 11 p_6
7, 8 h_7 11, 13 p_7
0, 9 h_8 13, 15 p_8

9, 10 h_9 15, 17 p_9
10, 11 h_10 15, 19 p_10
11, 12 h_11 15, 21 p_11
0, 13 h_12 0, 8 p_12
13, 14 h_13 0, 7 p_13
14, 15 h_14
15, 16 h_15
0, 16 h_16
17, 18 h_17
18, 19 h_18
19, 20 h_19

Processes 2023, 11, 1065 9 of 20Processes 2023, 11, x FOR PEER REVIEW 9 of 21

Figure 6. Vectors extracted for (a) the hand and (b) the body.

Table 3 lists the landmark’s x, y, and z coordinates, visibility data, angle data of each

joint, and the total sum of the data. As indicated in the listings in Table 3, when the x, y,

and z coordinates and the visibility data were extracted, 84 data segments were extracted.

In total, 100 pieces of data were extracted by adding the angles of each finger and the

correct answer labels. When the x, y, and z coordinates and visibility data were extracted,

132 pieces of data were extracted. A total of 144 data segments were extracted by adding

the angles and correct answer labels. To generate data to be trained on the LSTM model,

the sum of the two datasets must be equal to 100. Therefore, the data extracted from the

body must be processed to match the sum of the data obtained from the hand. When using

sign language expressions, information about the lower body is not included. For this rea-

son, the data from pose landmarks 23–32, that is, the x, y, and z coordinates and visibility

data of the landmarks corresponding from the hip to the foot, were eliminated; these data

yielded 100 body datasets. Based on this process, the LSTM model training data were cre-

ated by equalizing the sizes of the two datasets.

Table 3. Data preprocessing: the landmark’s x, y, and z coordinates, visibility data, the angle data

of each joint, and the sum of the data.

Index Hand Body

Landmark’s x, y, and z coor-

dinates and visibility infor-

mation

84 132

Angle 15 11

Answer label 1 1

Deleted data 0 44

Total 100 100

3. Wearable Glove

Figure 7 shows the configuration of the wearable glove. As shown in Figure 7, when

the video was input, sign language was recognized using the deep learning model, and

the angle of each finger and the direction of the arm movement were input to the micro-

controller unit (MCU). Accordingly, the DC motor attached to each finger controlled the

finger according to the input angle, and the four vibration motors attached to the wrist

informed the movement direction of the arm by vibrating in the direction the arm should

move. The wearable glove is composed of control, driving, and input units. The control

unit is composed of a personal computer that receives video input, recognizes the sign

language motion of the input video, and transmits the corresponding sign language finger

Figure 6. Vectors extracted for (a) the hand and (b) the body.

Table 3 lists the landmark’s x, y, and z coordinates, visibility data, angle data of each
joint, and the total sum of the data. As indicated in the listings in Table 3, when the x, y,
and z coordinates and the visibility data were extracted, 84 data segments were extracted.
In total, 100 pieces of data were extracted by adding the angles of each finger and the
correct answer labels. When the x, y, and z coordinates and visibility data were extracted,
132 pieces of data were extracted. A total of 144 data segments were extracted by adding
the angles and correct answer labels. To generate data to be trained on the LSTM model, the
sum of the two datasets must be equal to 100. Therefore, the data extracted from the body
must be processed to match the sum of the data obtained from the hand. When using sign
language expressions, information about the lower body is not included. For this reason,
the data from pose landmarks 23–32, that is, the x, y, and z coordinates and visibility data of
the landmarks corresponding from the hip to the foot, were eliminated; these data yielded
100 body datasets. Based on this process, the LSTM model training data were created by
equalizing the sizes of the two datasets.

Table 3. Data preprocessing: the landmark’s x, y, and z coordinates, visibility data, the angle data of
each joint, and the sum of the data.

Index Hand Body

Landmark’s x, y, and z coordinates and visibility information 84 132
Angle 15 11

Answer label 1 1
Deleted data 0 44

Total 100 100

3. Wearable Glove

Figure 7 shows the configuration of the wearable glove. As shown in Figure 7, when
the video was input, sign language was recognized using the deep learning model, and
the angle of each finger and the direction of the arm movement were input to the micro-
controller unit (MCU). Accordingly, the DC motor attached to each finger controlled the
finger according to the input angle, and the four vibration motors attached to the wrist
informed the movement direction of the arm by vibrating in the direction the arm should
move. The wearable glove is composed of control, driving, and input units. The control
unit is composed of a personal computer that receives video input, recognizes the sign
language motion of the input video, and transmits the corresponding sign language finger
angle and arm movement direction to the MCU; the MCU controls the DC and vibration
motors. Specifically, the MCU controls five DC motors, five flex sensors, and four vibration
motors. It uses an Arduino Mega 2560 R3 board comprising 54 digital input/output pins

Processes 2023, 11, 1065 10 of 20

and 16 analog input pins. The drive unit controls the exoskeleton of the wearable glove
with five DC motors (RA-25GM) with an input voltage of 12 V and a rated output power of
22 W; this consists of a vibration motor (ELB060416) attached to the four sides of the wrist
to indicate the direction of the arm movement. The input unit consists of the wearable
glove and the flex sensor (SZH-SEN02) that inputs the finger angle according to the sign
language expressed by the DC motor, which is communicated to the MCU.

Processes 2023, 11, x FOR PEER REVIEW 10 of 21

angle and arm movement direction to the MCU; the MCU controls the DC and vibration

motors. Specifically, the MCU controls five DC motors, five flex sensors, and four vibra-

tion motors. It uses an Arduino Mega 2560 R3 board comprising 54 digital input/output

pins and 16 analog input pins. The drive unit controls the exoskeleton of the wearable

glove with five DC motors (RA-25GM) with an input voltage of 12 V and a rated output

power of 22 W; this consists of a vibration motor (ELB060416) attached to the four sides of

the wrist to indicate the direction of the arm movement. The input unit consists of the

wearable glove and the flex sensor (SZH-SEN02) that inputs the finger angle according to

the sign language expressed by the DC motor, which is communicated to the MCU.

Figure 7. Configuration diagram of the wearable glove.

Figure 8 is a hand model that represents the design of the wearable glove. The hand

model was designed based on the actual wearer’s hand. The width of the palm was 85 mm

and the length was 93 mm. The thicknesses of the thumb, index finger, middle finger, ring

finger, and pinky were 30.5 mm, 23 mm, 23.5 mm, 21 mm, and 20 mm, respectively. The

lengths of the thumb, index finger, middle finger, ring finger, and pinky were 114.5 mm,

71.5 mm, 80.5 mm, 72.5 mm, and 54.5 mm, respectively. Based on this hand model, the

wearable glove was designed by applying each dimension corresponding to the fingers

and back of the hand.

Figure 8. Hand dimensions.

Figure 7. Configuration diagram of the wearable glove.

Figure 8 is a hand model that represents the design of the wearable glove. The hand
model was designed based on the actual wearer’s hand. The width of the palm was 85 mm
and the length was 93 mm. The thicknesses of the thumb, index finger, middle finger, ring
finger, and pinky were 30.5 mm, 23 mm, 23.5 mm, 21 mm, and 20 mm, respectively. The
lengths of the thumb, index finger, middle finger, ring finger, and pinky were 114.5 mm,
71.5 mm, 80.5 mm, 72.5 mm, and 54.5 mm, respectively. Based on this hand model, the
wearable glove was designed by applying each dimension corresponding to the fingers
and back of the hand.

Processes 2023, 11, x FOR PEER REVIEW 10 of 21

angle and arm movement direction to the MCU; the MCU controls the DC and vibration

motors. Specifically, the MCU controls five DC motors, five flex sensors, and four vibra-

tion motors. It uses an Arduino Mega 2560 R3 board comprising 54 digital input/output

pins and 16 analog input pins. The drive unit controls the exoskeleton of the wearable

glove with five DC motors (RA-25GM) with an input voltage of 12 V and a rated output

power of 22 W; this consists of a vibration motor (ELB060416) attached to the four sides of

the wrist to indicate the direction of the arm movement. The input unit consists of the

wearable glove and the flex sensor (SZH-SEN02) that inputs the finger angle according to

the sign language expressed by the DC motor, which is communicated to the MCU.

Figure 7. Configuration diagram of the wearable glove.

Figure 8 is a hand model that represents the design of the wearable glove. The hand

model was designed based on the actual wearer’s hand. The width of the palm was 85 mm

and the length was 93 mm. The thicknesses of the thumb, index finger, middle finger, ring

finger, and pinky were 30.5 mm, 23 mm, 23.5 mm, 21 mm, and 20 mm, respectively. The

lengths of the thumb, index finger, middle finger, ring finger, and pinky were 114.5 mm,

71.5 mm, 80.5 mm, 72.5 mm, and 54.5 mm, respectively. Based on this hand model, the

wearable glove was designed by applying each dimension corresponding to the fingers

and back of the hand.

Figure 8. Hand dimensions. Figure 8. Hand dimensions.

Owing to their characteristics, exoskeleton wearable robots inevitably cause discom-
fort to users. To solve this problem, the wearable glove was designed to minimize the

Processes 2023, 11, 1065 11 of 20

interference between the fingers. Figure 9 shows a model of the wearable glove. When the
user puts on the wearable glove, the exoskeleton is only attached to the posterior side of
the hand, thus achieving a comfortable fit. In addition, as the exoskeleton frame attached
to each finger joint is fixed along the direction of the posterior part of the hand rather than
wrapped around the finger, it is designed to minimize the interference among the fingers
caused by the wearable glove. As shown in Figure 9, the wearable glove has one DC motor
attached to each finger. The lead screw, with a length of 100 mm and a pitch of 8 mm, is
fixed to each DC motor. The part connected to the lead screw is a frame used to connect the
shaft of the wearable glove. This part is fixed to the motor frame of the wearable glove and
enables linear motion such as that generated by a linear motor. As the nut also has the same
pitch, it is possible to achieve linear displacements equal to 8 mm per degree of angular
motor rotation. The motor was fixed to the thumb with an independent frame. As shown
in Figure 9, as the motor attached to the other finger is fixed in the opposite direction, when
controlling the wearable glove, the motor of the thumb is controlled by generating a signal
opposite to the motor attached to the other finger. A separate flex sensor (used to measure
the angle of the finger) is attached to each finger. The flex sensor used is a sensor with a
length of 130 mm and a width of 15 mm. The flex sensor is fixed underneath the exoskeletal
frame on each finger. In this way, the degree of bending of each finger can be measured.

Processes 2023, 11, x FOR PEER REVIEW 11 of 21

Owing to their characteristics, exoskeleton wearable robots inevitably cause discom-

fort to users. To solve this problem, the wearable glove was designed to minimize the

interference between the fingers. Figure 9 shows a model of the wearable glove. When the

user puts on the wearable glove, the exoskeleton is only attached to the posterior side of

the hand, thus achieving a comfortable fit. In addition, as the exoskeleton frame attached

to each finger joint is fixed along the direction of the posterior part of the hand rather than

wrapped around the finger, it is designed to minimize the interference among the fingers

caused by the wearable glove. As shown in Figure 9, the wearable glove has one DC motor

attached to each finger. The lead screw, with a length of 100 mm and a pitch of 8 mm, is

fixed to each DC motor. The part connected to the lead screw is a frame used to connect

the shaft of the wearable glove. This part is fixed to the motor frame of the wearable glove

and enables linear motion such as that generated by a linear motor. As the nut also has

the same pitch, it is possible to achieve linear displacements equal to 8 mm per degree of

angular motor rotation. The motor was fixed to the thumb with an independent frame. As

shown in Figure 9, as the motor attached to the other finger is fixed in the opposite direc-

tion, when controlling the wearable glove, the motor of the thumb is controlled by gener-

ating a signal opposite to the motor attached to the other finger. A separate flex sensor

(used to measure the angle of the finger) is attached to each finger. The flex sensor used is

a sensor with a length of 130 mm and a width of 15 mm. The flex sensor is fixed under-

neath the exoskeletal frame on each finger. In this way, the degree of bending of each

finger can be measured.

Figure 9. Overall model of the wearable glove.

Figure 10 shows the vibration motors attached to the wrist. The frame of the wearable

glove is attached and fixed to the cotton glove. The vibration motor of the wrist part is

independently fixed to the wearable glove. The vibration motors are fixed to the upper

(number 1), lower (number 2), right (number 3), and left (number 4) sides of the wrist. In

the sign language recognition step, the input video is recognized as a sequence of planar

images in the x–y direction. At this time, the data from the skeleton of the sign language

expert are extracted from the video. Using the recognized skeleton data, the x and y coor-

dinates of the wrist are stored at time t, the movement of the arm is calculated by compar-

ing the x and y coordinates of the wrist in the previous sequence as t − 1, and the difference

is calculated. When y changes in the +y direction, vibration motor 1 moves, and when it

changes in the −y direction, vibration motor 2 moves. When x changes in the −x direction,

vibration motor 3 moves, and when it changes in the +x direction, vibration motor 4 moves.

When both the x and y directions change, the movement of the arm is directed by all the

vibration motors being driven in the corresponding direction.

Figure 9. Overall model of the wearable glove.

Figure 10 shows the vibration motors attached to the wrist. The frame of the wearable
glove is attached and fixed to the cotton glove. The vibration motor of the wrist part is
independently fixed to the wearable glove. The vibration motors are fixed to the upper
(number 1), lower (number 2), right (number 3), and left (number 4) sides of the wrist. In the
sign language recognition step, the input video is recognized as a sequence of planar images
in the x–y direction. At this time, the data from the skeleton of the sign language expert
are extracted from the video. Using the recognized skeleton data, the x and y coordinates
of the wrist are stored at time t, the movement of the arm is calculated by comparing the
x and y coordinates of the wrist in the previous sequence as t − 1, and the difference is
calculated. When y changes in the +y direction, vibration motor 1 moves, and when it
changes in the −y direction, vibration motor 2 moves. When x changes in the −x direction,
vibration motor 3 moves, and when it changes in the +x direction, vibration motor 4 moves.
When both the x and y directions change, the movement of the arm is directed by all the
vibration motors being driven in the corresponding direction.

Processes 2023, 11, 1065 12 of 20Processes 2023, 11, x FOR PEER REVIEW 12 of 21

Figure 10. Vibration motors in the wearable glove.

3.1. Operational Algorithm of Wearable Glove

The operational algorithm of the wearable glove is represented in Figure 11. As

shown, all the fingers are extended in the default state of the wearable glove. Thereafter,

when the video is input to the PC, the trained model recognizes the sign language expres-

sion of the input video frame. When the sign language expression is recognized, the finger

angle and arm movement direction are stored as an array at time t. After their storage, the

input sign language video is output, and the wearable glove is moved. The DC motor

connected to each finger is moved according to the finger angle stored in the array. When

the motor moves, the lead screw fixed to each motor rotates, and the shaft fixing frame

connected to the lead screw moves. Accordingly, the shaft of the wearable glove moves,

the sensor value of the flex sensor is changed, and the sensor value is compared with the

angle of each finger stored in the array. If the input finger angle and sensor value are not

the same, the DC motor is put into motion until they are equal. At the same time, the

movement direction of the arm is displayed by driving the vibration motor in the corre-

sponding direction according to the movement direction of the arm stored in the array.

Thereafter, the wearable gloves are moved until the last value of the stored array is input.

When the sign language expression is finished, the wearable glove returns to its initial

state and anticipates the input of the next sign language video. If there is no additional

input video, the algorithm ends by terminating the motion of the wearable glove.

Figure 10. Vibration motors in the wearable glove.

3.1. Operational Algorithm of Wearable Glove

The operational algorithm of the wearable glove is represented in Figure 11. As shown,
all the fingers are extended in the default state of the wearable glove. Thereafter, when
the video is input to the PC, the trained model recognizes the sign language expression of
the input video frame. When the sign language expression is recognized, the finger angle
and arm movement direction are stored as an array at time t. After their storage, the input
sign language video is output, and the wearable glove is moved. The DC motor connected
to each finger is moved according to the finger angle stored in the array. When the motor
moves, the lead screw fixed to each motor rotates, and the shaft fixing frame connected
to the lead screw moves. Accordingly, the shaft of the wearable glove moves, the sensor
value of the flex sensor is changed, and the sensor value is compared with the angle of
each finger stored in the array. If the input finger angle and sensor value are not the same,
the DC motor is put into motion until they are equal. At the same time, the movement
direction of the arm is displayed by driving the vibration motor in the corresponding
direction according to the movement direction of the arm stored in the array. Thereafter,
the wearable gloves are moved until the last value of the stored array is input. When the
sign language expression is finished, the wearable glove returns to its initial state and
anticipates the input of the next sign language video. If there is no additional input video,
the algorithm ends by terminating the motion of the wearable glove.

Figure 12 shows the result of expressing two words (dog, police) using 3D model-
ing through the structure and motion algorithm of the wearable glove described above.
Figure 12a shows the initial state of the wearable glove. Figure 12b shows the movement
of the wearable glove when a word corresponding to ‘dog’ is input. Figure 12c shows
the wearable glove when a word corresponding to ‘police’ is entered. The two words
(dog, police) shown in the picture are expressed as a picture because they were expressed
in repeated motions from two to three times. When the initial state changes, the finger
angle according to each sign language word is expressed as shown in Figure 12a–c. The
lead screw was rotated by the rotation of the motor attached to the finger; thus, the shaft
attached to each finger moves. Therefore, it is possible to express the sign language motion
for the word being expressed in this way.

Processes 2023, 11, 1065 13 of 20Processes 2023, 11, x FOR PEER REVIEW 13 of 21

Figure 11. Operation algorithm of the wearable glove.

Figure 12 shows the result of expressing two words (dog, police) using 3D modeling

through the structure and motion algorithm of the wearable glove described above. Figure

12a shows the initial state of the wearable glove. Figure 12b shows the movement of the

wearable glove when a word corresponding to ‘dog’ is input. Figure 12c shows the wear-

able glove when a word corresponding to ‘police’ is entered. The two words (dog, police)

shown in the picture are expressed as a picture because they were expressed in repeated

motions from two to three times. When the initial state changes, the finger angle according

to each sign language word is expressed as shown in Figure 12a–c. The lead screw was

rotated by the rotation of the motor attached to the finger; thus, the shaft attached to each

finger moves. Therefore, it is possible to express the sign language motion for the word

being expressed in this way.

Figure 12. Operation of wearable glove using 3D modeling. (a) Initial state; (b) sign language word

(dog) expression; (c) sign language word (police) expression.

Figure 11. Operation algorithm of the wearable glove.

Processes 2023, 11, x FOR PEER REVIEW 13 of 21

Figure 11. Operation algorithm of the wearable glove.

Figure 12 shows the result of expressing two words (dog, police) using 3D modeling

through the structure and motion algorithm of the wearable glove described above. Figure

12a shows the initial state of the wearable glove. Figure 12b shows the movement of the

wearable glove when a word corresponding to ‘dog’ is input. Figure 12c shows the wear-

able glove when a word corresponding to ‘police’ is entered. The two words (dog, police)

shown in the picture are expressed as a picture because they were expressed in repeated

motions from two to three times. When the initial state changes, the finger angle according

to each sign language word is expressed as shown in Figure 12a–c. The lead screw was

rotated by the rotation of the motor attached to the finger; thus, the shaft attached to each

finger moves. Therefore, it is possible to express the sign language motion for the word

being expressed in this way.

Figure 12. Operation of wearable glove using 3D modeling. (a) Initial state; (b) sign language word

(dog) expression; (c) sign language word (police) expression.

Figure 12. Operation of wearable glove using 3D modeling. (a) Initial state; (b) sign language word
(dog) expression; (c) sign language word (police) expression.

3.2. Wearable Glove Prototyping

Figure 13 shows a prototype of the wearable glove, fabricated based on the design.
Figure 13a shows the exoskeleton frame fixed to the glove, Figure 13b shows the fabricated
prototype, and Figure 13c shows a person wearing the prototype and controlling the finger
angle. As shown in Figure 13a, the exoskeleton frame was fixed to the upper surface of the
glove, and interference between the frames was minimized. Through this, the wearer’s
discomfort due to interference between the frames was eliminated. As shown in Figure 13b,
each shaft was fixed to the exoskeleton frame. The motor frame was also fixed to the glove
and forearm. When the motor frame was fixed to the forearm, a length-adjustable vent was
used to prevent the motor frame from moving. As shown in Figure 13c, it was confirmed
that it is possible to control the finger angle with the shaft through the completed prototype.

Processes 2023, 11, 1065 14 of 20

Processes 2023, 11, x FOR PEER REVIEW 14 of 21

3.2. Wearable Glove Prototyping

Figure 13 shows a prototype of the wearable glove, fabricated based on the design.

Figure 13a shows the exoskeleton frame fixed to the glove, Figure 13b shows the fabricated

prototype, and Figure 13c shows a person wearing the prototype and controlling the fin-

ger angle. As shown in Figure 13a, the exoskeleton frame was fixed to the upper surface

of the glove, and interference between the frames was minimized. Through this, the

wearer’s discomfort due to interference between the frames was eliminated. As shown in

Figure 13b, each shaft was fixed to the exoskeleton frame. The motor frame was also fixed

to the glove and forearm. When the motor frame was fixed to the forearm, a length-ad-

justable vent was used to prevent the motor frame from moving. As shown in Figure 13c,

it was confirmed that it is possible to control the finger angle with the shaft through the

completed prototype.

Figure 13. Prototype of the wearable glove: (a) glove with fixed exoskeleton frame; (b) fabricated

prototype; (c) wearing the prototype and controlling the finger angle.

4. RNN and LSTM Performance Experiment

The activation function used for learning utilized the Rectified Linear Unit (ReLU)

function and the Softmax function, the optimization function used the Adam function,

and the loss function used the categorical cross-entropy function. The epoch was set to

300 so that training was repeated 300 times on all the data. The data used for training

contained a total of 1200 videos. The validation data were trained by randomly selecting

20% of the total data. That is, 960 videos were used for training data, and 240 videos were

used for the validation data. Additionally, 100 videos that were not used for training were

selected as test data to evaluate the performance of the trained model.

The experimental environment is shown in Table 4. For data preprocessing, the same

skeletal data were extracted using the MediaPipe Holistic API. The data used in the ex-

periment differed only in the length of the sequence, and the other conditions were kept

the same. We compared the training results of the RNN and LSTM using the generated

dataset.

Table 4. Experimental environment.

Sequence Length of Data Sign Language Words Number of Data

5 20 60

10 20 60

15 20 60

20 20 60

25 20 60

Figure 13. Prototype of the wearable glove: (a) glove with fixed exoskeleton frame; (b) fabricated
prototype; (c) wearing the prototype and controlling the finger angle.

4. RNN and LSTM Performance Experiment

The activation function used for learning utilized the Rectified Linear Unit (ReLU)
function and the Softmax function, the optimization function used the Adam function, and
the loss function used the categorical cross-entropy function. The epoch was set to 300 so
that training was repeated 300 times on all the data. The data used for training contained a
total of 1200 videos. The validation data were trained by randomly selecting 20% of the
total data. That is, 960 videos were used for training data, and 240 videos were used for the
validation data. Additionally, 100 videos that were not used for training were selected as
test data to evaluate the performance of the trained model.

The experimental environment is shown in Table 4. For data preprocessing, the
same skeletal data were extracted using the MediaPipe Holistic API. The data used in
the experiment differed only in the length of the sequence, and the other conditions
were kept the same. We compared the training results of the RNN and LSTM using the
generated dataset.

Table 4. Experimental environment.

Sequence Length of Data Sign Language Words Number of Data

5 20 60
10 20 60
15 20 60
20 20 60
25 20 60

Table 5 shows the results associated with the creation of a dataset for the length of
each sequence in the experimental environment, which is described in Table 4. As shown
in Table 5, the total number of data points without sequence information is equal to 178,353.
When data are created by dividing the information of each sequence, 178,253 data points
for sequence 5, 178,153 data points for sequence 10, 178,053 data points for sequence 15,
177,953 data points for sequence 20, and 177,853 data points for sequence 25 are created. As
a result, data differences according to sequence differences emerge, and it was confirmed
that the difference decreases by 100 pieces of data whenever the sequence increases by 5.

Processes 2023, 11, 1065 15 of 20

Table 5. Data sequence number and total number of preprocessed data points.

Sequence Length of Data Total Number of Preprocessed Data Points

0 178,353
5 178,253

10 178,153
15 178,053
20 177,953
25 177,853

Figure 14 shows the results of training with the RNN based on the dataset generated
according to the sequence. Figure 14 shows: (a) the accuracy of the training data, (b) the
accuracy of the validation data, (c) the loss of the training data, and (d) the loss of the
validation data. As shown in Figure 14, the smaller the training data sequence, the more
stable the result. Looking at Figure 14a,b, it can be seen that as the length of the sequence
increases, the accuracy rapidly drops during the training process and then rises again.
Additionally, as the sequence lengthens, accuracy increases and loss decreases. Looking
at Figure 14c,d, it can be seen that the loss rapidly increases during the training process
as the length of the sequence increases, and then the loss decreases again. However, it
was confirmed that the longest sequence length of 25 has a lower accuracy and higher
loss than the sequence length of 20. The RNN training result for the sequence length of
20 confirmed that the validation data accuracy was 75.75% and the validation data loss was
0.7575. The RNN training result for the sequence length of 25 confirmed that the validation
data accuracy was 71.43% and the validation data loss was 0.7143. Accordingly, the best
training result in the RNN model was obtained when the sequence length of data was 20.

Processes 2023, 11, x FOR PEER REVIEW 16 of 21

Figure 14. RNN training result according to data sequence: (a) training data accuracy, (b) validation

data accuracy, (c) training data loss, and (d) validation data loss.

Figure 15 shows the results trained with the datasets created according to each se-

quence. Figure 15a–d shows the accuracy plots of the training data, the accuracy of the

validation data, the loss of training data, and the loss of validation data, according to the

sequences seq_5, seq_10, seq_15, seq_20, and seq_25, which correspond to the sequences

of 5, 10, 15, 20, and 25, respectively. Figure 15a,b shows that the shorter the sequence

length, the more stable the training accuracy; correspondingly, the longer the sequence

length, the higher the training accuracy. The sequence length of 25 did not train the data,

as confirmed in Figure 15c,d. The accuracy acc of the training data was 7.92%, the accuracy

val_acc of the validation data was 7.85%, the loss of the training data was 2.98, and the

loss val_loss of the validation data was also 2.98. It was determined that this lack of train-

ing was related to the 25-sequence length of the training data. As shown, the shorter the

sequence length, the more stable the loss, and the longer the sequence length, the smaller

the loss. As indicated, the sequence length of 25 has a higher loss than other sequences.

Figure 14. RNN training result according to data sequence: (a) training data accuracy, (b) validation
data accuracy, (c) training data loss, and (d) validation data loss.

Processes 2023, 11, 1065 16 of 20

Figure 15 shows the results trained with the datasets created according to each se-
quence. Figure 15a–d shows the accuracy plots of the training data, the accuracy of the
validation data, the loss of training data, and the loss of validation data, according to the
sequences seq_5, seq_10, seq_15, seq_20, and seq_25, which correspond to the sequences of
5, 10, 15, 20, and 25, respectively. Figure 15a,b shows that the shorter the sequence length,
the more stable the training accuracy; correspondingly, the longer the sequence length, the
higher the training accuracy. The sequence length of 25 did not train the data, as confirmed
in Figure 15c,d. The accuracy acc of the training data was 7.92%, the accuracy val_acc of the
validation data was 7.85%, the loss of the training data was 2.98, and the loss val_loss of
the validation data was also 2.98. It was determined that this lack of training was related to
the 25-sequence length of the training data. As shown, the shorter the sequence length, the
more stable the loss, and the longer the sequence length, the smaller the loss. As indicated,
the sequence length of 25 has a higher loss than other sequences.

Processes 2023, 11, x FOR PEER REVIEW 17 of 21

Figure 15. LSTM training result according to data sequence: (a) training data accuracy, (b) validation

data accuracy, (c) training data loss, and (d) validation data loss.

Table 6 lists the values obtained after completing the training of the RNN and LSTM

according to each sequence. The listings train_acc, val_acc, train_loss, and val_loss repre-

sent the training data accuracy, validation data accuracy, training data loss, and validation

data loss, respectively. When the data sequence length is 20, the accuracy of RNN valida-

tion data is 75.75% and LSTM validation data is 85.14%, showing the best performance.

Referring to Table 6 and Figures 14 and 15, the LSTM model using the dataset with a se-

quence length of 20, which output more accurate and relatively stable training results than

the other sequences, was selected as the sign language recognition model for the wearable

glove.

Table 6. Training results obtained for different data sequences.

Model
Sequence Length of

Data
Train_acc Val_acc Train_loss Val_loss

RNN

5 69.44% 68.57% 0.9894 1.0298

10 73.51% 71.06% 0.8669 0.9991

15 75.21% 75.93% 0.8072 0.7895

20 76.28% 75.75% 0.7818 0.7575

25 73.29% 71.43% 0.8812 0.7143

LSTM

5 73.95% 73.65% 0.8575 0.8891

10 83.09% 80.74% 0.5410 0.6357

15 83.81% 83.49% 0.5186 0.5354

20 86.25% 85.14% 0.4386 0.4847

25 7.92% 7.85% 2.9812 2.9813

Figure 15. LSTM training result according to data sequence: (a) training data accuracy, (b) validation
data accuracy, (c) training data loss, and (d) validation data loss.

Table 6 lists the values obtained after completing the training of the RNN and LSTM ac-
cording to each sequence. The listings train_acc, val_acc, train_loss, and val_loss represent
the training data accuracy, validation data accuracy, training data loss, and validation data
loss, respectively. When the data sequence length is 20, the accuracy of RNN validation data
is 75.75% and LSTM validation data is 85.14%, showing the best performance. Referring to
Table 6 and Figures 14 and 15, the LSTM model using the dataset with a sequence length
of 20, which output more accurate and relatively stable training results than the other
sequences, was selected as the sign language recognition model for the wearable glove.

Processes 2023, 11, 1065 17 of 20

Table 6. Training results obtained for different data sequences.

Model Sequence Length of Data Train_acc Val_acc Train_loss Val_loss

RNN

5 69.44% 68.57% 0.9894 1.0298
10 73.51% 71.06% 0.8669 0.9991
15 75.21% 75.93% 0.8072 0.7895
20 76.28% 75.75% 0.7818 0.7575
25 73.29% 71.43% 0.8812 0.7143

LSTM

5 73.95% 73.65% 0.8575 0.8891
10 83.09% 80.74% 0.5410 0.6357
15 83.81% 83.49% 0.5186 0.5354
20 86.25% 85.14% 0.4386 0.4847
25 7.92% 7.85% 2.9812 2.9813

Table 7 shows the results using the test data of an LSTM model trained using a data
sequence length of 20. Table 7 shows the results of the test data of the selected models.
The number of correct answers and the number of incorrect answers for each word are
indicated. For the test data, five videos were selected for each word; thus, there was a total
of 100 videos. It was confirmed that there was one incorrect answer for most words. As a
result of analyzing the data with incorrect answers, it was confirmed that the error rate for
videos shot from the side was large. As a result, the accuracy of the test data was confirmed
to be 85%.

Table 7. Test results of an LSTM model trained on a data sequence length of 20.

Sign Language Word Number of Videos Correct Answers Incorrect Answer

Dog 5 5 0
Police 5 5 0
Stairs 5 4 1
Moon 5 4 1

Bat 5 5 0
Bee 5 4 1

Hospital 5 4 1
Bandage 5 4 1
Teacher 5 4 1

Baby 5 4 1
Apartment 5 4 1
Dizziness 5 5 0
Elevator 5 4 1

Glass 5 4 1
Food 5 4 1
Car 5 5 0
Toy 5 4 1

Thermometer 5 4 1
Friend 5 4 1
Toilet 5 4 1

Total 100 85 15

5. Discussion

This paper proposes a wearable glove to assist in learning Korean sign language.
A wearable glove using a DC motor was designed to assist sign language learning, and
sign language training was conducted using ANN models to express sign language in the
wearable glove. As ANN models for training, RNN and LSTM models were selected. As a
result of Korean sign language training, the RNN model and the LSTM model confirmed
85.14% recognition rate accuracy for the validation data.

In this section, a comparative analysis of related studies on recognizing and express-
ing sign language using wearable hands was additionally prepared. We compared the

Processes 2023, 11, 1065 18 of 20

performance results of systems related to sign language recognition using sensor signals
from wearable gloves or sign language video data. Table 8 shows the comparison of sign
language recognition systems.

Table 8. Comparison of sign language recognition systems.

Author Method Language Level Architecture Accuracy

Wu, J [7] Sensor
(IMU, sEMG sensor) Words SVM 96.16%

Lee, B. G [8]
Sensor

(IMU, Flex sensor,
Pressure sensor)

Alphabets SVM 98.2%

Abhishek, K. S [9] Sensor
(Touch sensor)

Alphabets,
Numbers

None
(Classification based on

touch sensor signals)
92%

Zhou, Z [10] Sensor
(YSSA) Hand Gestures SVM 98.63%

Choi, S. G [19] Video Gestures ResNet 84.5%
This work Video Gestures LSTM 85.14%

First, there are methods for recognizing ASL based on sensor data, and these studies
commonly show high accuracy for sign language recognition [7–10].

There is a study on recognizing sign language words using data from IMU and sEMG
sensors [7]. In [7], 80 ASL words were recognized through machine learning based on
sensor data. In the machine learning process, decision tree, support vector machine (SVM),
nearest neighbor, and Naïve Bayes classifiers were used. Among them, when the SVM with
the highest accuracy was selected, an accuracy of 96.16% was obtained.

There is a study on recognizing 28 gestures including 26 letters of the alphabet, neutral
state and an invalid sign using IMU, flex sensor, and pressure sensor data [8]. In [8], machine
learning was performed using the data acquired through the sensor of the wearable glove,
and the machine learning model used SVM. As a result, the machine learning results
through SVM showed an accuracy of 98.16%.

There is a study on recognizing 26 letters of the alphabet and numbers from 0 to 9 using
data from a touch sensor attached to a wearable glove [9]. In [9], alphabets and numbers
were recognized by classifying the touch sensor data collected without AI learning, and an
accuracy of 92% was obtained.

There is a study on recognizing 11 hand gestures using YSSA data [10]. In [10], sign
language information was obtained through YSSA, which has high elasticity and a fast
response speed, and it was recognized using SVM. Additionally, taking advantage of the
fast response speed of sign language recognition, the recognition accuracy of hand gestures
was 98.63% in a short time of less than 1 s.

On the other hand, the sign language recognition learning method using video data
showed relatively low accuracy compared to studies related to sensor-based sign language
recognition. Therefore, in this study, the performance was compared with studies directly
related to expressing Korean sign language. There is a study on recognizing Korean sign
language gestures based on video data of Korean sign language [19]. In [19], the size of
the dataset was reduced to solve the disadvantage of the machine learning method based
on video data, which is that the data size is large and difficult to manage. In addition, as a
result of training using the residual neural network (ResNet) using the reduced data, an
accuracy of 84.5% was obtained.

This study shows low accuracy compared to studies that recognize sign language
using sensor data. However, when compared to previous studies that learned Korean sign
language with video data, it shows relatively higher accuracy. It seems that, if more sign
language words are learned, the correct answer rate can be additionally increased. The
accuracy and correct answer rate are expected to be further improved by increasing the

Processes 2023, 11, 1065 19 of 20

amount of sign language words and using the improved GPU. In addition, if these limita-
tions are resolved, Korean sign language can be recognized with higher accuracy, which is
expected to be of great help in developing devices for assisting sign language learning.

6. Conclusions

This paper proposes a wearable glove for Korean sign language education using an
LSTM model. The external appearance of a wearable glove was designed for sign language
education, as well as its operation algorithm. A prototype was produced based on the
designed wearable glove and operating algorithm, and it was confirmed that it was possible
to control the finger angle. To train the deep learning model, we designed a training dataset
with 20 Korean sign language words. Using this, RNN and LSTM training was conducted.
In addition, when using a training data sequence length set to 25, the LSTM model was not
trained. To solve this problem, an experiment was conducted to compare the difference
in the total number of data according to the sequence length of the training data and the
training accuracy and loss of the RNN and LSTM and determine this difference. It was
confirmed that the smaller sequences are stable but relatively less accurate, and larger
sequences are unstable but have higher accuracy. Based on the results of the RNN and
LSTM training experiments, a model that can be used for sign language recognition using
wearable gloves was selected. The selected model corresponds to a data sequence length of
20 for the LSTM, and the correct answer rate was 85%.

In the future, we aim to improve the expression and accuracy of more words by
training with more than 100 sign languages. When a sentence is input based on the trained
sign language words, it will be possible to continuously convert the input sentence into
a sign language sentence and express this sentence. In addition, we plan to improve the
structural design of the wearable glove and the control method that improves response
performance so that it can achieve a better sign language learning performance than the
current model.

Author Contributions: Conceptualization, H.-J.K.; methodology, H.-J.K.; validation, S.-W.B.;
investigation, H.-J.K.; writing—original draft preparation, H.-J.K.; writing—review and editing,
S.-W.B.; supervision, S.-W.B.; project administration, S.-W.B.; funding acquisition, S.-W.B. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by a 2021 Research Grant from Sangmyung University (2021-A000-0263).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lee, H.H.; Song, M.Y.; Hong, S.E.; Lee, E.Y.; Kang, C.W.; Won, S.O. A Study on the Characteristics of Sequential Combination

Structure of Korean Signs-Focused on the Seoul Data of the Korean Sign Language Corpus. Korean Soc. Educ. Hear. Lang. Impair.
2020, 11, 117–199. [CrossRef]

2. Shin, H.I. A Bridge between Meaning and Form: Implications of Iconicity for Korean Sign Language Learning. Asian J. Educ.
2019, 20, 301–320. [CrossRef]

3. Kim, H.J. A Deaf People’s Perspective on Deaf Identity. Korean Soc. Educ. Hear. Lang. Impair. 2021, 12, 47–65. [CrossRef]
4. Choi, S.K. Deaf People’s Own Perspective with Participants to Education for Students with Hearing Impairment. Korean J. Political

Sci. 2020, 28, 145–170. [CrossRef]
5. Caselli, N.K.; Hall, W.C.; Henner, J. American Sign Language Interpreters in Public Schools: An Illusion of Inclusion that

Perpetuates Language Deprivation. Matern. Child Health J. 2020, 24, 1323–1329. [CrossRef] [PubMed]
6. Cheok, M.J.; Omar, Z.; Jaward, M.H. A review of hand gesture and sign language recognition techniques. Int. J. Mach. Learn.

Cybern. 2019, 10, 131–153. [CrossRef]
7. Wu, J.; Sun, L.; Jafari, R. A Wearable System for Recognizing American Sign Language in Real-Time Using IMU and Surface EMG

Sensors. IEEE J. Biomed. Health Inform. 2016, 20, 1281–1290. [CrossRef]

http://doi.org/10.24009/ksehli.2020.11.2.009
http://doi.org/10.15753/aje.2019.03.20.1.301
http://doi.org/10.24009/ksehli.2021.12.3.003
http://doi.org/10.34221/KJPS.2020.28.2.7
http://doi.org/10.1007/s10995-020-02975-7
http://www.ncbi.nlm.nih.gov/pubmed/32666224
http://doi.org/10.1007/s13042-017-0705-5
http://doi.org/10.1109/JBHI.2016.2598302

Processes 2023, 11, 1065 20 of 20

8. Lee, B.G.; Lee, S.M. Smart Wearable Hand Device for Sign Language Interpretation System with Sensors Fusion. IEEE Sens. J.
2018, 18, 1224–1232. [CrossRef]

9. Abhishek, K.S.; Qubeley, L.C.F.; Ho, D. Glove-based hand gesture recognition sign language translator using capacitive touch
sensor. In Proceedings of the 2016 IEEE International Conference on Electron Devices and Solid-State Circuits (EDSSC), Hong
Kong, China, 3–5 August 2016; pp. 334–337. [CrossRef]

10. Zhou, Z.; Chen, K.; Li, X.; Zhang, S.; Wu, Y.; Zhou, Y.; Meng, K.; Sun, C.; He, Q.; Fan, W.; et al. Sign-to-speech translation using
machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578. [CrossRef]

11. Kim, K.W.; Lee, M.S.; Soon, B.R.; Ryu, M.H.; Kim, J.N. Recognition of sign language with an inertial sensor-based data glove.
Technol. Health Care 2016, 24, S223–S230. [CrossRef]

12. Wadhawan, A.; Kumar, P. Deep learning-based sign language recognition system for static signs Sensors Fusion. Neural Comput.
Appl. 2020, 32, 7957–7968. [CrossRef]

13. Al-Hammadi, M.; Muhammad, G.; Abdul, W.; Alsulaiman, M.; Bencherif, M.A.; Mekhtiche, M.A. Hand Gesture Recognition for
Sign Language Using 3DCNN. IEEE Access 2020, 8, 79491–79509. [CrossRef]

14. Mariappan, H.M.; Gomathi, V. Indian Sign Language Recognition through Hybrid ConvNet-LSTM Networks. EMITTER Int. J.
Eng. Technol. 2021, 9, 182–203. [CrossRef]

15. Samaan, G.H.; Wadie, A.R.; Attia, A.K.; Asaad, A.M.; Kamel, A.E.; Slim, S.O.; Abdallah, M.S.; Cho, Y.-I. MediaPipe’s Landmarks
with RNN for Dynamic Sign Language Recognition. Electronics 2022, 11, 3228. [CrossRef]

16. Ismail, M.H.; Dawwd, S.A.; Ali, F.H. Dynamic hand gesture recognition of Arabic sign language by using deep convolutional
neural networks. Indones. J. Electr. Eng. Comput. Sci. 2020, 25, 952–962. [CrossRef]

17. Kothadiya, D.; Bhatt, C.; Sapariya, K.; Patel, K.; Gil-González, A.-B.; Corchado, J.M. Deepsign: Sign Language Detection and
Recognition Using Deep Learning. Electronics 2022, 11, 1780. [CrossRef]

18. Abdullahi, S.B.; Chamnongthai, K. American Sign Language Words Recognition of Skeletal Videos Using Processed Video Driven
Multi-Stacked Deep LSTM. Sensors 2022, 22, 1406. [CrossRef]

19. Choi, S.-G.; Park, Y.; Sohn, C.-B. Dataset Transformation System for Sign Language Recognition Based on Image Classification
Network. Appl. Sci. 2022, 12, 10075. [CrossRef]

20. Nihal, R.A.; Broti, N.M.; Deowan, S.A.; Rahman, S. Design and Development of a Humanoid Robot for Sign Language
Interpretation. SN Comput. Sci. 2021, 2, 220. [CrossRef]

21. Meghdari, A.; Alemi, M.; Zakipour, M.; Kashanian, S.A. Design and Realization of a Sign Language Educational Humanoid
Robot. J. Intell. Robot. Syst. 2019, 95, 3–17. [CrossRef]

22. Al-khazraji, S.; Berke, L.; Kafle, S.; Yeung, P.; Huenfauth, M. Modeling the Speed and Timing of American Sign Language
to Generate Realistic Animations. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and
Accessibility, Galway, Ireland, 22–24 October 2018; pp. 259–270. [CrossRef]

23. Sreelakshmi, M.; Subash, T.D. Haptic Technology: A comprehensive review on its applications and future prospects. Mater. Today
Proc. 2017, 4, 4182–4287. [CrossRef]

24. Liu, L.M.; Li, W.; Dai, J.J. Haptic technology and its application in education and learning. In Proceedings of the2017 10th
International Conference on Ubi-Media Computing and Workshops (Ubi-Media), Pattaya, Thailand, 1–4 August 2017; pp. 1–6.
[CrossRef]

25. Medellin Castillo, H.I.; Zaragoza Siqueiros, J.; Govea Valladares, E.H.; Garza Camargo, H.; Lim, T.; Ritchie, J.M. Haptic-enabled
virtual training in orthognathic surgery. Virtual Real. 2021, 24, 53–67. [CrossRef]

26. Lee, S.H. Research and development of haptic simulator for Dental education using Virtual reality and User motion. Int. J. Adv.
Cult. Technol. 2018, 6, 52–57. [CrossRef]

27. Pala, F.K.; Türker, P.M. Developing a haptic glove for basic piano education. World J. Educ. Technol. Curr. Issues 2019, 11, 38–47.
[CrossRef]

28. Marchal Crespo, L.; Raai, M.V.; Rauter, G.; Wolf, P.; Riener, R. The effect of haptic guidance and visual feedback on learning a
complex tennis task. Exp. Brain Res. 2013, 231, 277–297. [CrossRef]

29. Gao, L.; Li, H.; Liu, Z.; Liu, Z.; Wan, L.; Feng, W. RNN-Transducer based Chinese Sign Language Recognition. Neurocomputing
2021, 434, 45–54. [CrossRef]

30. MediaPipe Holistic. Available online: https://google.github.io/mediapipe/solutions/holistic.html (accessed on 21 November 2022).
31. MediaPipe Hands. Available online: https://google.github.io/mediapipe/solutions/hands.html (accessed on 21 November 2022).
32. MediaPipe Pose. Available online: https://google.github.io/mediapipe/solutions/pose.html (accessed on 21 November 2022).
33. AI-Hub. Available online: https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=120&topMenu=100&aihubDataSe=

extrldata&dataSetSn=264 (accessed on 21 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/JSEN.2017.2779466
http://doi.org/10.1109/EDSSC.2016.7785276
http://doi.org/10.1038/s41928-020-0428-6
http://doi.org/10.3233/THC-151078
http://doi.org/10.1007/s00521-019-04691-y
http://doi.org/10.1109/ACCESS.2020.2990434
http://doi.org/10.24003/emitter.v9i1.613
http://doi.org/10.3390/electronics11193228
http://doi.org/10.11591/ijeecs.v25.i2.pp952-962
http://doi.org/10.3390/electronics11111780
http://doi.org/10.3390/s22041406
http://doi.org/10.3390/app121910075
http://doi.org/10.1007/s42979-021-00627-3
http://doi.org/10.1007/s10846-018-0860-2
http://doi.org/10.1145/3234695.3236356
http://doi.org/10.1016/j.matpr.2017.02.120
http://doi.org/10.1109/UMEDIA.2017.8074138
http://doi.org/10.1007/s10055-020-00438-6
http://doi.org/10.17703//IJACT2018.6.4.52
http://doi.org/10.18844/wjet.v11i1.4008
http://doi.org/10.1007/s00221-013-3690-2
http://doi.org/10.1016/j.neucom.2020.12.006
https://google.github.io/mediapipe/solutions/holistic.html
https://google.github.io/mediapipe/solutions/hands.html
https://google.github.io/mediapipe/solutions/pose.html
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=120&topMenu=100&aihubDataSe=extrldata&dataSetSn=264
https://www.aihub.or.kr/aihubdata/data/view.do?currMenu=120&topMenu=100&aihubDataSe=extrldata&dataSetSn=264

	Introduction
	Sign Language Training
	Sign Language Training Model
	Data Preprocessing
	Training Data

	Wearable Glove
	Operational Algorithm of Wearable Glove
	Wearable Glove Prototyping

	RNN and LSTM Performance Experiment
	Discussion
	Conclusions
	References

