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Abstract: The textile industry has become one of the largest producers of water pollution. The
azo dyes used in the textile industry may present a serious environmental problem because of
their high toxicity and chemical stability. In the present work, the cobalt/aluminum oxide-ceria
(Co/Al2O3-CeO2) catalyst was synthesized, and the degradation of Reactive Red 195 (RR195) by
catalytic ozonation was studied. The Co/Al2O3-CeO2 catalyst was synthesized via the incipient
wetness method with the assistance of ultrasound. The presence of Co/Al2O3-CeO2 did not notably
improve the degradation of RR195 compared to ozonation alone, but it was advantageous for RR195
mineralization. The effects of initial dye concentration (200–800 mg/L), catalyst dosage (1–4 g/L),
and solution pH (4–10) on color, and COD removal were evaluated. The results indicate that the
dye’s concentration significantly affects COD removal efficiency. The optimum catalyst dosage and
pH values were determined to be 3 g/L and 8, respectively. Co/Al2O3-CeO2 catalyst shows good
catalytic activity and stability based on four repeated tests during RR195 ozonation. Finally, a possible
mechanism and a kinetic scheme of the catalytic ozonation of RR195 were proposed.

Keywords: dye removal; catalytic ozonation; Co/Al2O3-CeO2; Reactive Red 195

1. Introduction

The textile industry has become one of the largest producers of industrial wastewater,
and dyes are major pollutants that come from these textile wastewaters [1]. The majority
of dyes used in the textile industry are azo dyes, which are toxic, recalcitrant, chemically
stable, and carcinogenic. Their release into the environment may pose many serious
aesthetical, ecological, environmental, and health hazards [2]. Therefore, the discarding
of these dyes must be controlled, and the effluents must be treated [3]. Different physical
and biological methods, or combinations of them, have been investigated for color removal
from dye-laden wastewater. However, they all suffer from specific disadvantages [2].

In recent years, chemical treatment processes, especially chemical oxidation, have
become the method of choice due to their high efficiency and easy operation [4,5]. Ozone
is one of the most effective oxidant agents used for decolorization of dyes owing to its
extremely high redox potential (E0 = 2.07 V). During ozonation, conjugated double bonds,
which are often associated with color, can be broken down by ozone either directly or indi-
rectly [3,5,6]. Although single ozonation has been shown to be effective for color removal,
the formed intermediates are frequently resistant to ozone attack and the mineralization
extent is usually insufficient [5]. In order to improve efficiency, various advanced oxidation
processes (AOPs, e.g., O3/H2O2, UV/O3, catalytic ozonation, etc.) have been investi-
gated. Especially heterogeneous catalytic ozonation has received increasing attention in
recent years due to its potentially high effectiveness in the degradation of harmful organic
pollutants with low negative effects on the environment [7].

Different metals or their oxides (such as Co, Fe, Ni, and manganese oxides) deposited
on porous materials (such as alumina, activated carbon, and MCM-41) were investigated
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as the catalysts for catalytic ozonation [8–10]. Ceria (CeO2), which can act as a reducible
support or catalyst itself, has been extensively applied in heterogeneous catalysis due to its
unique property of storing and releasing oxygen (redox property) and its excellent ther-
mal and mechanical resistance [11–13]. Several works found that palladium oxide (PdO)
loaded CeO2 catalyst could promote the degradation of pyruvic acid and oxalate in water
by catalytic ozonation better than ozonation alone [11,14,15]. However, the CeO2 carrier
suffers from the disadvantages of high cost and relatively low surface areas [13]. Therefore,
deposition of ceria on a high surface area support, like alumina, was achieved. Adding
cerium to alumina produces structural changes, improves the dispersion of the metal,
and stabilizes the alumina to avoid thermal sinterization [16]. Due to the advantageous
properties mentioned above, CeO2-Al2O3 has been used extensively as a potential support,
such as in the generation of hydrogen by methane reforming and in the elimination of pol-
lutants (such as NOx, CO, and hydrocarbons) in automobile exhausts [17]. Chen et al. [18]
found that the Al2O3-CeO2 catalysts were active for CH2Cl2 catalytic combustion, and
that the activity could be further promoted by the addition of Pt. Li et al. [19] found
that the introduction of CeO2 into the CuO/ Al2O catalyst improved the dispersion of
CuO on the catalyst surface. In addition, the specific surface area and pore volume of
the samples gradually decreased with the increase in CeO2 content. The synergistic effect
(Ce3+ + Cu2+ ↔ Ce4+ + Cu+) favurs the generation of oxygen vacancies and increases the
activity of the catalyst. Zhou et al. [20] modified the conventional Pt/Al2O3 catalyst with
CeO2 and increased the proportion of Pt0 from 74.5% to 82.1%. When the metal state Pt0

content is increased, the redox activity of the catalyst increases accordingly. Li et al. [17] sys-
tematically investigated the synergistic effect of Al2O3 and CeO2 on MIAA (monoiodoacetic
acid)-catalyzed hydrodeiodination (HDI). Experimental characterization shows that the
introduced CeO2 can improve the dispersion of Pt by forming a Ce-O-Pt bond and that the
high zeta potential of the Al2O3 component can facilitate the adsorption of MIAA. Through
kinetic experiments and characterization, the abundance of Pt sites and the synergistic
interaction between CeO2 and Al2O3 allow Pt/CeO2-Al2O3 to exhibit excellent catalytic
performance. In other studies, a Pt/Al2O3-CeO2 nanocatalyst was used to oxidize volatile
organic compounds (VOCs) and toluene, it also showed good catalytic performance [12,13].

As above-mentioned, several catalysts based on Al2O3-CeO2 have been reported to
be able to catalytic oxidation of organic compounds but seldom have been used in the
catalytic ozonation of azo dyes. To better understand the potential use of this carrier, in this
work, the Co/Al2O3-CeO2 catalyst was synthesized, and the degradation of Reactive Red
195 (RR195) by catalytic ozonation was studied. The influence of solution pH, initial dye
concentration, ozone dosage, and catalyst dosage were assessed in catalytic ozonation of
RR195. Finally, the mechanism and kinetics model of RR 195 degradation was established.

2. Materials and Methods
2.1. Materials

RR 195 was obtained from Quanzhou Anze Dyestuff Chemical Factory (Quanzhou,
China). Cerium nitrate (AR) was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Cobalt acetate (AR) was purchased from Shanghai Reagent Factory
(Shanghai, China). γ-Al2O3 was purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). Other chemicals and reagents were purchased from Shantou Xilong
Chemical Works (Shantou, China). Distilled water was used in preparing the solution for
all the experiments.

2.2. Catalysts Preparation

The Al2O3-CeO2 support was prepared by impregnating γ-Al2O3 with cerium nitrate
aqueous solutions following the incipient wetness method [21]. The γ-Al2O3 was doped
with 20 wt% cerium nitrate. The samples were sonicated in ambient air for 3 h and then
impregnated for 12 h. The impregnated samples were dried at 105 ◦C for 2 h and finally
calcined in air at 450 ◦C for 2 h.
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The Co/Al2O3-CeO2 catalyst was prepared by impregnating Al2O3-CeO2 with a cobalt
acetate aqueous solution according to the incipient wetness method with the assistance
of ultrasound [22]. The calculated Co content (wt.%) loaded on the catalyst was 4%. The
samples were sonicated in ambient air for 3 h and impregnated for 12 h. After impregnation,
the sample was dried at 105 ◦C for 2 h. Then the Co/Al2O3-CeO2 catalysts were formed by
calcination at 450 ◦C for 2 h.

2.3. Experimental Setup

Ozonation and catalytic ozonation of RR195 were carried out in a semi-batch mode
apparatus, which consisted of an oxygen cylinder, an ozone generator (CF-G-3-10g), a flow
meter, an ozone reactor (8 cm internal diameter × 40 cm height) and an ozone off-gas
destruction system, and the detailed description is shown in our previous report [23].
Before the start of the experiment, the reactor was filled with 500 mL RR195 solution, and
the catalyst was introduced into the reactor. The mixtures were stirred for 10 min by a
magnetic stirrer. After that, the ozonized oxygen, produced from the ozone generator,
flowed into the reactor through a gas flow meter for 20 more minutes. Water samples
were collected from the reactor at specific predetermined times to analyze RR195 and COD
concentrations. A gas absorption bottle containing 10% Na2S2O3 solution was used to
destroy the remaining ozone before leaving the reactor.

2.4. Analytical Methods

The crystal structure of the catalysts was emphasized by X-ray diffraction (XRD)
with a BRUKER D8 Advanced analyzer (Bruker, Germany). The particle size distribution
of Co/Al2O3-CeO2 was performed using a Mastersizer 2000 laser particle size analyzer
(Malvern, USA). The concentrations of ozone in the gas phase were measured by iodo-
metric titration [24]. The concentrations of ARB solution were determined by measuring
the absorbance of the solution at 514 nm with a UNICO UV-4802H spectrophotometer
(Unico, America).

CODcr was determined by a rapid microwave-sealed digestion method by K2Cr2O7.
Using a pipette to draw 10 mL of water sample into the digestion tank, and 5 mL of K2Cr2O7
digestion solution and 10 mL of HNO3-AgNO3 were added. After shaking and sealing
tightly, the tank was put into the digestive chamber for 15 min. After the digestion, the
reaction solution was transferred to a 150 mL conical flask, and the indicator test ferroin
and ferrous ammonium sulfate hexahydrate standard solution were added. When the color
of the solution changed from yellow through blue-green to red-brown, that is the end of
the titration.

3. Results and Discussion
3.1. Catalyst Characterization

The particle size distribution of Co/Al2O3-CeO2 is given in Figure S1. The median
particle diameter of Co/Al2O3-CeO2 was 22.472 µm, and the volume mean diameter of
Co/Al2O3-CeO2 was 36.153 µm. The XRD patterns of γ-Al2O3 support, Co/Al2O3, and
Co/Al2O3-CeO2 are shown in Figure 1. Three well-resolved reflections (at 2θ = 37.77◦,
45.79◦ and 66.76◦) were seen for γ-Al2O3. The diffraction peaks of cobalt species were
observed at 2θ = 37.1◦ both in Co/Al2O3 and Co/Al2O3-CeO2 samples, indicating that
cobalt species are dispersed across the supports. Moreover, the formation of CeO2, as
indicated by the diffraction peak at 2θ = 28.7◦, 33.2◦, 47.7◦ and 56.6◦, corresponds to CeO2
in the Co/Al2O3-CeO2 sample.
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Figure 1. The XRD pattern of Al2O3, Co/Al2O3, and Co/Al2O3-CeO2.

3.2. Catalytic Ozonation of RR 195

Figure 2 compares the color and COD degradation of RR195 for O3 alone, Co/Al2O3/O3,
and Co/Al2O3-CeO2/O3 processes. As can be observed in Figure 2, the RR 195 removal
efficiency of single ozonation was lower than that of catalytic ozonation at the first 15 min.
However, the efficiencies all increased to almost 100% when the reaction time was ex-
tended to 20 min. This means that ozone is very efficient in RR195 removal. In addition,
compared with single ozonation, it was found that both the Co/Al2O3-CeO2 catalyst and
the Co/Al2O3 catalyst can improve COD removal efficiencies of RR195. However, the
Co/Al2O3-CeO2/O3 process is the most efficient one. During the ozonation (200 mL/min
ozone flow rate) of 400 mg/L of RR195 (pH 8.0), after 10 min, COD removal efficiency was
only 20%, whereas the values reached 53% and 43%, respectively, after adding Co/Al2O3-
CeO2 and Co/Al2O3 as a catalyst. After 30 min, the COD removal efficiencies achieved
87% and 72% by using Co/Al2O3-CeO2 and Co/Al2O3 catalysts, respectively, which were
higher than that of the ozonation alone (62%).

From the above results, it can be seen that in a single ozonation process, RR 195 suffered
a quick degradation achieving up to nearly 100%, but only a low mineralization degree
was achieved with about 62% of final COD removal after 30 min. This may be due to the
strong electrophilic nature of ozone molecule that reacts directly with nucleophilic positions
of aromatic rings. Nevertheless, the accumulation of different refractory intermediates
during the ozonation process leads to a low level of mineralization [25]. It was also found
that Co/Al2O3-CeO2 shows higher catalytic activity for efficient mineralization of RR
195 than that of Co/Al2O3. As previously reported [26,27], cerium oxide prepared from
Ce(III) salt aqueous solutions can result in CeO2 containing traces of Ce(III), which are
thought to be necessary for promoting the decomposition of ozone into hydroxyl radicals
by redox reactions on the catalyst surface. Another role that CeO2 played is to improve
metal dispersion, which is believed to increase the active sites of the catalyst [16,26]. Due
to these two reasons, in this case, the catalytic activity of the Co/Al2O3-CeO2 catalyst is
higher than that of the Co/Al2O3, thus leading to a higher mineralization of RR 195.
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Figure 2. Comparison of the RR195 removal with and without catalytic ozonation: (a) RR195 removal
efficiency; (b) COD removal efficiency. (RR195 concentration 400 mg/L, pH 8, gas flow 200 mL/min,
ozone flow 6 mg/min, catalyst dosage 3 g/L, magnetic stirring speed 1400 rpm).

3.3. Effect of Initial RR 195 Concentrations

Figure 3 depicts the effect of initial RR195 concentrations on RR195 and COD removal
by the Co/Al2O3-CeO2 catalytic ozonation process. It was observed that, after 5 min, RR195
removal efficiencies were 93%, 84.3%, 78%, and 75% when initial RR195 concentrations
were 200, 400, 600 and 800 mg/L, respectively, indicating that the removal efficiencies
decreased with increasing RR195 initial concentrations. However, after 20 min, the RR195
removal efficiencies were all close to 100%. In the case of COD removal efficiencies, the
values were 89%, 78.5%, 65.4%, and 60.6% after 20 min with initial RR195 concentrations
of 200, 400, 600, and 800 mg/L, respectively. With increasing RR195 concentrations, COD
removal efficiency decreased more significantly than that of RR195 removal efficiency.
These findings show that the dye’s concentration has no significant influence on RR195
removal within the tested range. However, it significantly affects COD removal efficiency.
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This may be because of a greater affinity of ozone with dye compounds than with their
by-products, and thus, more organic intermediates may generate and accumulate in the
reactor with increasing initial dye concentrations, which contributes to COD measurement
other than RR195 measurement [28].
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removal efficiency; (b) COD removal efficiency. (pH 7, gas flow 200 mL/min, ozone flow 6 mg/min,
catalyst dosage 3 g/L, magnetic stirring speed 1400 rpm).

3.4. Effect of Catalyst Dosage

The catalytic ozonation of RR195 in the presence of various dosages of the Co/Al2O3-
CeO2 catalysts (ranging between 1 g/L and 4 g/L) was evaluated. As shown in Figure 4,
within 20 min of the reaction, COD removal efficiency of RR195 increased gradually,
from 68.4% to 75.2%, 78.9%, and 79.2%, with increasing catalyst edge from 1 to 2, 3, and
4 g/L, respectively. These results further illustrate the effectiveness of Co/Al2O3-CeO2
as a catalyst in catalyzed ozonation. Moreover, as previously reported [29], increasing
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the catalyst loading could improve the organic compound removal efficiency. The results
indicate that some other more effective oxidant (such as hydroxyl radical) may be generated
when catalysts are used in the ozonation process. In addition, it was found that the removal
efficiency increased faster at lower dosages (from 1 to 3 g/L) than at higher dosages
(from 3 to 4 g/L). This phenomenon is possibly because, at higher catalyst concentrations,
more hydroxyl radicals are produced, and more hydroxyl radicals will combine with each
other [29]. Therefore, 3 g/L Co/Al2O3-CeO2 was determined as the optimum dosage for
RR195 ozonation in the present work and was used in all remaining experiments.

Processes 2023, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

 

Figure 4. Effect of Co/Al2O3-CeO2 dosage on RR195 removal in the catalytic ozonation: (a) RR195 

removal efficiency; (b) COD removal rate. (pH 7, gas flow 200 mL/min, ozone flow 6 mg/min, RR195 

concentration 400 mg/L, magnetic stirring speed 1400 rpm). 

3.5. Effect of pH 

The effect of solution pH on COD removal of RR195 was studied with pH ranging 

from 4 to 10. In a single ozonation process, it can be seen from Figure 5 that increasing the 

initial pH from acidity to basicity led to an enhancement in RR195 and COD removal. 

After 20 min, the RR195 removal efficiencies were nearly 100% for all pH. However, COD 

removal efficiencies were 53%, 55%, 60%, and 63% at pH 4, 6, 8, and 10, respectively. COD 

removal efficiency increases as pH increases from 4 to 10, and the reasons are as follows: 

Under acidic or neutral conditions, ozone directly attacks organic matter by its molecular 

form, and the molecular ozone has a high selectivity, which only reacts with the unsatu-

rated aromatic compounds or some certain special groups. However, in the case of alka-

linity condition, ozone produces hydroxyl radicals (•OH), which has a stronger oxidation 

ability and enhances COD removal efficiency [3]. 

0 5 10 15 20
0

20

40

60

80

100
(a)

R
R

1
9
5
 r

em
o
v
al

 e
ff

ic
ie

n
cy

 /
%

Time/min

 1 g/L

 2 g/L

 3 g/L

 4 g/L

Figure 4. Effect of Co/Al2O3-CeO2 dosage on RR195 removal in the catalytic ozonation: (a) RR195
removal efficiency; (b) COD removal rate. (pH 7, gas flow 200 mL/min, ozone flow 6 mg/min, RR195
concentration 400 mg/L, magnetic stirring speed 1400 rpm).

3.5. Effect of pH

The effect of solution pH on COD removal of RR195 was studied with pH ranging
from 4 to 10. In a single ozonation process, it can be seen from Figure 5 that increasing
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the initial pH from acidity to basicity led to an enhancement in RR195 and COD removal.
After 20 min, the RR195 removal efficiencies were nearly 100% for all pH. However, COD
removal efficiencies were 53%, 55%, 60%, and 63% at pH 4, 6, 8, and 10, respectively. COD
removal efficiency increases as pH increases from 4 to 10, and the reasons are as follows:
Under acidic or neutral conditions, ozone directly attacks organic matter by its molecular
form, and the molecular ozone has a high selectivity, which only reacts with the unsaturated
aromatic compounds or some certain special groups. However, in the case of alkalinity
condition, ozone produces hydroxyl radicals (•OH), which has a stronger oxidation ability
and enhances COD removal efficiency [3].
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catalytic ozonation (gas flow 200 mL/min, ozone flow 6 mg/min, catalyst dosage 3 g/L, RR195
concentration 400 mg/L, magnetic stirring speed 1400 rpm).

Under catalytic ozonation, the RR195 and the COD removal efficiency increased when
pH increased from 4 to 8 and then decreased with a further increase to 10. Due to the
acceleration of the ozone decomposition rate with increasing pH from 4 to 8, RR 195 and
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COD removal efficiency improved. This, in turn, leads to the formation of the highly
reactive radical of •OH [30], which is beneficial to catalytic ozonation. Other research
also found that a higher pH resulted in the formation of stronger oxidative radicals of
•OH [31]. •OH are mainly generated at alkalinity conditions (pH above 10). Thus, in
the single ozonation process, the COD and RR195 removal efficiency reaching the highest
value at pH 10 can be explained by the formation of radical species other than hydroxyls.
However, under catalytic ozonation, the maximum COD and RR195 removal obtained at
pH of 8 may be explained by the fact that the Co/Al2O3-CeO2 can reduce the optimum pH
for hydroxyl radical generation. It also can be further inferred that the Co/Al2O3-CeO2
effectively catalyzes ozone decomposition and accelerates oxidative radical formation,
resulting in an increased oxidation rate.

It has been reported that the enhancement of catalytic ozonation involves the adsorp-
tion of ozone or pollutant or both of them on the catalyst surface, leading to the formation
of free radicals, which react with non-adsorbed species in the bulk liquid. Therefore, the
surface characteristics of the catalyst play an important role in the oxidation [32]. Solution
pH is one of the most important factors affecting oxide surface properties. According
to previous studies, the hydroxyl group on the surface of the metal oxides is thought to
be the active site providing the catalytic effect and has zero charge when the solution
pH is close to the pHpzc of the catalyst. The surface hydroxyl group with zero charge
may be the site for catalytic ozone decomposition and for catalytic ozonation of organic
compounds [33]. It can be seen that, in the catalytic ozonation process, the COD removal
efficiency reached a maximum value when pH was 8, which is very close to the pHzpc of the
Co/Al2O3-CeO2 (about 8.45, seen in Figure S2). At that point, the hydroxyl group on the
Co/Al2O3-CeO2 surface with zero charge is conducive to catalytic ozone decomposition
and catalytic ozonation of RR195. When increasing pH to 10, the strong alkaline condition
may affect the density of the surface hydroxyl groups, which causes the loss of the catalytic
activity [33]. Therefore, in the catalytic ozonation process, the highest color, and COD
removal efficiencies of RR195 are reached at pH 8.

3.6. Stability of the Catalyst

From a practical point of view, an important characteristic of a catalyst is its deac-
tivation or potential reuse. To evaluate the stability of the Co/Al2O3-CeO2 catalyst, it
was reused four times without any modifications after the catalyzed ozonation. The COD
removal efficiency was determined after each experiment, and the results are shown in
Figure S3. In the four series of recycling, the COD removal efficiencies of RR195 were 78.4%,
75.3%, 75%, and 74.8%, respectively. The catalytic activity decreases slightly, which demon-
strates that the Co/Al2O3-CeO2 catalyst is effective and stable in the catalytic ozonation
of RR195.

3.7. Mechanism of RR195 Degradation

According to Wang and Chen [34], the adsorption of organic molecule on the catalyst
is critical for catalytic ozonation. Yuan et al. [35] also found that the adsorption of organics
onto the catalyst was an important step which would have a direct influence on the
effectiveness of the heterogeneous catalytic oxidation. Therefore, the adsorption capacity
of the catalyst needs to be analyzed. Figure 6 shows the adsorption of RR195 on the
Co/Al2O3-CeO2 catalyst at pH 8. From Figure 6, it can be seen that, after 20 min, 4.35%
of the RR 195 was adsorbed by the Co/Al2O3-CeO2. However, the removal efficiency of
RR 195 was 99.8% by catalytic ozonation. This result indicates that adsorption of RR195
on the catalyst’s surface occurs, even though it is not obvious when compared with the
removal efficiency by the catalytic ozonation process. From the discussion above, it can
be assumed that the mechanisms of catalytic ozonation by Co/Al2O3-CeO2 may involve
two steps. One is the adsorption of ozone over the catalyst with the formation of hydroxyl
radicals, which will react with the pollutants. The other is the adsorption of the organic
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pollutant and reaction with ozone molecule (aqueous or gaseous) or adsorption of both
reactants with further surface reaction.
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catalytic ozonation processes (gas flow 200 mL/min, ozone flow 6 mg/min, catalyst dosage 3 g/L,
RR195 concentration 400 mg/L, magnetic stirring speed 1400 rpm, pH 8).

In order to verify whether the generation of hydroxyl radicals is mainly responsi-
ble for the improvement of catalytic ozonation, the influence of radical scavengers was
investigated. Tert-butanol (TBA), an organic radical scavenger, was used to indirectly evi-
dence indirectly the transformation of ozone into hydroxyl radicals in Co/Al2O3-CeO2/O3
process. It has the reaction rate constants of 6 × 108 M−1S−1 with hydroxyl radicals and
3 × 10−3 M−1S−1 with ozone, in addition, it cannot be adsorbed on the surface of the
catalyst because of its physical–chemical properties [36]. Figure 7 shows the influence
of TBA on the degradation of RR195 in catalytic ozonation with Co/Al2O3-CeO2. As
illustrated in Figure 7, the presence of TBA inhibited the degradation of RR195 in the
Co/Al2O3-CeO2 catalyzed ozonation process, indicating that hydroxyl radicals are formed
during the process of Co/Al2O3-CeO2 catalyzed ozonation. The generation of hydroxyl
radicals in the Co/Al2O3-CeO2 catalyzed ozonation process may be because the presence
of a heterogeneous surface increases the dissolution of ozone and acts as an initiator of the
ozone decomposition reaction in the aqueous phase [36]. In addition, a previous study also
found that the interaction of ozone with the metal oxide surface results in the formation
of free radicals, which can initiate a radical chain-type reaction both on the surface of the
catalyst and in the liquid phase [37], the hydroxyl radicals may also be produced through
this reaction. However, the removal efficiency of the catalytic ozonation in the presence
of TBA was still higher than that of the single ozonation, which implies the existence of
another reaction pathway: O3 directly oxidation of RR 195 after both of them are adsorbed
on the catalyst.

The catalytic ozonation of organic compounds involves a number of complex reactions.
From the discussion above, it can be assumed that, in Co/Al2O3-CeO2 catalytic ozonation,
both surface and liquid bulk reactions occur, involving ozone and •OH radicals. In order
to fractionate the contribution of the ozone molecule (δO3) and hydroxyl radicals (δ·OH)
in the degradation of RR195, kinetic constants were studied and compared between the
catalytic ozonation with and without the presence of TBA. This can be described by a
simplified and unbalanced reaction mechanism as follows [38]:
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Homogeneous reactions:

RR195 + O3 → products − d[RR195]1
dt

= k1[O3][RR195] (1)

RR195 + •OH → products − d[RR195]2
dt

= k2[•OH][RR195] (2)

Heterogeneous reactions:

RR195 + S → products − d[RR195]3
dt

= k3[S][RR195] (3)

RR195 + S + O3 → products − d[RR195]4
dt

= k4[S][O3][RR195] (4)

RR195 + S + •OH → products − d[RR195]5
dt

= k5[S][•OH][RR195] (5)

where k1 and k2 represent the rate constants of RR195 in homogeneous reaction with
molecular ozone and •OH, respectively, M−1min−1, k3 represents the adsorption reaction
constant between RR195 and the catalyst surface, M−1min−1, k4 and k5 represent the rate
constants of RR195 in heterogeneous reaction with molecular ozone and •OH, respectively,
M−1min−1.

Then, the overall RR195 ozonation rate in the presence of Co/Al2O3-CeO2 could be
expressed as a sum of (1)–(5):

− d[RR195]
dt = {k1[O3] + k2[•OH] + k3[S] + k4[O3][S] + k5[•OH][S]}[RR195]

= koverall[RR195]
(6)

where the reactions of the ozonation and catalytic ozonation are expressed with an apparent
first-order kinetics constant koverall: koverall = k1[O3] + k2[•OH], M−1min−1.

According to Equation (6), koverall can be obtained from the slope of ln([RR195]/[RR195]0)
vs. reaction time. When enough inhibitors ([TBA] = 50 mg/L in this study) are introduced
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into the catalytic reaction system, the reaction referring to the •OH oxidation (indirect
oxidation) will be terminated. The reaction kinetic after the addition of TBA to the catalytic
process can be described in the following equation:

−d[RR195]
dt

= kTBA[RR195] (7)

The fraction of •OH (δ OH) contributing to the depletion of RR195 can be quantitatively
determined by Equation (8):

δ•OH = 1− δO3 =

(
1− kTBA

koverall

)
× 100% (8)

koverall and kTBA were calculated by the plots of ln([RR195]/[RR195]0) versus reaction
time (Figure 8). kTBA was found to be 0.277 min−1, and koverall was 0.5339 min−1, which
makes δ OH = 48.7%, indicating that •OH play an important role in the oxidation.
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Figure 8. Pseudo-first-order plots of RR195 by catalytic ozonation and catalytic ozonation + TBA
(gas flow 200 mL/min, ozone flow 6 mg/min, catalyst dosage 3 g/L, RR195 concentration 400 mg/L,
magnetic stirring speed 1400 rpm, pH 8).

From the above experiments, it can be found that the ozonation of RR195 catalyzed by
cerium oxide is almost completely inhibited in the presence of TBA, which confirms that
hydroxyl radicals play an important role in the reaction mechanism. However, adsorption
of RR195 on the catalysts was observed, and it can be accepted as one of the reaction
mechanism steps. The possible mechanism of catalytic ozonation includes an indirect
oxidative reaction by hydroxyl radicals and a direct oxidation reaction by O3 after the
ozone and RR195 adsorbed on the surface of the catalyst (Figure 9).
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4. Conclusions

This study shows that the Co/Al2O3-CeO2 catalyst is efficient in the catalytic ozonation
of RR 195 solution, and it accelerates the color and COD removal more in comparison
with single ozonation. The optimum pH was determined to be 8, and the optimum
catalyst dosage was 3 g/L. The RR 195 removal efficiency decreased with increasing RR
195 concentrations from 200 to 800 mg/L. The Co/Al2O3-CeO2 catalyst had good stability
after four successive recycles. The amount of RR 195 adsorbed by Co/Al2O3-CeO2, which
was negligible compared with the removal rate of the catalytic ozonation process. The
presence of TBA was shown to inhibit the degradation of RR 195 by Co/Al2O3-CeO2
catalytic ozonation. The experimental results indicate that the possible mechanism of
catalytic ozonation includes an indirect oxidative reaction by hydroxyl radicals and a direct
oxidation reaction after the ozone and RR195 adsorbed on the surface of the catalyst.
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