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Abstract: The applicability of linear model predictive control to the 2-butene metathesis process is
studied. Similarly to industrial practice, the model predictive controller is configured on a supervisory
level, providing set points to basic process controllers. The development of the process model is based
on open-loop identification from input–output data extracted from dynamic simulation performed in
Aspen Plus Dynamics. The model predictive controller, designed using MATLAB tools, supervises a
system consisting of two inputs (feed rate and reaction temperature) and two outputs (ethylene and
propylene production rates). The performance of the model-based control strategy is assessed by
Aspen Plus Dynamics-Simulink co-simulation and compared to regulatory control through several
indexes (mean square error, integral square error, peak error, and integral absolute error). The model
predictive controller outperforms the feedback controller. Considerations regarding the workflow for
the implementation of model predictive control in an industrial environment are provided.
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1. Introduction

The chemical industry is challenged by a dynamic and unpredictable market, requiring
higher flexibility regarding the raw materials processed or the quantity and quality of finite
products produced, with competitive prices. Most importantly, environmental regulations
limit the flexibility of the producers by lowering the allowed carbon footprint and toxic gas
emissions. The large increase in energy costs adds to the difficulty of being profitable and
competitive in the current market, and many chemical plants have reduced their processing
capacity or even decided to shut down. This fact is explained by the lack of investment in
plant upgrades to achieve increased flexibility together with higher energy savings and
lower environmental emissions. Thus, only highly integrated chemical plants which have
invested resources in unit upgrades and advanced control strategies are able to remain
sustainable by operating in an economical way. In this context, the implementation of
advanced control strategies in chemical processes means greater production for the same
equipment, improved product quality, reduction of waste and pollution, and reduced
energy consumption [1].

Basic process control (also known as regulatory control) is implemented by means
of single-input single-output (SISO) feedback controllers, (e.g., proportional-integrative-
derivative controller, PID). The PID algorithm is generally applied to industrial units
because of its simplicity and ease of implementation. Nevertheless, some processes are
difficult to control with standard PID algorithms (e.g., large time constants, substantial
time delays, inverse response, etc.) [2]. To handle these challenges, more advanced process
control techniques are available, including adaptive control, fault-tolerant control, stochastic
control, fuzzy control, and model predictive control (MPC) [3]. Extensive research interest
has been directed towards MPC from both academic fields and industry. The MPC has
been used in numerous industrial applications [3]. Manufacturing systems are often
characterized by complex systems with time-delay or time-varying delay, actuator failures,
nonlinearity, multi-inputs, and multi-outputs. In order to cope with these situations, many
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researchers contributed to the development of MPC schemes [4]. These include several
types of MPC techniques, each with its own variations and adaptations. Some commonly
recognized types of techniques are explicit MPC, constrained MPC, robust MPC, stochastic
MPC, distributed MPC, nonlinear MPC, economic MPC, and adaptive MPC. There can be
overlaps and combinations of different types of MPC techniques depending on specific
applications. For more details, the reader is referred to [5,6] and the references cited there.
However, the present work addresses the standard MPC. This technique has gained wide
acceptance in industrial process applications, its popularity being given by the improved
operation, productivity, and stable and safe operation of highly complex units dealing
with constraints.

The performance of these advanced methods strongly depends on the quality of
the model developed. Process identification represents an alternative to first-principle
modeling [7]. Most of the proposed approaches are based on linear models derived from
experimental data; however, the identification of linear models from input–output data for
multivariable systems requires extra care [8].

Linear model-based predictive control (LMPC) techniques have been successfully
implemented in industrial plants, being able to handle multi-input multi-output (MIMO)
interacting systems, with constraints and variable interactions. Ref. [9] reports more than
4500 linear MPC applications—a survey conducted in mid-1999. The largest block of appli-
cations is in oil refining, which amounts to 67% of all classified applications. Nowadays,
advancements in computational resources enable more demanding systems to be con-
trolled that were not even imaginable before. This includes even industrial processes with
time-varying delays, uncertainties, unknown disturbances, and actuator faults. Integrating
fault-tolerant control in MPC has been investigated by [10]. In fact, Ref. [10] showed in an
industrial case study that the proposed robust constrained model predictive fault-tolerant
control method has better abilities of tracking and rejecting disturbances under admissible
actuator faults. The industrial case study consisted of the liquid level of the tank system
and the multi-input and multi-output glasshouse process.

Several recent developments in MPC theory have been also reported [11], mostly in
the area of nonlinear MPC, neural networks (NN), and data-driven modeling. Research
studies are reported on neural networks in MPC for controlling set point changes in
polyethylene reactors or successive linearization of NN in MPC for temperature control in
a bioreactor [11]. Machine learning can be used for the system model that the MPC uses in
its optimization, or to approximate the solution space of an explicit MPC [11].

Despite all the above, LMPC has shown to be useful in controlling chemical processes
in a limited operating region [12]. Moreover, only some degree of nonlinearity could
be tolerated. The standard approach for handling strong nonlinearities in the LMPC
framework is to sacrifice performance by detuning the controller [11]. These advanced
control strategies are applied on a supervisory level to the basic process control, driving the
feedback controllers’ set points to values that ensure that the required higher-level targets
are met. This approach has the advantage that basic process control has a linearizing effect,
the behavior of the controlled plant being simpler.

In the research literature, extensively noticed reviews have been published related to
industrial applications of MPC [9,11] together with tuning methods guidelines for model
predictive control [1,13]. Equally important is the use of standard benchmark approaches
while researching new techniques in model predictive controlled systems. Refs. [14,15]
designed standard benchmark distillation columns to be considered as testing environments
considering a binary mixture feed.

Albeit these considerations, the majority of MPC case studies, linear or nonlinear, are
implemented on a single piece of equipment (e.g., reactor, distillation column) and not on
an entire unit. Case studies where MPC is implemented on a single piece of equipment
(i.e., dividing wall column) are [16–18] and more recently [19].

Few case studies are available [20,21] where LMPC is implemented on a plant-wide
control process, consisting of a series of equipment, reactor, furnace, heat exchangers, and
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distillation columns. In fact, Ref. [22] proposed a hydride model applicable where the
plants can be decomposed in linear plants and highly nonlinear. Alternatively, Ref. [23]
studied the implementation of LMPC on a vinyl chloride monomer process by dividing the
complex unit into two separate sections and designing two MPCs for each section, followed
by performance evaluation by comparison with the open-loop response.

It should be remarked that several case studies of MPC implementation use internal
prediction models derived from first-principle models and not from step-response tests.
Although such a method is more accurate because it represents all the states, the avail-
ability and complexity of deriving a process model are inherently limited and restrict the
applicability to one equipment or unit section [19]. Therefore, there is a need for further
investigation of the implementation of LMPC to plant-wide processes.

The 2-butene metathesis is a novel process to convert low-value by-products of fluid
catalytic cracking (FCC) into more attractive products such as propylene and ethylene. This
process is of industrial interest [24]. In a previous work [25], the design, optimization, and
basic process control of the 2-butene metathesis process were investigated. The present
work completes the endeavor by studying the applicability of MPC to the metathesis
process. The main objective of the control system is to achieve changes in ethylene and
propylene production rates, according to the market demand. Quick response to a dynamic
market is of utmost importance for the industrial plant. Additionally, when economic
optimization is employed, a reduced controllability of the unit is often expected. In
this context, dynamic simulation is compulsory. The difficulty increases further when
attempting plant-wide control of the entire unit.

This work proves that linear model predictive control of the 2-butene metathesis
process [25] has a much better performance compared to the conventional process control.
The methodology is similar to the industrial approach. More precisely, dynamic tests are
used to generate the input–output data from the Aspen Plus Dynamics simulation. Then, a
process model is developed by open-loop identification. Space-state model formulation
and validation are performed in MATLAB. The model predictive controller is designed
and implemented using Matlab/Simulink tools. The controller is tested by co-simulation
in Aspen Dynamics and MATLAB/Simulink. The performance of the model predictive
controller is compared with the open-loop response of the unit. Step changes of +/−10%
are applied on the product flows, ethylene and propylene, respectively, by adjusting the set
points of fresh feed rate and reactor inlet temperature controllers.

2. Materials and Methods

The design of the 2-butene metathesis process is described in an earlier paper [25],
where Aspen Plus version 10 was used for steady-state simulation and evaluation. After
equipment sizing, a flow-driven Aspen Plus Dynamics simulation model is obtained. This
will be considered the “live” unit on which the LMPC will be tested. Firstly, the basic process
control loops are implemented, tuned, and tested. Then, the LMPC problem is defined. The
linear model needed for LMPC design is obtained by process identification using MATLAB,
with data obtained from Aspen Plus Dynamics simulation. The actual LMPC is performed
using MATLAB/Simulink facilities (MPC Design application). The LMPC is tested using
Simulink-Aspen Plus Dynamics co-simulation, where the LMPC implemented in Simulink
provides the setpoints of the relevant regulatory controllers implemented in Aspen Plus
Dynamics. Finally, the performance of LMPC is compared to the conventional feedback
control strategy. Note that Aspen Plus Dynamics (www.aspentech.com, accessed on 1 June
2023) is a standard simulation tool because it offers robust and comprehensive modeling
capabilities. It seamlessly integrates with Aspen Plus, enabling analysis of both steady-state
and dynamic behavior. The software supports advanced control system design and has
gained wide industry acceptance. It has undergone validation and verification processes,
ensuring its accuracy and reliability.

www.aspentech.com
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2.1. Process Design and Control

Figure 1 presents the flowsheet of the 2-butene metathesis process [25]. The fresh
feed is a mixture of 2-butene (reactant) and n-butane (inert) in a 70:30 mol% ratio. The
unit is designed to process 5.7 t/h of fresh feed coming from the fluid catalytic cracking
unit. The plant includes a preheating/heating section where the feed is preheated by the
feed-effluent exchanger (FEHE) and by the heater (H-1). The reactor inlet temperature is
adjusted by the furnace duty via a temperature controller. The reaction takes place in an
adiabatic tubular reactor with a tungsten oxide catalyst supported on silica. The reactor,
with a diameter of D = 3 m and a length of L = 9 m, operates at P = 1.0 bar and T = 550 ◦C.
The residence time is 34 s. The reactor effluent preheats the fresh feed in the FEHE and
then is further cooled in an air cooler (AC-1) and water cooler (HE-1) prior to entering the
separation section. The reactor outlet mixture temperature is controlled by the HE-1 cooler
upstream of the compression section to ensure an acceptable temperature (circa 50 ◦C) at
the inlet of the K-1 compressor. The heat generated by compression is recovered in the
reboiler (HE-11) of the last distillation column. A train of four distillation columns recovers
the products, in order of decreasing volatilities: ethylene, propylene, butane–butene (C4)
mixture, pentene, and hexene.
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Figure 1. Olefin metathesis of 2-butene flowsheet and the input–output variables of the LMPC problem.

Each distillation column in the separation section has pressure and level loops for
inventory control. The pressure is controlled by the condenser duty, and the liquid hold-
ups are maintained by the level controllers. This approach is suitable for small reflux and
boil-up ratios [26]. For each distillation column, indirect composition control is used to
regulate the distillate product specification. This control is achieved through a temperature
controller placed on the sensitive tray, which adjusts the reflux rate [27].

To ensure high purity in the distillate flows and prevent any light product carryover
in the bottom flow, a combination of cascade control using composition control (XC)
and temperature control (TC) is implemented. This control strategy follows industrial
practices, where the samples are periodically taken and analyzed. Thus, we consider
that the composition controller experiences a 10 min sampling period and a 10 min dead
time. Particularly, the HE-11 reboiler duty from the pentene distillation column receives a
constant heat duty from the compression work generated to increase the pressure of the
reactor effluent, with any remaining heat supplied by low-pressure steam.

The model predictive control is applied on a supervisory level, acting directly on the
set points of the feedback control loops (manipulated variables) in order to achieve the
product flow targets (controlled variables) set by the user. The LMPC system is composed
of two manipulated variables, the setpoints of the fresh feed controller (MV1) and of the
reactor inlet temperature controller (MV2), and two controlled variables, ethylene and
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propylene flows. Thus, there is a two-layer structure for LMPC implementation. The
first layer consists of regulatory decentralized PI/P loops that stabilize the main process
variables. The second (supervisory) layer is the LMPC controller, which adjusts the set
points of conventional regulatory loops. Figure 1 illustrates the plantwide control of the
2-butene olefin metathesis, showcasing the input–output variables in a 2 × 2 configuration.

2.2. Controller Tuning

The algorithms used for the feedback controllers are proportional (P) and proportional-
integral (PI). All column sumps level controllers are P-type controllers (large value of the
reset time Ti) with a gain of 1%/%, where the process variable (PV) and controller output
(OP) ranges are set to twice the nominal value.

For temperature, pressure, and the other level controllers, the reset time was set to an
estimated value of the process time constant [28]. The gains (Kc) were set by trial and error.

The composition controllers, which must deal with the dead time and sampling of the
composition measurement, are tuned by conducting a relay-feedback test and applying
the Tyreus–Luyben tuning rule. The resulting tuning parameters and the corresponding
controller action are presented in Table 1.

Table 1. Regulatory controllers tuning parameters and ranges.

Controller PV,
Value and Range

OP,
Value and Range Kc (%/%) Ti (min) Controller Action

Heater

TC
Temperature = 550 ◦C Duty = 0.42 MMkcal/h

2 4 Reverse540 . . . 560 ◦C 0.1 . . . 0.6 MMkcal/h

COL-1

PC
Pressure = 32 bar Condenser duty = −0.07

MMkcal/h 25 5 Reverse
30 . . . 35 bar −0.14 . . . 0 MMkcal/h

LC
Reflux drum level = 1.967 m Distillate rate = 270 kg/h

1 60 Direct1.5 . . . 2.4 m 0 . . . 750 kg/h

TC
Stage 7 temp. = −1.21 ◦C Reflux rate = 1009 kg/h

15 5 Direct−6 . . . 6 ◦C 500 . . . 3000 kg/h

LC
Sump drum level = 1.037 m Bottoms product rate = 5401

kg/h 1 60 Direct
0 . . . 2.075 m 0 . . . 10,798 kg/h

TC
Stage 23

temperature = 113.4 ◦C
0 . . . 226.1 ◦C

Reboiler duty = 0.365
MMkcal/h

0 . . . 0.729 MMkcal/h
5 30 Reverse

CC
Online analyzer = 0.8 wt%

(C2) Temperature = 113. 4 ◦C
0.07 145 Direct

0 . . . 0.15% wt% 0 . . . 226.8 ◦C

COL-2

PC
Pressure = 17 bar Cond. duty = −0.41

MMkcal/h 20 12 Reverse
15 . . . 19 bar −0.53 . . . −0.35 MMkcal/h

LC
Reflux drum level = 2.55 m Distillate rate = 1043 kg/h

1 10 Direct2.25 . . . 3 m 0 . . . 3100 kg/h

TC
Stage 3 temp. = 42.9 ◦C Reflux rate = 4731 kg/h

5 10 Direct40 . . . 45 ◦C 2000 . . . 7500 kg/h
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Table 1. Cont.

Controller PV,
Value and Range

OP,
Value and Range Kc (%/%) Ti (min) Controller Action

LC
Sump drum level = 0.94 m Bottoms product rate = 4357

kg/h 1 60 Direct
0 . . . 1.88 m 0 . . . 8705 kg/h

TC
Stage 34 temp. = 115.2 ◦C Reboiler duty = 0.304

MMkcal/h 1 30 Reverse
105 . . . 125 ◦C 0.15 . . . 0.6 MMkcal/h

CC
Online analyzer = 0.3 wt%

(C3) Temperature = 115.2 ◦C
0.065 198 Direct

0 . . . 0.15% wt% 0 . . . 150 ◦C

COL-3

PC
Pressure = 3.9 bar Cond. duty = −0.47

MMkcal/h 20 12 Reverse
3.5 . . . 4.5 bar −0.93 . . . 0 MMkcal/h

LC
Reflux drum level = 3.75 m Distillate rate = 2372 kg/h

1 15 Direct3 . . . 4 m 0 . . . 4729 kg/h

TC
Stage 3 temp. = 42.1 ◦C Reflux rate = 3180 kg/h

3 10 Direct37 . . . 47 ◦C 500 . . . 5000 kg/h

LC
Sump drum level = 0.68 m Bottoms product rate = 1984

kg/h 1 60 Direct
0 . . . 1.36 m 0 . . . 3975 kg/h

TC
Stage 28

temperature = 88.8 ◦C
75. . .95 ◦C

Reboiler duty = 0.304
MMkcal/h

0 . . . 0.7 MMkcal/h
1 20 Reverse

CC
Online analyzer = 0.12 wt%

(2-Butene) Temperature = 88.8 ◦C
0.04 105 Direct

0.05 . . . 0.3% wt% 0 . . . 177 ◦C

COL-4

PC
Pressure = 1.15 bar Condenser duty = −0.25

MMkcal/h 20 12 Reverse
1 . . . 1.5 bar −0.5 . . . 0 MMkcal/hr

LC
Reflux drum level = 4.175 m Distillate rate = 1380 kg/h

1 5 Direct3 . . . 5 m 0 . . . 2760 kg/h

LC
Sump level = 0.575 m Bottoms product rate = 605

kg/h 1 60 Direct
0 . . . 1.15 m 0 . . . 1215 kg/h

TC
Stage 26

temperature = 72 ◦C
0 . . . 144 ◦C

Reboiler duty = 0.2 MMkcal/h
0 . . . 0.412 MMkcal/h 1 30 Reverse

CC
Online analyzer = 0.99 wt%

(C5) Temperature = 72 ◦C
0.05 170 Direct

0.5 . . . 1.12% wt% 0 . . . 142 ◦C

2.3. Process Model Identification

In industrial applications, step tests are typically executed on the operating unit to
identify a valid process model required for designing the model predictive controller.
Herein, the Aspen Plus Dynamics simulation model acts as the “live” unit to extract the
necessary process data for designing a 2 × 2 LMPC using MATLAB/Simulink. In this
study, a doublet step signal is used for input–output data generation. The doublet test is
two bump tests performed in rapid succession and in opposite directions (e.g., +/−10%).
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For each of the two input variables (feed flow set point and reactor inlet temperature set
point), a doublet test of +/−10% amplitude is executed. In these tests, the perturbations are
applied for a total duration of 30 h with data received at regular intervals of 0.1 h, which
is the sampling time of the model. Thus, 300 points of data were generated to develop
the models.

The test starts in a steady-state condition, which is maintained for 10 h. After 10 h,
the feed flow controller set point is increased by +10% for a duration of 10 h. The control
system is able to bring the plant to a new steady state. The production (ethylene and
propylene flow) increases by approximately 8.1% and 5.5%, respectively. The next step test
is performed at t = 20 h, corresponding to −20% from the current value, or −10% from the
nominal steady. The opposite effect (production decrease) is observed. The control system
brings the unit to a new steady state, where the ethylene and propylene flows decrease by
approximately −5.9% and −8.4%. A final step, at t = 30 h, is performed to bring the control
system to the initial conditions. The feed flow is increased by +10%. The production flow
rates return to their initial values.

The same strategy is applied to the reactor inlet temperature controller set point.
Starting from the nominal steady state, at t = 10 h, the temperature controller set point is
increased by +5 ◦C for a duration of 10 h. A new steady state is reached, where the ethylene
and propylene flows increase by 2.5% and 0.9%, respectively. At t = 20 h, the next step test
is performed, which corresponds to a decrease of −10 ◦C from the current value or −5 ◦C
from the nominal steady state. As a result of the test, the effect is opposite to the previous
step, where both production flows decrease. After 10 h, the ethylene and propylene flows
decrease by approximately −2.5% and −0.9%, respectively. A final step is performed at
t = 30 h to bring the control system back to the initial conditions. In this final step, the
reactor inlet temperature is increased by +5 ◦C. At t = 40 h, the production flow rates return
to their initial values.

These variables are referred to as manipulated variables (MV). The outputs (controlled
variables, CV) are ethylene and propylene flow rates, which are production targets set and
controlled by the user through the LMPC. The list of manipulated and controlled variables
for the supervisory level is shown in Table 2.

Table 2. Input/output variables of the LMPC controller.

Input/Output Nominal Value Minimum Maximum Dimensionless
Nominal Value Type

Feed
flow/[kmol/h] 100 75 125 50% Manipulated variable (MV1)

Reactor inlet
temperature/[◦C] 550 450 650 50% Manipulated variable (MV2)

Ethylene
flow/[kmol/h] 9.6 4.8 14.4 50% Controlled variable (CV1)

Propylene
flow/[kmol/h] 24.5 16.1 33.5 50% Controlled variable (CV2)

In a doublet test performed on one input, the responses of the two outputs are recorded,
and a linear state space model is obtained from the input–output simulation data (ssest
MATLAB function). The state–space models corresponding to the two inputs are then
concatenated into a single final state–space model. The identified model has an order of 24.
The system matrices A, B and C are provided in Appendix A. The models are expressed
in deviations from the nominal values in order to simplify the complexity of the process
model and consequently the model-based controller. The stability of the model is verified
by checking the eigenvalues of the system matrix. Figure 2 displays the results from the
identified model and simulation data. The results show a good agreement between the
model estimates (e.g., ss_modelFeed and ss_modelTC) and the process simulation data
output (e.g., sim_dataFeed and sim_dataTC). As with any model, the linear state–space
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representation is an approximation of the real process. However, the controller designed
using this model should work despite the modeling inaccuracy.
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2.4. MPC Controller Design and Tuning

LMPC is an optimization-based control approach that utilizes a linear process model to
predict and optimize future process responses. At each sampling time, the model is updated
based on new measurements and variables estimated using a Kalman filter considering the
disturbances and measurement noise. The open-loop optimal manipulated variable moves
are computed over a finite prediction horizon based on a specified cost function. These
calculated manipulated variables are then implemented for the subsequent prediction
horizon. The prediction horizon is typically shifted by one sampling time into the future,
and the previous steps are repeated. The optimization problem for prediction is solved
based on a linear time-invariant model. Nowadays, state–space models are commonly
used for representing the linear time-invariant models in MPC applications.

The LMPC algorithm can be described by the following optimization problem:

min
∆u(k)...∆u(k+m−1)

∑p
i=1 ||Γ

y
i ([y(k + 1)|k)− r(k + 1)]||2 + ∑m

i=1 ||Γ
u
i

([
∆u(k + l − 1)||2 (1)

.
x(k + 1) = Ax(k) + Bu(k) (2)

y(k) = Cx(k) (3)

∆u = {∆u|∆umaxmin} (4)
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where Γy
i and Γu

i are weighting factors of each component of input (u) and prediction output
(y), respectively. The matrices A, B, and C are the state–space matrices of the linear model
around a nominal operating point. For the given reference set point (r), the LMPC uses
the model to predict the future behavior of the process output (y) and calculates the future
control moves (∆u), which minimizes the control error (r − y). The number of prediction
horizon (p) and control horizon (m) points, respectively, determines the prediction of y and
∆u. Recommended values for the prediction and control horizon are provided in [1]. For
the prediction horizon, values between 10 and 30 are suggested. Higher values result in
less aggressive control actions and slower response but require more computational effort.
Lower values can lead to instability and more aggressive control actions. For the control
horizon, values between 1 and 4, or approximately 1/3 of the prediction horizon, are
recommended. These values ensure good control performance with reduced computational
effort and improved robustness.

In this work, the prediction horizon is set to p = 10, while the control horizon is set
to m = 2. The output weight is set to the nominal value for each variable, indicating equal
importance for all output variables. Note that, although the control action ∆u is calculated
for m future steps, only one control action is actually implemented, the optimization being
repeated at each sampling time.

In this study, the MPC controller ensures that the production flows of ethylene and
propylene meet the user-defined targets. This is achieved by adjusting the set points
of the conventional control loops, the feed flow set point (MV1), and the reactor inlet
temperature set point (MV2). This strategy enables the control problem to be addressed
globally, taking into account the interactions between the variables to optimize the overall
system performance [1]. An alternative approach to address the control problem in the
system could be subsystem partitioning. This involves dividing the unit into distinct
sections, such as the reaction section and the separation section. Each section would then
be treated as a separate entity, and a dedicated model predictive controller (MPC) can be
designed for each section [10].

2.5. Model Predictive Control Implementation

MATLAB environment is used to enable the connection between the dynamic sim-
ulation in Aspen Plus Dynamics and the model-based controller configured in MAT-
LAB/Simulink. To establish the connection between the two software platforms, MAT-
LAB/Simulink employs an ActiveX automation server to interact with process simulators.
The Simulink environment provides a convenient interface for integrating the controller
and the dynamic simulation. It allows for the exchange of data and control signals between
MATLAB/Simulink and Aspen Dynamics. Note that proper selection of the MATLAB
version and Aspen Plus Dynamics software is essential to ensure communication without
compatibility issues between the two platforms. In this study, MATLAB version R2015b
(32 bits) and Aspen Plus Dynamics version 10 (also 32 bits) are selected. The Mathworks
Matlab MPC toolbox ® was successfully used in this work. The LMPC is then implemented
in Simulink, which drives the Aspen Plus Dynamics model (Figure 3).
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3. Results and Discussion

The control performance of the LMPC controller is evaluated through tests of step
changes applied on the setpoints of the controlled variables. The tests are conducted
after 1 h of steady-state operation. Two sets of data are generated, for a step change of
+10% (continuous solid blue line) simultaneously applied to both controlled variables
(e.g., ethylene and propylene flow) and −10% (dashed orange line) applied to the same
controlled variables. These tests give the dynamics of the controlled and manipulated
variables under closed-loop conditions. Note that the values of the manipulated variables
at the new steady state could be implemented as steps in order to achieve the same final
change of the controlled variables, but in an open-loop fashion.

The LMPC controller demonstrates stable and rapid attainment of the target produc-
tion rates within a reasonable duration of less than 5 h (Figure 4). The overshoot of the
flow set points is minimal. The constraints on the manipulated variables were not active.
Some oscillations in the feed rate and reactor inlet temperature are observed. Specifically,
for a +10% step change in production flows, the model drives the reactor inlet temperature
set point in the opposite direction. However, after a few hours, the LMPC corrects this
manipulated variable and aligns it in the correct direction, resulting in the attainment of
the desired targets for both controlled variables. Accurate control of product purities is
achieved, for both ethylene (C2) and propylene (C3) products. Overall, the LMPC effec-
tively manages to reach the target production rates, with minimal overshoot and proper
adjustment of manipulated variables over time.
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Figure 4. MPC Profiles of ethylene and propylene flowrates, purities, fresh feed rate, and reactor inlet
temperature.

Figure 5 depicts the remaining product flows (butane and butene (C4), pentene (C5),
and hexane (C6)) together with their corresponding purities. Figure 6 shows the columns’
reboiler duties. The model predictive controller indirectly affects these variables as any
changes made to the manipulated variables have a corresponding influence on these
outputs. However, the feedback control mechanism effectively adjusts these variables
within acceptable limits.
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Figure 5. MPC profiles of butene, pentene, and hexene flowrates and corresponding purities.
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Figure 6. MPC profiles of columns’ reboiler duties.

Notably, the response to the −10% step change (represented by the orange dashed
line) is faster compared to the +10% step change. This indicates that it is easier to decrease
the production rate.

The performance of the LMPC is compared with the open-loop response using the
dynamic simulation data. In the open-loop test, the manipulated variables (feed flow set
point and reactor inlet temperature set point) are modified by applying a step such that
the output variables (C2 flow and C3 flow) change by +/−10% from their steady-state
values (as in the LMPC tests). In this way, the two control strategies could be compared
by means of performance indexes such as integral square error (ISE), mean square error
(MSE), integral absolute error (IAE), peak error (PE), or overshoot. Results are presented in
Figures 7 and 8.
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Figure 7. Open-loop profiles of ethylene, propylene flowrates, corresponding purities, feed rate, and
reactor inlet temperature.
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Figure 8. Open-loop profiles of columns’ reboiler duties.

In Figures 7 and 8, the open-loop responses demonstrate reasonable control with some
oscillations until reaching the production flow targets after approximately 15 h, followed
by a steady-state regime. The ethylene flow exhibits an overshoot of approximately 50%
compared to the set point value; however, the feedback controllers efficiently adjust and
swiftly reduce the error. Throughout these tests, the feedback controllers effectively main-
tain the product purities of ethylene and propylene at their respective set points for both
control strategies. Albeit the nonlinearity of the 2-butene olefin metathesis unit, the results
show that the linear model predictive controller outperforms the open-loop response.

To characterize system performance and identify the most effective control structure,
several performance indexes are considered. The mean square error loss (MSE) is utilized
to illustrate the performance and control response for the same step change of +/−10% in
production flow over a period of 30 h. The MSE represents the sum of squared differences
between predicted and actual output values, divided by the number of tested hours.

Additionally, the integral square error (ISE) is employed as another measure to eval-
uate system performance, calculated by integrating the square of the control error over
the same period (by applying the trapezoidal rule, with a fixed 0.2 h step). In industrial
practice, the control performance is often assessed based on the maximum deviation of
the controlled variables, referred to as peak error (PE). However, while PE identifies the
maximum deviation, it does not provide information about fluctuations or the ability to
achieve the set point. Therefore, the integral absolute error (IAE) is commonly used to
evaluate control response and accuracy. The IAE calculates the sum of areas above and
below the set point, equally penalizing errors regardless of direction.

The results presented in Table 3 consistently indicate that the LMPC exhibits signifi-
cantly better performance compared to open-loop responses, demonstrating its superior
control capabilities.

Table 3. Index performances of control strategies.

Controlled Variable 1:
Ethylene Flow (y1)

Controlled Variable 2:
Propylene Flow (y2)

Method U.M MPC Open
Loop MPC Open

Loop MPC Open
Loop MPC Open

Loop

−10% −10% +10% +10% −10% −10% +10% +10%
ISE (kmol/h)2 × h 0.05 3.16 1.34 6.19 1.7 15.8 1.3 10.6

MSE (kmol/h)2/h 0.01 1.05 0.22 2.06 0.3 5.3 0.2 3.5
IAE (kmol/h) × h 0.50 5.63 4.80 9.35 2.8 20.8 3.3 16.2
PE kmol/h 0.20 3.57 0.86 4.26 1.6 2.7 1.7 2.4

Challenges, Recommendations, and Opportunities

The performance of the model predictive controller (MPC) is highly dependent on
the quality of the process model. The implementation of an LMPC typically involves
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obtaining a linear model through system identification directly applied to the industrial
plant. This is the most common method. However, when dynamic simulation of the process
is available, system identification offers a significant advantage by obtaining models based
on input–output simulation data. In this context, it is essential that the dynamic simulation
accurately reproduces the dynamics of the industrial process. The MPC can be set up offline
and applied to either a virtual (for initial testing) or an industrial unit (some adjustments
might be required). This approach stands out for its simplicity and practicality in diverse
industrial applications.

Alternatively, the linear model can be obtained by linearization of the dynamic sim-
ulation model. This approach works well when a simple process (such as stirred reactor,
vapor–liquid separator, or binary distillation with ideal mixtures) is considered. If the
dynamic simulation model is a faithful representation of the real plant, the LMPC controller
designed in this way outperforms an LMPC designed based on an identified process model.

However, when dealing with complex and nonlinear processes, linearization of the
dynamic simulation model might not work. In our experience, the linear model is often
unstable and, despite time-consuming efforts for model reduction and scaling, useless
for the design of the LMPC. This is the rationale behind the predominant utilization of
LMPC on individual equipment or sections of the plant, and not plant wide. From the
authors’ experience, working with variables expressed as scaled deviations from the steady-
state values (instead of absolute values) significantly improves the performance of the
designed controller. Irrespective of the method employed, significant time and expertise
are devoted to model development and validation. Finally, a post-implementation review
of the industrial unit and continuous follow-up of the linear models during unit operation
by experienced specialists are compulsory. Changes in process, such as catalyst change-
out, unit revamps or modernization, heat integration, etc., require re-validation of the
process model.

From the industrial experience of one of the authors, the MPC is widely accepted
as a necessary profitability solution for many applications. However, the current market
dynamics impede sustainable MPC performance. Thus, the resources of experts, needed to
monitor and maintain MPC, are becoming limited. The commissioning of MPC might not
be an issue where, typically, an expert user employs the model identification. However, the
responsibility for maintenance and monitoring of MPC is often placed on individuals who
may not have expertise in the field. This includes re-identifying models. For this reason, a
common practice is to employ a first-order plus dead time model (FOPDT), which does
not ensure an optimal process model. Another approach is adaptive MPC by automated
closed-loop testing. Multiple industrial applications have successfully been applied [29].
Future work should include efforts to enhance operator interaction with MPC through
user-friendly interfaces, while also implementing effective performance monitoring and
maintenance strategies despite limited resources.

4. Conclusions

This study demonstrates that the 2-butene olefin metathesis process can be controlled
by a linear 2 × 2 model predictive controller. The dynamic simulation of the process,
specifically the reaction–separation flowsheet, served as the basis for the “operating” unit.
The flow rates of ethylene and propylene, the main products of the process, were the
controlled variables. The set points of the fresh feed flow and the reactor inlet temperature
controllers were the manipulated variables. Doublet tests were performed on the Aspen
Plus Dynamics simulation of the plant to collect process data for model identification.
A linear state–space model was obtained using MATLAB’s state–space estimation. The
accuracy of the identified model was validated by comparing it against the dynamic
simulation. MATLAB was utilized for the configuration and tuning of the LMPC following
recommended guidelines for setting the prediction and control horizons.

To assess the performance of the LMPC, two sets of tests were conducted, involving
simultaneous changes in production flows (+/−10%). The LMPC effectively manipulates
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the feed and reactor inlet temperature set points to achieve the new production rates. The
performance of the MPC was compared with the open-loop response from the dynamic
simulation using various performance indexes such as ISE, MSE, IAE, PE, and overshoot.

The results demonstrated that the LMPC outperformed the open-loop response in
both tests, showcasing better performance for +/−10% production flow rate changes. The
LMPC consistently exhibited much lower errors (by a factor of 10) compared to the open-
loop response. This outcome reveals the benefit of model-based control attaining new
production rates much faster than conventional process control.

While alternative methods such as Aspen Dynamics linearization and model reduction
exist for developing linear process models, the applicability of this technique in industrial
applications is very limited due to nonlinear behavior, large size, and potential instability
of the Aspen Dynamics models.

In summary, this study demonstrates the applicability of a linear MPC controller on the
2-butene olefin metathesis process. The MPC is configured on a supervisory level, providing
set points to conventional controllers. The findings contribute to the understanding of
advanced control strategies for complex processes and emphasize the importance of model
quality, selection, and proper tuning in achieving superior control performance.
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Appendix A

The matrices A, B, and C are provided below.



Processes 2023, 11, 2216 17 of 18

A1 =



−0.16223 1.880899 −0.31835 −0.52836 0.190029 −0.57681 0.10414 0.263565 0.422597 0.625649 0.733537 0.258737

−2.16428 0.148 0.449201 1.030699 0.009949 0.284626 0.619023 0.238953 0.570198 0.229988 −1.02323 0.105317

−1.65209 −0.23532 −2.90199 −1.67109 0.75091 −2.2163 3.152441 −0.89083 −3.11158 −1.83494 −1.22914 −0.07104

−1.69774 −0.26059 −5.53162 −5.44812 2.192945 −1.41651 1.720408 −5.2707 −4.46706 −0.02862 7.101301 −0.39382

1.102285 0.01663 3.30507 5.197591 −5.81744 24.85774 0.547113 5.939449 −2.80999 −2.54801 −0.76087 −1.81668

1.595273 0.338887 7.345662 6.464851 −32.3819 2.059699 5.529064 6.340641 −3.5392 −3.32589 −4.27451 0.255258

0.263967 0.277951 0.596695 0.580928 1.791652 −6.14906 −2.62977 7.198767 7.218493 10.64619 4.308984 1.19407

−1.02433 0.185629 −0.90706 −1.63712 −2.19653 −2.2857 −7.20392 −6.58088 13.62197 12.03055 8.887223 0.001671

1.325971 1.014507 6.134193 7.922006 −7.76349 5.413479 −2.82299 −12.66 −4.1104 −7.6169 −10.8003 −1.19591

2.075655 −0.1887 8.116941 9.976927 −10.4651 4.593693 −8.13504 −8.13048 −1.65045 −7.54428 −16.6748 −1.6036

0.149227 −1.67008 2.192064 0.974587 −3.99014 2.070683 −6.84252 −13.9886 2.464263 6.052599 −2.16313 −1.51929

0.760179 −0.13506 5.863719 6.794642 −5.88298 4.863912 −7.57859 −1.73719 −4.0962 −5.95474 −2.42834 −2.57404



A2 =



−0.03814 1.593885 −0.01912 0.014827 −0.03039 −0.05008 −0.02436 0.013489 −0.003 −0.07616 0.202111 −0.02253

−1.5446 0.022738 −1.3437 −0.98474 0.416994 0.043475 −0.01111 −0.17563 −0.06851 0.239763 −0.57589 0.010195

0.355948 1.076676 −0.70416 0.028913 0.183521 1.37017 1.286359 −1.73018 1.132008 0.636348 −2.43211 0.242211

−0.25183 1.132885 0.958394 −0.31251 1.823894 −0.08641 −0.43212 −0.60029 −3.15289 −1.13017 3.010083 0.083985

−0.41654 −0.14411 1.525839 −3.04321 −1.18869 0.700108 0.482278 3.773191 4.085937 1.459526 −4.87163 −0.04568

−0.59611 0.446147 1.731013 −1.95996 −3.4672 −4.55222 −11.1997 6.584963 −19.1993 −8.25189 25.40811 −1.50683

−0.51104 0.311221 1.038691 −0.97067 −3.25268 6.44478 −1.6945 −2.45454 −4.02788 −2.69034 6.684245 −0.88452

2.04919 −0.81249 −5.42031 5.563884 7.272822 0.944788 14.45167 −24.8399 −83.7155 −23.7022 67.02384 0.594663

−0.25345 0.342051 0.064513 2.104107 −3.34058 12.04924 1.337952 69.39504 −3.03393 −7.04866 13.70432 −0.45729

0.245884 −0.05477 −0.55072 1.195559 0.990775 1.370493 1.623174 2.227244 −3.73858 −8.43771 39.3896 −3.33709

−1.49171 0.640818 5.580204 −6.6002 −5.21035 −17.2417 −9.62084 −17.7112 25.32879 14.05192 −90.0465 15.75261

0.386401 −0.14403 −1.68514 0.989388 1.670869 4.363952 2.647987 −4.15552 −0.63428 2.5947 −6.3625 −1.0128



(A1)

A =

[
A1 0
0 A2

]
(A2)

B1 =
[

0.012326 −0.01718 −0.1358 −0.13007 −0.08689 0.543867 0.257626 0.293344 −0.04644 0.058562 0.070508 0.227571
]T

B2 =
[
−0.00099 −0.0027 0.126658 0.034754 −0.2479 −0.63919 0.137964 2.502466 −0.49519 0.981521 −3.16145 0.357845

]T (A3)

B =

[
B1
B2

]
(A4)

C1 =

 −5.37298 −0.21741 6.594008 −4.41833 8.098169 5.360118 −13.4007 −15.2822 6.167842 10.92158 1.483801 1.733703

−28.2644 −3.4638 −0.24013 −0.2743 −0.60693 −0.17047 0.822622 1.346847 −0.81627 −0.95168 0.153557 0.12794

 (A5)

C2 =

 0.400099 0.703828 1.028527 −0.94063 0.028634 −0.50341 −0.12024 −0.11679 0.085235 −0.03927 0.051801 −0.05612

−3.91438 −0.00755 0.012865 0.027889 −0.00793 0.004158 0.002698 −0.00362 −0.00482 −0.01298 0.030643 −0.00078

 (A6)

C =
[
C1 C2

]
(A7)
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