Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams
Abstract
:1. Introduction
2. Project Background
2.1. Overview of the Working Face
2.2. Preliminary Analysis of Strong Mine Pressure Triggers
3. Methodology
3.1. Physically Similar Simulation Experiments
3.2. Experimental Design
3.3. Analysis of Experimental Results
3.3.1. Overburden-Breaking Characteristics
3.3.2. Law of Incoming Pressure of the Roof Plate
4. Mechanism of Strong Mine Pressure on the Roof and Control Measures
4.1. Mechanism of Strong Mine Pressure on the Roof
4.2. Strong Mine Pressure Control Strategy for Very Close Range Coal Seam Group
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, Y.; Kong, D.; Cheng, Z.; Wen, Z.; Ma, Z.; Wu, G.; Liu, Y. Instability Control of Roadway Surrounding Rock in Close-Distance Coal Seam Groups under Repeated Mining. Energies 2021, 14, 5193. [Google Scholar] [CrossRef]
- Cui, F.; Jia, C.; Lai, X.; Yang, Y.; Dong, S. Study on the Law of Fracture Evolution under Repeated Mining of Close-Distance Coal Seams. Energies 2020, 13, 6064. [Google Scholar] [CrossRef]
- Huang, Q.; He, Y.; Luo, L.; Jian, C. Study on activation structure and support resistance of collapsed roof in shallow buried extremely close distance coal seam goaf area. J. Min. Saf. Eng. 2018, 35, 6–11. [Google Scholar] [CrossRef]
- Feng, J.; Zhou, Y.; Zhang, K.; Xu, Y.; Li, H. Breaking characteristics of thick key layer and determination of working resistance of bracket in shallow buried close-range multi-coal seam goaf area. J. Min. Saf. Eng. 2018, 35, 7–12. [Google Scholar] [CrossRef]
- Du, F.; Yuan, R.; Zheng, J. Abnormal ore pressure mechanism of mining under coal column in shallow buried near range coal seam. J. China Coal Soc. 2017, 42 (Suppl. S1), 24–29. (In Chinese) [Google Scholar] [CrossRef]
- Yang, K.; Kong, X.; Lu, W.; Liu, S. Study on mining pressure law of large dip thick coal seam under close goaf. Chin. J. Rock Mech. Eng. 2015, 34 (Suppl. S2), 4278–4285. (In Chinese) [Google Scholar]
- He, F.; Li, L.; Lv, K.; Qin, B.; Xu, X.; Ma, Q.; Chen, Y. Study on Evolution of Front Abutment Pressure at Working Face in Repeated Mining of Close-Distance Coal Seams. Sustainability 2022, 14, 12399. [Google Scholar] [CrossRef]
- Cheng, Z.; Yong, Y.; Wen, W.; Zhong, C.; Sheng, W.; Zhong, H. Research on the ‘‘three shells’’ cooperative support technology of large-section chambers in deep mines. Int. J. Min. Sci. Technol. 2021, 31, 665–680. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, Y.; Liang, X.; Qin, Z.; Chen, Z.; Ding, K.; Xia, Y.; Yan, C. Experimental Study on Floor Damage and Slurry Material Ratio Optimization in Deep and High Confined Water Mining. Processes 2022, 10, 1806. [Google Scholar] [CrossRef]
- Kai, L.; Fu, H.; Liang, L.; Xu, X.; Bin, Q. Field and simulation study of the rational retracement channel position and control strategy in close-distance coal seams. Energy Sci. Eng. 2022, 10, 2317–2332. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, H.; Gao, M.; Li, M.; Sun, J. Fracture law of different overlying strata in mining of protective seam under close distance coal seam. Energy Sci. Eng. 2023, 11, 1336–1348. [Google Scholar] [CrossRef]
- Qin, D.; Wang, X.; Zhang, D.; Guan, W.; Zhang, L.; Xu, M. Occurrence Characteristic and Mining Technology of Ultra-thick Coal Seam in Xinjiang, China. Sustainability 2019, 11, 6470. [Google Scholar] [CrossRef]
- Wang, W.; Yuan, Y.; Chen, Z.; Zhu, C. Physical modeling of floor failure above confined water: A case study in China. Environ. Earth Sci. 2022, 81, 325. [Google Scholar] [CrossRef]
- Yang, J.; Zheng, K.; Wang, Z.; Pang, N. Advanced weakening treatment technology of hard roof power disaster. J. China Coal Soc. 2020, 45, 3371–3379. [Google Scholar] [CrossRef]
- Zhu, T.; Zhang, B.; Feng, G.; Zhang, X. Roof structure and control of coal stope in the lower layer of coal seam at very close range. J. China Coal Soc. 2010, 35, 4–8. [Google Scholar] [CrossRef]
- Hao, D.; Wu, Y.; Chen, H.; Chu, X.; Li, Y. Instability mechanism and control of short-range extra thick coal seam recovery roadway under goaf. J. China Coal Soc. 2019, 44, 2682–2690. [Google Scholar]
- Wang, L.; Chang, Z.; Yang, Z.; Wang, X.; Han, D. Joint support technology of underground mining roadway in goaf area of deep well close coal seam group. J. Min. Saf. Eng. 2018, 35, 686–692. [Google Scholar] [CrossRef]
- Tu, S.; Dou, F.; Wan, Z.; Wang, F.; Yuan, Y. Control technology of roof plate of short-range coal seam comprehensive mining under shallow buried room column goaf area. J. China Coal Soc. 2011, 36, 366–370. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, W.; Ju, J. Dynamic load ore pressure mechanism of close range coal seam mining under shallow buried house mining area. J. China Coal Soc. 2017, 42, 500–509. [Google Scholar] [CrossRef]
- Gao, R.; Yu, B.; Xia, H.; Duan, H. Reduction of Stress Acting on a Thick, Deep Coal Seam by Protective-Seam Mining. Energies 2017, 10, 1209. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, J.; Xie, K.; Wang, J.; Chen, L.; Hu, W.; Xu, J. Comprehensive technical support for safe mining in ultra-close coal seams: A case study. Energy Explor. Exploit. 2021, 39, 1195–1214. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, Y.; Dai, H.; Xu, L.; Li, J.; Xu, R. Hyperbolic Secant Subsidence Prediction Model under Thick Loose Layer Mining Area. Minerals 2022, 12, 1023. [Google Scholar] [CrossRef]
- Wen, X.; Ge, Z.; Zhang, F.; Pang, R. Study On the Migration Law of Overlying Rock in the Upward Layered Continuous Mining Face of Thick Coal Seam with Paste Backfill Mining. Math Probl. Eng. 2022. [Google Scholar] [CrossRef]
- Guang, Q.; Jing, C.; Chao, W.; Shuo, W.; Ming, Z.; Xuan, D. Characteristics of Stratum Structure and Fracture Evolution in Stratified Mining of Shallow Buried High-Gas-Thick Coal Seam by Similarity Simulation. Geofluids 2021. [Google Scholar] [CrossRef]
- Wei, L.; Li, P.; Bai, X.; Xi, S. Study on overburden failure characteristics in deep thick loose seam and thick coal seam mining. Geomat. Nat. Hazards Risk 2020, 11, 632–653. [Google Scholar] [CrossRef]
- Hua, L.; Zhan, C.; Fei, L. Study on the mechanism of a new fully mechanical mining method for extremely thick coal seam. Int. J. Rock Mech. Min. Sci. 2021, 142, 1365–1609. [Google Scholar] [CrossRef]
- Liu, P.; Gao, L.; Zhang, P.; Wu, G.; Wang, Y.; Liu, P.; Kang, X.; Ma, Z.; Kong, D.; Han, S. Physical Similarity Simulation of Deformation and Failure Characteristics of Coal-Rock Rise under the Influence of Repeated Mining in Close Distance Coal Seams. Energies 2022, 15, 3503. [Google Scholar] [CrossRef]
- Huo, B.; Fan, Z.; Xie, W.; Duan, Z.; Lu, X.; Jing, X. Stress field analysis and dynamic pressure mechanism under shallow buried close-range goaf. Coal Sci. Technol. 2019, 47, 179–186. [Google Scholar]
- Wei, X.; Bai, H.; Rong, H.; Yang, J.; Zhang, B. Research on mining fracture of overburden in close distance multi-seam. Procedia Earth Planet. Sci. 2011, 2, 20–27. [Google Scholar] [CrossRef]
- Shang, Y.; Kong, D.; Pu, S.; Xiong, Y.; Li, Q.; Cheng, Z. Study on Failure Characteristics and Control Technology of Roadway Surrounding Rock under Repeated Mining in Close-Distance Coal Seam. Mathematics 2022, 10, 2166. [Google Scholar] [CrossRef]
- Li, Q.; Wu, G.; Kong, D.; Xin, L. Study On Stability of Stope Surrounding Rock Under Repeated Mining in Close-Distance Coal Seams. Geofluids 2022. [Google Scholar] [CrossRef]
- Han, J.; Zhang, H.; Gao, Z.; Rong, H.; Wang, J. Failure height of weak overburden by layered fully-mechanized mining in extremely thick coal seam. J. Min. Saf. Eng. 2016, 33, 226–230,237. [Google Scholar] [CrossRef]
- An, Y.; Zhang, N.; Zhao, Y. Field and numerical investigation on roof failure and fracture control of thick coal seam roadway. Eng. Fail. Anal. 2021, 128, 105594. [Google Scholar] [CrossRef]
- Bian, Z.; Lei, S. Research on environmental effects and protection strategies of coal resources development in Xinjiang. Coal Sci. Technol. 2020, 48, 43–51. [Google Scholar]
- Hong, L.; Bo, Z.; Xue, L.; Cheng, L.; Cheng, W.; Feng, W.; De, C. Research on roof damage mechanism and control technology of gob-side entry retaining under close distance gob. Eng. Fail. Anal. 2022, 138, 1350–6307. [Google Scholar] [CrossRef]
Name of Rock Layer | Capacity Weight (kN/m3) | Tensile Strength (MPa) | Cohesion Force (MPa) | Internal Friction Angle (°) | Poisson’s Ratio | Elasticity (GPa) |
---|---|---|---|---|---|---|
Coarse sandstone | 25.4 | 6.2 | 10.2 | 31.7 | 0.21 | 8.5 |
Siltstone | 26.3 | 3.7 | 5.4 | 30.4 | 0.23 | 5.1 |
Mudstone | 26.8 | 0.9 | 1.6 | 27.5 | 0.35 | 4.4 |
Sandy mudstone | 25.8 | 2.2 | 3.4 | 29.9 | 0.33 | 4.4 |
B5 coal seam | 14.4 | 1.4 | 2.8 | 29.5 | 0.27 | 1.7 |
B6 coal seam | 14.9 | 1.1 | 3.8 | 28.8 | 0.24 | 2.8 |
B7 coal seam | 16.1 | 1.5 | 4.1 | 28.5 | 0.26 | 4.2 |
Serial No. | Name of Rock Layer | Rock Strata | Simulated Thickness /cm | Ratio Number (1:100) | Main Materials/kg | ||
---|---|---|---|---|---|---|---|
Fine Sand | Plaster | Lime | |||||
15 | Coarse sandstone | High key layer | 15.8 | 737 | 77.4 | 3.3 | 7.7 |
14 | Sandy mudstone | Thick and weak rock formations | 6.4 | 837 | 31.4 | 1.2 | 2.8 |
13 | Mudstone | 12.3 | 982 | 110.9 | 9.9 | 2.5 | |
12 | Siltstone | 3.5 | 728 | 17.2 | 0.5 | 2.0 | |
11 | Sandy mudstone | 9.1 | 837 | 44.6 | 1.7 | 4.0 | |
10 | Mudstone | 8.8 | 737 | 43.1 | 3.9 | 1.0 | |
9 | Siltstone | 4.4 | 728 | 21.6 | 0.6 | 2.5 | |
8 | Coarse sandstone | Low critical layer | 10.3 | 737 | 50.5 | 2.2 | 5.0 |
7 | Siltstone | 6.9 | 728 | 33.8 | 1.0 | 3.9 | |
6 | Sandy mudstone | 5.2 | 837 | 25.5 | 1.0 | 2.3 | |
5 | B5 coal seam | 2.6 | 855 | 12.7 | 0.8 | 0.8 | |
4 | Siltstone | 4.5 | 728 | 39.2 | 1.1 | 4.5 | |
3 | B6 coal seam | 3.5 | 882 | 17.2 | 1.7 | 0.4 | |
2 | Sandy mudstone | 4.0 | 837 | 24.5 | 0.9 | 2.2 | |
1 | B7 coal seam | 6.8 | 874 | 33.3 | 3.0 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Wang, W.; Wang, Z.; Lou, F.; Wang, H.; Wu, R.; Jia, Y.; Yong, M. Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams. Processes 2023, 11, 1320. https://doi.org/10.3390/pr11051320
Feng J, Wang W, Wang Z, Lou F, Wang H, Wu R, Jia Y, Yong M. Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams. Processes. 2023; 11(5):1320. https://doi.org/10.3390/pr11051320
Chicago/Turabian StyleFeng, Junwen, Wenmiao Wang, Zhen Wang, Fang Lou, Hongzhi Wang, Rang Wu, Yongyong Jia, and Mingchao Yong. 2023. "Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams" Processes 11, no. 5: 1320. https://doi.org/10.3390/pr11051320
APA StyleFeng, J., Wang, W., Wang, Z., Lou, F., Wang, H., Wu, R., Jia, Y., & Yong, M. (2023). Study on the Mechanism and Control of Strong Rock Pressure in Thick Coal Seam Mining under the Goaf of Very Close Multiple Coal Seams. Processes, 11(5), 1320. https://doi.org/10.3390/pr11051320