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Abstract: In this study, the classification, composition, preparation methods, and performance
parameters of deep eutectic solvents (DESs) and their recent applications in natural product extraction,
drug delivery systems, trace metal determination, nanomaterial synthesis, and electrochemistry are
systematically summarised through the literature of recent decades, using DESs and applications as
keywords. The hydrogen bond acceptors (HBA) of DESs are mainly quaternary ammonium salts
(e.g., choline chloride) or amphoteric ions (e.g., betaine); the hydrogen bond donors (HBD) are mostly
compounds such as urea, polyols, and sugars. Their melting points are related to hydrogen bonding,
their polarities are higher than most ionic liquids, and their viscosities are generally in the range
of 0.01–5 Pa·s. Compared with traditional organic solvents and conventional ionic liquids, DESs
have higher solubility, with their ability to dissolve metal oxides and insoluble drugs, and have
good biodegradability. DESs have high extraction rates in flavonoids and phenols, can increase
drug solubility in drug delivery systems, can effectively extract and perform pre-concentration of
metals in trace metal determination, can synthesise new nanomaterial, and can be used as electrolytes
for electrochemical reactions in electrochemistry. This paper collates the relevant literature on
the physicochemical properties and multi-field applications of DESs, which provides a deeper
understanding of DESs and looks forward to the future development of DESs

Keywords: deep eutectic solvents; properties; applications

1. Introduction

With the introduction of the concept of “green chemistry”, green solvents have at-
tracted the attention of researchers. Compared with green solvents, traditional organic
solvents (e.g., methylene chloride and ethyl acetate) have disadvantages such as high
volatility, toxicity and difficulty in recycling, and improper use causing pollution or even
endangering people’s health, which is not in line with the concept of green chemistry.

To find a “green and designable” chemical reaction medium that can replace traditional
organic solvents, ionic liquids have gradually become a research hotspot [1]. Ionic liquids
have high thermal and chemical stability [2], strong electrical conductivity, low vapour
pressure, and low flammability. Ionic liquids are safe compared to traditional organic
solvents, yet they are difficult and more expensive to prepare. Most ionic liquids have
high viscosity and density, and high viscosity ionic liquids are not conducive to the mass
transfer process of the target substances during the extraction and separation of traditional
Chinese medicine [3].

To address the shortcomings of organic solvents and ionic liquids, Abbott et al. [4] first
proposed, in 2003, that choline chloride (hydrogen bond acceptor, HBA) and urea (hydrogen
bond donor, HBD) could be co-blended in a 1:2 ratio to form “deep eutectic solvents (DESs)”
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with a melting point below that of the two single components [5]; this mixture could
effectively solve the problems associated with conventional organic solvents. Therefore,
DESs have replaced traditional organic solvents and ionic liquids and have been called the
new green solvents. Analogous to ionic liquids, the physical and chemical properties of
DESs depend on the selection of HBD and HBA components and their ratio [6], yet DESs
are superior to ionic liquids in some parameters. For example, DESs have the properties
of low vapour pressure, solubility, and electrochemically stable plasma liquid, and have
the unique properties of simple preparation, non-toxicity, and biodegradability [5]. The
viscosity of DESs is lower than that of ionic liquids, mainly because DESs rely on hydrogen
bonding, while ionic liquids rely on ion interaction. Therefore, DESs are widely used in the
extraction of active ingredients from natural products, the preparation of nanomaterials,
the determination of trace metals, and electrochemistry.

This paper describes the latest research results on the classification, composition,
preparation, physical and chemical properties, and application of DESs.

2. Classification of DESs

DESs are a novel eutectic hybrid solvent formed by the complexation of HBAs and
HBDs. HBDs include urea, carboxylic acids, polyols, amino acids, and sugars. HBAs are
mainly quaternary ammonium salts (e.g., choline chloride), amphoteric ions (e.g., betaine),
or their hydrochloride salts. So far, DESs are roughly divided into the following five
types: (1) The combination of quaternary ammonium salts with metal chlorides, such as
choline ferric chloride or choline chloride–aluminium chloride [7]; (2) The combination of a
quaternary ammonium salt and hydrated metal chloride, such as choline chloride–cobalt
chloride [8] in aqueous solution; (3) A mixture of quaternary ammonium salts and small
organic molecules, such as choline chloride–urea; (4) Mixtures of metal chloride hydrates
and an organic HBD, such as copper chloride–fructose [9]; (5) A mixture of non-ionic,
molecular HBA and an HBD, such as 4-nitrophenol–menthol [10,11].

3. Composition of DESs

In recent years, DESs have been successfully used in natural material extraction, drug
delivery, metal determination, nanomaterial preparation, electrochemistry and other fields.
Choline chloride is a cheap, biodegradable (more than 93% in 14 days) compound with
very low acute toxicity, making it the most widely used HBA while facilitating the recycling
of DESs. There are many types of HBDs, and the exploration of DESs prepared by different
HBDs still needs to be deepened. Some common DES compositions are shown in Table 1.

Table 1. Common deep eutectic solvents (DESs) components.

HBA HBD Mole Ratio
(HBD:HBA) References

Choline chloride Ethylene glycol 1:2 [12]
Choline chloride Oxalic acid 1:1 [13]
Choline chloride Lactic acid 1:2 [14]
Choline chloride Formic Acid 1:2 [15]
Choline chloride Urea 1:2 [16]
Choline chloride Citric Acid 1:1 [16]
Choline chloride Malic acid 1:2 [14]
Choline chloride Fructose 1:1 [14]

Tetrabutylammonium bromide Imidazole 3:7 [16]
Methyltriphenylphosphonium bromide Glycerol 1:3 [16]
Methyltriphenylphosphonium bromide Triethylene glycol 1:5 [16]
Methyltriphenylphosphonium bromide Ethylene glycol 1:4 [16]

Ethylamine chloride Urea 1:1.5 [16]
Ethylamine chloride Acetamide 1:1.5 [16]

Betaine Ethylene glycol 1:2 [14]
Betaine Fructose 1:1 [14]
Betaine Malic Acid 1:1 [13]
Betaine Maleic acid 1:2 [13]
Betaine Xylitol 1:1 [13]
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4. Preparation of DESs

DESs can be obtained by the following six methods of preparation:
(1) Heated and stirred method refers to mixing an HBA and an HBD to form a

homogeneous liquid. This method is fast, simple to operate, does not require additional
solvents, and does not produce by-products. Fernandes et al. [17] prepared several acidic
DESs by the heating and stirring method and screened out the DESs for lignin extraction
from sea pine wood chips. From the screening results of DESs, the extraction performance
of chloro-based DESs is significantly better than that of betaine- or urea-based DESs. In
addition, the molar ratio of HBAs and HBDs in DESs was tested and optimised, and it was
found that DESs containing a higher molar fraction of HBD had a higher extraction rate.

(2) Microwave irradiation method has green advantages such as short synthesis
time and low energy consumption compared with the traditional heating and stirring
process. Gomez et al. [18] used microwave-assisted synthesis of several natural DESs. The
microwave radiation method shortened the synthesis time to 20 s and reduced the energy
consumption by 650 times.

(3) Freeze-drying method refers to mixing two or more ingredients and dissolving
them in water, pre-freezing them at low temperatures, and then freeze-drying them. This
method is widely used for its ease of production and speed. Liu et al. [19] mixed choline
chloride with an aqueous urea solution and freeze-dried it to obtain viscous and transparent
DESs. Chen et al. [20] mixed glycerol and amino acids and dissolved them in water, pre-
froze them at low temperature for 0.5–1 h, and then freeze-dried them for 8–12 h to obtain
glycerol–amino acid DESs.

(4) Grinding method refers to mixing HBAs and HBDs and then grinding them to
form a clear liquid. Florindo et al. [21] used two different synthetic methods, heating and
grinding, to prepare DESs using choline chloride as the HBA and several carboxylic acids
(levulinic acid, glutaric acid, malonic acid, oxalic acid, and glycolic acid) as HBDs.

(5) Vacuum evaporation method involves dissolving a component with a known molar
ratio in water, evaporating it under reduced pressure at 50 ◦C, and storing it in a silica
gel desiccator to obtain constant weight DESs. This method can handle thermosensitive
materials that tend to decompose at high temperatures and can use a low-temperature heat
source to reduce energy consumption. Huang et al. [22] dissolved the HBD fraction and
the HBA fraction in proportion to each other in water, evaporated under reduced pressure
at 50 ◦C, and then stored in a desiccator until a constant weight liquid was obtained, after
which 22 different natural deep eutectic solvents (NADESs) were systematically screened
for ultrasound-assisted extraction of active ingredients from the widely used Chinese herbal
plant salvia miltiorrhiza.

(6) Ultrasonication method refers to forming a homogeneous mixture of HBAs and HBDs
after a mixed ultrasonication reaction. Wang’s team synthesised choline chloride–glycerol us-
ing ultrasonication-assisted and stirring–heating methods, and used choline chloride–glycerol
combined using ultrasonication for efficient extraction of glycosides from lilac [23].

5. Properties of DESs
5.1. Melting Point of DESs

The melting point (mp) of DESs is the temperature at which the solid raw material
melts to form DESs, and the melting point determines the minimum temperature of
DESs [24]. After mixing an HBA with an HBD, the melting point of the component mixture
is lower than that of the single component. The lower melting point is mainly due to
the hydrogen bonding between the HBD and HBA, which inhibits the precipitation of
solids. Abbott et al. [4] found that a eutectic occurs when choline chloride and urea
are mixed at a ratio of 1:2. The melting point of the eutectic mixture is 12 ◦C, which
is much lower than that of any single component (choline chloride mp = 302 ◦C, urea
mp = 133 ◦C). Abbott et al. found that the decrease in the melting point was related to
anions and cations; the symmetry of the cation decreases, and the melting point of the
mixture decreases. When combined with urea, the melting point of monovalent anion
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choline salt and urea decreased in the order of F− > NO3
− > Cl− > BF4

−, which was related
to the strength of the hydrogen bond. The lower the melting point of the liquid used in
the extraction or separation process, the more favourable the mass transfer process of the
target substance. Pang et al. [25] found that quaternary ammonium salts can combine with
phenolic compounds in oil at room temperature to form DESs that are insoluble in the oil
phase, thereby achieving the separation of phenolic compounds from oil. DES separation
methods avoid the disadvantages of using strong acid and strong alkali aqueous solutions
in the traditional method (alkali washing method) and mutual dissolution in the organic
solvent method; additionally, the extraction efficiency is high and the extractant can be
reused. Therefore, DESs have a wide range of application prospects in the extraction and
separation of substances. Common DES melting points are shown in Table 2.

Table 2. Melting point of DESs.

No. DESs Type Melting Point/◦C References

1 Choline chloride: Urea (1:2) 12.00 [26]
2 Choline chloride: Ethylene glycol (1:2) −66.00 [27]
3 Choline chloride: Imidazole (3:7) 56.00 [26]
4 Choline chloride: Malonic acid (1:1) 10.00 [26]
5 Choline chloride: Acrylic acid (1:1.6) Liquid (25.00 ◦C) [26]
6 Choline chloride: 1,4-butanediol (1:3) −32.00 [26]
7 Choline chloride: Trifluoromethylamide (1:2) 51.00 [26]
8 Choline chloride: 2,2,2-trifluoroacetamide (1:2) Liquid (25.00 ◦C) [26]

9 Methyltriphenylphosphonium bromide:
Glycerol (1:3) −5.55 [28]

10 Methyltriphenylphosphonium bromide:
Ethylene glycol (1:4) −49.34 [28]

11 Methyltriphenylphosphonium bromide:
Triethylene glycol (1:5) −21.00 [28]

5.2. Polarity and Viscosity of DESs

Polarity is an important parameter of solvents. The polarity of a solvent can be
assessed by the empirical parameter of solvent polarity (ET(30)), which is the electron
leap energy of the fluorescent probe in the solvent (Rechard Fluorescence 30), which can
be measured by using a Rechard Fluorescence 30 with UV–Vis technology. DESs have
higher polarity values than most ionic liquids, with glycerol-based DESs being the highest,
followed by ethylene glycol, and then urea [29]. The types of HBD and HBA components
are important factors affecting the polarity of DESs. For example, the DESs of choline
chloride are less polarised than those of betaine [30].

The viscosity of DESs is similar to that of ionic liquids, mainly due to the presence
of sufficiently large ions in their structure, the small pore volume, and the effect of forces
such as van der Waals and electrostatic forces. The viscosity of DESs is generally in
the range of 0.01–5 Pa·s and is higher than that of the molecular solvent ethanol [31].
Abbott et al. [4] found that the viscosity of DESs is influenced by the mobility, free volume,
and surface tension of the ions, while the type of HBD, temperature, and moisture content
also affect the viscosity of DESs. The Eyring and Vogel–Fulcher–Tamman (VFT) models
were used to describe the temperature dependence of the dynamic viscosity of aqueous
solutions of choline chloride as quaternary ammonium salt in the temperature range from
293.15 K to 363.15 K [32]. For instance, the viscosity of DESs depends closely on the nature
of the HBD, and an increase in temperature increases the distance between anions and
cations, making their interaction forces and vscosity decrease [33]. In the temperature
range of 293.15–333.15 K, using choline chloride–ethylene glycol and choline chloride–
1,2-propanediol as raw materials, with the molar ratio of HBA/HBD being 1:2 to 1:6 at
101.3 kPa, the viscosity decreases with the increase in temperature and the addition of HBD
(ethylene glycol). The substitution of the HBD in DESs by HBDs with longer carbon chains
increases their viscosity at constant temperature [34]. Therefore, hydrophilic DESs usually
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reduce their viscosity by decreasing surface tension, increasing temperature, and adding
a certain amount of water. The polarity and viscosity of 10 groups of DESs are shown in
Table 3, as verified by the preliminary experiments of our group.

Table 3. Polarity and viscosity of DESs.

No. DESs Type Water Content Polarity Viscosity (Pa·s)

1 Choline chloride: Lactic acid 20% 48.09 0.02530
2 Choline chloride: Ethylene glycol 20% 48.54 0.01270
3 Choline chloride: Fructose 20% 58.17 0.04800
4 Choline chloride: Xylitol 20% 48.41 0.03500
5 Betaine: L-proline 20% 60.44 0.03720
6 Betaine: L-ascorbic acid 20% 48.37 0.15400
7 Betaine: Fructose 20% 58.70 0.01890
8 Betaine: Malic acid 20% 48.29 0.01490
9 Betaine: Maleic acid 20% 59.56 0.00940
10 Betaine: Xylitol 20% 60.57 0.01710

5.3. Surface Tension of DESs

So far, there are few studies on the surface tension of DESs. Surface tension also
follows a similar trend to viscosity because it strictly depends on the intermolecular forces
that control the formation of DESs, and the presence of hydroxyl groups leads to greater
surface tension. The longer the alkyl chain in HBD, the greater the surface tension of
DESs. The surface tension of DESs shows a linear correlation with temperature, and the
surface tension decreases with the increase in temperature. With the increase in salt mole
fraction, the surface tension decreases and the viscosity also decreases, which is due to the
added ammonium salt breaking the hydrogen bond network structure. Abbott et al. [4]
reported the surface tension of some DESs based on choline chloride and zinc chloride. At
room temperature, the surface tensions of choline chloride/malonic acid (1:1) and choline
chloride/phenylacetic acid (1:2) are about 65.68 and 41.86 mN/m, respectively. The surface
tension of zinc chloride/urea (1:3.5) is 72 mN/m, and zinc chloride/acetamide (1:4) has a
smaller surface tension of 53 mN/m. These values are higher than the surface tension of
most molecular solvents and imidazole ionic liquids at room temperature, but lower than
the surface tension of high-temperature molten salts at 441–1395 K [35,36].

5.4. Solubility of DESs

Solubility refers to the ability of a solute substance to form a solution with another substance.
DESs have high solubility and can dissolve metal oxides, insoluble drugs, carbon dioxide,
cellulose, low-carbon alkanes, etc. Jin et al. [37] found that the solubilities of low-carbon
alkanes C3H8 and CH4 in ionic liquids was 0.408 mmol·g−1 and 0.029 mmol·g−1, while the
solubilities of C3H8 and CH4 in 12 DESs (e.g., choline chloride–glycerol, choline chloride–
ethylene glycol, choline–2,2,2-trifluoroacetamide chloride, etc.) were 0.308–0.516 mmol·g−1 and
0.024–0.035 mmol·g−1, respectively, which are higher than that of all reported ionic liquids
(e.g., 1-ethyl-3-methylimidazolium bis (trifluoromethanesulfonyl)imide salt, butylimidazolium
tetrafluoroborate, etc.). The solubility of some DESs is shown in Table 4.

Table 4. DESs improve the solubility of substances.

No. DESs Type Mole Ratio Solubility References

1 Choline chloride: Glycolic acid:
Oxalic acid 1:1.6:0.4 The solubility of itraconazole

increased by 53,600 times. [38]

2 Choline chloride: Ethanoic acid 1:1–1:4 The solubility of itraconazole
increased by 7600 times. [38]

3 Choline chloride: Ethanoic acid 1:1–1:4 The solubility of piroxicam
increased by 430 times. [38]
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Table 4. Cont.

No. DESs Type Mole Ratio Solubility References

4 Choline chloride: Ethanoic acid 1:1–1:4 The solubility of posaconazole
increased by 28 times. [38]

5 Choline chloride: Ethanoic acid 1:1–1:4 The solubility of lidocaine
increased by 6400 times. [38]

5 Choline chloride: Ethylene glycol Mixed The solubility of coumarin
increased by 80 times. [39]

6 Lactic acid: Propyleneglycol Mixed
Could dissolve spironolacton and

trimethoprim at a concentration up
to 50 and 100 mg/mL, respectively

[40]

7 Choline chloride: Glycerol 1:1 Compared to aqueous solutions, it
is increased by 12,000 times [41]

5.5. Biodegradability of DESs

DESs, known as “green solvents”, are mostly biodegradable. Because most of the
components that make up DESs are natural products, they can be degraded by different
kinds of organisms in nature. Mbous et al. [42] found that glycerol was used as DESs, which
can complete the final metabolism through glycolysis or glial cell formation. Pei et al. [43]
found that the biodegradabilities of N,N-diethyl ethanol ammonium chloride (EAC): zinc
nitrate hexahydrate (ZnN) and EAC: zinc chloride were different (about 80% vs. 62%) by
studying the biodegradability of a metal salt and a hydrated metal salt. The biodegradability
of the former is better than that of the traditional ionic liquid (77%). The study also found
that the inherent structure sof the HBA and the HBD are critical factors in determining the
biodegradability of different DESs.

6. Application of DESs
6.1. Application of DESs in Natural Product Extraction

The common natural products in nature are flavonoids, phenols, polysaccharides, lignins,
alkaloids, volatile oils, etc. Research has confirmed that natural products have a wide range
of pharmacological effects, such as anti-viral, anti-cancer, and slowing down aging, and
have been widely used in many fields such as drug research and new drug development.
Flavonoids have anti-oxidation, anti-cancer, anti-tumour, anti-allergy, liver protection, and
other medicinal values, so the extraction of flavonoids has always been a research hotspot.
The application of DESs in the extraction of flavonoids is shown in Table 5.

Table 5. Application of DESs in the extraction of flavonoids.

No. DESs Type Mole Ratio The Sample Extraction of Substances References

1 80% Acetylcholine: Lactic
acid aqueous solution 1:1 Green Tea Total flavonoids [44]

2
Choline chloride:

1,4-butanediol aqueous
solution

1:5
Cyclocarya paliurus

(Batal.) Iljinskaja
Leaves

Kaempferol, quercetin [45]

3
30% Choline chloride:

Propylene glycol aqueous
solution

1:4 Pollen Typhae Quercetin, naringenin,
kaempferol [46]

4
55% Choline chloride:
Malonic acid aqueous

solution
1:2 Ginkgo biloba leaves Proanthocyanidins [47]

5 Choline chloride: Glucose 4:1 Ampelopsis
grossedentata Leaves Total flavonoids [48]
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Table 5. Cont.

No. DESs Type Mole Ratio The Sample Extraction of Substances References

6 10% Choline chloride: Urea 1:2 Moringa oleifera leaves

Hyperoside, vitexin,
quercetin, cynaroside,

quercetin 3-β-D glucoside,
kaempferol, luteolin, and

taxifolin

[49]

7 Choline chloride: Malic acid 1:1 Perilla Leaves

Apigenin
7-O-caffeoylglucoside,

scutellarein
7-O-diglucuronide,

luteolin
7-O-diglucuronide, and

scutellarein
7-O-glucuronide

[50]

8 Choline chloride: Lactic acid 2:1 Ziziphi Spinosae Total flavonoids [51]

9 Citric acid: Urea 1:2 Lotus Astragalin, hyperoside,
and isoquercitrin [52]

10 Choline chloride:
p-Toluenesulfonic acid 1:2 Lycium barbarum L.

fruits
Prunetin, mulberry

pigment, rutin [53]

Phenolic compounds have been reported to have pharmacological effects such as antioxi-
dant, antibacterial, anti-inflammatory, and antidiabetic. Ali [54] found that DESs/NADESs
have high extraction efficiency for phenolic compounds and can replace toxic organic solvents.
The solvent composition, component structure, molar ratio, extraction temperature, solid–
liquid ratio, and water content of DESs/NADESs all had significant effects on the extraction
of phenolic compounds. The application of DESs in phenolic extraction is shown in Table 6.

Table 6. Application in phenolics (or polyphenols) extraction.

No. DESs Type Mole Ratio Extraction Site Extraction of Substances References

1 Choline chloride:
Fructose/Organic acid/Urea 1:2 Chokeberry Total phenols [55]

2 Choline chloride: Malic acid 1:1 Carya cathayensis Sarg Phenolic compounds [56]

3 Choline chloride: Glycerol 1:2 Tea Seed Oil Free phenol, bound
phenol [57]

4 Choline chloride: Malic acid 1:1 Cherry crumbs Polyphenols [58]
5 Choline chloride: Urea: H2O 1:2:4 Allium cepa L. Skin Phenolic compounds [59]

6 α-Terpineol:1-octanoic acid 1:4 Environmental water
samples Phenolic substances [60]

7 Choline chloride: Malic acid 1:2 Carya cathayensis Sarg.
peels Catechins, prunetin, etc. [61]

8 Choline chloride: Xylitol 1:1 Virgin Olive Oil Phenolic compounds [62]

9 Choline chloride: Caffeic
acidCholine chloride: Lactic acid Mixed Olive pomace Phenolic compounds [63]

In addition to the two major categories of natural products above, DESs have applications
in the extraction of other classes of natural products. As the most abundant natural aromatic
polymer on earth, lignin has great potential to produce value-added products. Fernandes
et al. [17] prepared, characterised, and screened novel acidic DESs for lignin extraction from
maritime pine sawdust, evaluating the use of co-solvents and the development of new DESs
for their extraction and selectivity properties. The results showed that 95% of the total lignin
in pine biomass could be recovered with a purity of 89% using new DESs consisting of lactic
acid, tartaric acid, and choline chloride, named Lact:Tart: ChCl, in a molar ratio of 4:1:1, in
a one-hour extraction process at 175 ◦C. The excellent purity of lignin extraction using a
“green” solvent system makes this process very attractive for future large-scale applications.
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A study by Rodriguez et al. [64] demonstrated an alternative method for the recovery of
chitin from brown crab shell biomass using a low phytotoxicity ChCl/organic acid DES-based
method with the potential to be competitive on a commercial scale. Chloroform: lactic acid
(1:1) at 130 ◦C is the best system for chitin recovery, with the highest demineralisation and
deproteinisation efficiency. In addition, other authors have demonstrated that DESs can
be recycled and reused when used as solvents, which is a very “green” approach from an
environmental and economic point of view [65].

6.2. Application of DESs in Drug Delivery Systems

Improving drug efficacy can be achieved by changing the route of administration,
using different doses of administration, modifying the drug structure, compounding
the drug, and increasing the solubility, which is one of the goals of the pharmaceutical
industry today. About 40% of drugs approved for marketing and 90% of drugs under
development have poor water solubility, which leads to low bioavailability and poor
permeability. This is especially true for bio-pharmacological delivery system (BCS) class II
substances, which have low solubility and high permeability, necessitating improvement
of their bioavailability by altering the solubility of the drug in the gastrointestinal tract.
DESs have been extensively studied as solubilisers, and, since the components in DESs are
pharmacologically acceptable, they have the potential to be used as carriers for oral drug
delivery in rats during early pharmacokinetic studies. In addition, nucleic acids can form
reversible denaturing secondary structures when heated in DESs, broadening the scope of
DES research in the life sciences [66]. The application of DESs in drug delivery systems is
shown in Table 7.

Table 7. Application of DESs in drug delivery systems.

No. DESs Type Mole Ratio Applications References

1 Choline chloride: Ascorbic acid 2:1 Improving the solubility of dapsone [67]

2 Oxymatrine: Fatty acid 2:1 As novel penetration enhancers for transdermal
drug delivery [68]

3 Choline chloride: Malic acid 2:1 Enhancing the hypoglycemic effect of insulin
through the nasal route [69]

4 Choline chloride: Malic
acid/Glucose/Sucrose Mixed Improved pharmacokinetics of orally administered

flavopiridol hydrochloride [70]

5 Amino acid: Citric acid 3:1
Novel DESs-hydrogel systems for synergistic

transdermal delivery of Chinese herb medicine and
local treatments for rheumatoid arthritis

[71]

6 Choline bicarbonate: Geranic acid 1:4–1:2 Effect of DESs ion ratio on insulin delivery [72]

7 Choline bicarbonate: Geranic acid 1:2 Acts as a transdermal permeation enhancer to
promote the passage of bioactive compounds [73]

8 Fructose:Citric acid: Water 1:1:5 Achieving antibiotic solubilisation [74]

9
Choline chloride: Urea, Choline

chloride:Ethylene glycol, Choline
chloride:Glycerol

1:2 Improving the solubility of betamethasone and
meloxicam [75]

10 Choline chloride: Xylitol/Citric
acid/Sorbitol/Glucose Mixed Improving the solubility of caffeine and furosemide [76]

6.3. Application of DESs in the Determination of Trace Metals

Trace metals in the soil pose a serious threat to food safety and the ecological envi-
ronment. The sources of trace metals may be naturally occurring or excessive human use
of metal-containing fertilisers, pesticides, etc. Therefore, the determination of trace metal
content in soil is of particular importance to environmental safety and agricultural develop-
ment. DESs can effectively extract Cu, Pb, Cd, As, Mn, and other heavy metals in various
foods, water, and soil, with a removal rate higher than 90% [77]. Commonly used analytical
methods include dry/wet digestion, ultrasonic-assisted extraction, microwave-assisted
acid digestion, etc. [78,79]. The reagents used are mostly toxic chemical reagents such as
sulfuric acid, hydrochloric acid, nitric acid, or oxidants containing halogen ions. Therefore,
to avoid the use of toxic and harmful organic solvents, it is necessary to develop a green



Processes 2023, 11, 1986 9 of 15

reagent preparation method. The application of DESs in trace metal determination is shown
in Table 8.

Table 8. Application of DESs in the determination of trace metals.

No. DESs Type Mole Ratio Applications References

1 n-Butanol and choline chloride: Menthol:
p-Aminophenol Mixed Extraction of Co, Zn, Ni, Cu, Pb, and Tl

from honey samples [78]

2 Choline chloride: p-Aminophenol 1:2 Extraction of Zn, Ni, Cu, Pb, and Hg from
the sample solutions [80]

3 Choline chloride: Phenol 1:4 Determination of Cd in food and water
samples [79]

4 Choline chloride: Oxalic acid 1:2 Determination of As and Se in edible
mushroom samples [79]

5 Choline chloride: Oxalic acid 1:2 Determination of As, Cr, Mo, Sb, Se, and V
in agricultural soils [80]

6 Choline chloride: Phenol 1:2 Determination of Pd in wastewater [81]
7 Choline chloride: Oxalic acid 1:2 Determination of Se and As in fish samples [82]

8 Choline chloride: Citric acid 1:2 Removal of Cd from the contaminated soil
of coking plant. [83]

9 Choline chloride: Ethylene glycol 1:2 Determination of biotoxic Hg2+, Cd2+,
Pb2+, and Cr6+ [84]

10 Choline chloride: Phenol 1:3 Determination of prohibited trace Pb and
Cd in hair dye and nail flower [85]

6.4. Application of DESs in the Preparation of Nanomaterials

DESs, due to their thermal stability, good dispersion, large ionic conductivity, and
wide electrochemical window, have been used as dispersants, exfoliants, and nanomaterial
templates. The application of media for nanoparticles synthesised by chemistry and
electrochemistry is similar to that of ionic liquids. The use of DESs in nanoscience instead
of ionic liquids has been inevitable. The applications of DESs in nanomaterial synthesis are
shown in Table 9.

Table 9. Application of DESs in the synthesis of nanomaterials.

No. DESs Type Mole Ratio Applications References

1 Choline chloride: Oxalic acid dihydrate 1:2 Preparation of functionalised cellulose
nanoparticle stabilised emulsion [86]

2 Choline chloride: Oxalic acid 1:1 Fabricate starch nanoplatelets [87]

3 Choline chloride: Lactic acid Mixed Preparation of cellulose nanofibers
containing lignin [88]

4 Choline chloride: Urea 1:2 Synthesis of anatase TiO2 catalysts [89]

5 Choline chloride: Ethanolamine 1:6 Preparation of multifunctional
nanocomposites [90]

6 Choline chloride: Lactic acid 1:9 Preparation of multifunctional
nanocomposites [90]

7 Choline chloride: Levulinic acid 1:2 As a hydrolysis medium for cellulose
nanocrystal production [91]

8 Choline chloride: p-Toluenesulfonic acid
monohydrate 1:1 As a hydrolysis medium for cellulose

nanocrystal production [91]

9 Choline chloride: Oxalic acid dihydrate 1:1 Combined with ultrasonic treatment to
produce nanocellulose [92]

10 Choline chloride: Urea 1:1 Synthetic flexible and highly conductive
cellulose nanofibers [93]

11 Choline chloride: Lactic acid Mixed
Lignin-containing cellulose nanomaterials

produced DESsTreatment as rheology
modifiers for fracturing fluids

[94]

12 Choline chloride: 1-propanol 1:3 DES-based graphene oxide solid-phase
extraction chip preparation [95]
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6.5. Application of DESs in Electrochemistry

DESs have already attracted interest due to their favourable electrochemical proper-
ties. DESs can dissolve metal oxides and are used in electrochemical applications such
as electrodeposition, electrochromism, and storage. DESs have the advantage of being
safe, low-cost, green, and recyclable as electrolytes for electrochemical reactions. The
applications of DESs in electrochemistry are shown in Table 10.

Table 10. Application of DESs in electrochemistry.

No. DESs Type Mole Ratio Applications References

1 N,N,N-trimethyl butylsulphonate ammonium
hydrosulfate: Urea 1:2 Test the performance in fuel cells [96]

2 Lactic acid: Glucose: H2O Mixed
Improved electrochemical detection of

olive bitter glycosides in combination with
graphene oxide.

[97]

3 Choline chloride: Urea Mixed Cobalt Electrochemical Recovery from
Lithium Cobalt Oxides [98]

4 Choline chloride: Ethylene glycol Mixed Formic Acid Electrochemical Oxidation [99]

5 Choline chloride: Ethylene glycol 1:2
Preparation of lead powder from

high-efficiency electrolytic recovery of
waste lead paste

[100]

6 Choline chloride: Oxalic acid 1:1 X-ray structure and ionic conductivity
studies [101]

7 Choline chloride: Urea Mixed
Gas-phase fragmentation of the

supra-molecular ionic assemblies detected
in CSI–MS

[102]

8 Choline chloride: Malonic acid Mixed Metallic bismuth films were prepared by
electrodeposition [103]

9 Choline chloride: Urea 1:2 Efficiently co-deposit In–Ga on Cu and Mo
electrodes [104]

10 Choline chloride: Lactic acid Mixed Ionic conductivity and structure of
chitosan films [105]

11 Choline chloride: Ethylene
glycol Mixed

Ni/cerium molybdenum oxide hydrate
micro-flakes composite coatings

electrodeposited
[106]

7. Outlook

At present, breakthroughs have been made in the study of DESs and have found
applications in natural product extraction, drug delivery systems, trace metal determination,
nanomaterial synthesis, and electrochemistry. However, there are still needs to continuously
develop new HBAs and HBDs, to research and prepare new DES systems to provide
references for exploring new application fields and expanding the application scope of
DESs, and then to adapt to the demand of recovery and recycling applications in actual
industrial production.

8. Conclusions

Replacing traditional toxic and harmful organic solvents with green solvents has
become an important topic in modern research. Since the discovery of DESs in 2003,
DESs have been continuously explored for their unique properties and have gradually
become a research hotspot in various fields, mainly focusing on their use as solvents for the
extraction of active ingredients from natural products. This study provides a comprehensive
summary of the classification, composition, and properties of DESs and their applications in
natural product extraction, drug delivery systems, trace metal determination, nanomaterial
synthesis, and electrochemistry. Among them, DESs for extracting flavonoids and phenols
were widely used as solubilisers to improve the bioavailability of drugs, which had a good
enrichment effect on trace metal ions and prepared nanomaterials with good performance.
This lays the foundation for exploring their different properties and broadening the scope
into unknown fields.
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