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Abstract: The development of new electrode materials for electrochemical systems for various pur-
poses is a significant and in-demand task of scientific research. Layered transition metal carbides and
nitrides, known as MXenes, show great potential for use as electrodes in electrochemical energy stor-
age devices operating in aqueous electrolytes. In this work, a multilayer Ti3C2Tx MXene was obtained
from a Ti3AlC2 precursor and studied as the electrode material of a symmetrical supercapacitor with
an aqueous LiCl electrolyte. The formation of the MXene structure was confirmed by the data from
X-ray phase analysis and scanning electron microscopy. The X-ray diffraction pattern showed the
disappearance of the main reflections related to the Ti3AlC2 phase and the shift of the reflection peak
(002) from 9.4◦ to 6.7◦, which indicated successful etching of the Al layers from the Ti3AlC2 precursor.
At electrolyte concentrations of 1, 5, 10, and 20 M, the supercapacitors demonstrated high specific
capacitances of 105, 120, 126, and 151 F·g−1 at a scan rate of 5 mV·s−1. In addition, an increase in
the LiCl concentration contributed to the expansion of the potential window from 0.7 to 1 V. It was
shown that the contribution of the surface capacitance to the total capacitance of the electrode is
about 40% and depends little on the scan rate. In addition, the symmetrical supercapacitor with 5 M
electrolyte showed good cyclic stability with capacitance retention of 88% over 10,000 cycles. The
parameters of the main components of the physical processes of supercapacitors based on Ti3C2Tx

were determined by the method of impedance spectroscopy.
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1. Introduction

An important task of the modern scientific community is the development of new,
highly efficient energy storage and conversion systems due to the rapid development of
electronic technology and the growing need for energy storage. Among such energy storage
devices, one can note lithium-ion batteries [1,2], lithium-selenium batteries [3], post-lithium
and sodium-ion batteries [4], zinc-ion [5] and zinc-air batteries [6], as well as ammonium-
ion batteries [7]. Among them, lithium-ion batteries clearly occupy a leading position.
However, lithium-ion batteries have a slow energy supply or absorption, which limits
their use in applications that require faster and more powerful energy storage systems.
Supercapacitors (SCs) or ultracapacitors can handle this task [8–13]. These devices are
able to charge in seconds and quickly discharge. These devices are inferior in terms of
specific energy (about 5 Wh kg−1), but the value of specific power transmitted in a few
seconds is much higher (10 kW kg−1). SCs play an important role in uninterruptible power
supply and load-balancing applications. Sharing batteries and SCs allows for the creation
of hybrid systems that can store more energy and release or store it in a shorter time [14].
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Although SCs have been used in the electronics industry for decades, they still need to be
improved. Depending on the charge storage mechanism, SCs can be divided into electrical
double-layer capacitors and pseudocapacitors. In the first case, the accumulation of energy
occurs as a result of the separation of charges at the interface between the electrolyte and
the electrode. In the case of pseudocapacitors for energy storage, the following reactions
take place: (1) intercalation of electrolyte ions; (2) redox reactions, which result in charge
accumulation at the electrode/electrolyte interface; (3) low-potential deposition, in which a
charge is built up by depositing ions at a metal/electrolyte interface that is negative with
respect to their redox potential [15–17]. The design of SCs consists of electrodes, electrolytes,
and ion-permeable membranes. Both electrode materials and electrolytes play a key role in
the energy storage characteristics of SCs. Therefore, when developing SCs, it is necessary
to ensure the required characteristics of the electrode material and electrolyte.

Electrode materials for modern SCs should have a number of properties such as high
capacitive characteristics, high electrical conductivity, high chemical and thermal stability,
surface wettability, etc. Therefore, carbon materials, conductive polymers, oxides, and
sulfides of transition metals are widely studied as electrode materials [18–23]. However,
most of them have low actual capacitance, low cycle stability, limited conductivity, or short
life, which limits their use in modern electronic devices. More promising electrode materials
can be 2d materials of the MXene group. MXene are defined by the general formula
Mn+1XnTx and are a relatively new group of early transition metal carbides, nitrides, and
carbonitrides obtained by selective etching of element A from structures of Mn+1AXn
phases, where M is a transition metal (Ti, Zr, V, Nb, Mo, etc.), A is an element IIIA or IVA
(Al, Si, Ga, In, etc.), X is carbon and/or nitrogen, and Tx are surface functional groups
(–O, –F, –OH, –Cl). MXenes have a number of unique physical and chemical properties
due to which they find applications in various fields such as catalysis, electromagnetic
absorption, electronics, sensors, optoelectronics, and many others [24–30]. The unique
properties such as intercalation, high electrical conductivity, hydrophilicity, and surface
redox reactions of MXenes make them promising candidates as high-capacity energy
storage electrode materials [31–35]. Among the many different types of MXene, Ti3C2Tx
is the most widely studied. This is primarily due to its availability and a number of
physicochemical properties such as high volumetric specific capacitance, high current
densities, and the ability to intercalate various metal cations.

For the manufacture of SCs electrodes from MXenes, macrostructures such as films
and aerogels are usually used [36–39]. However, the fabrication of such macrostructures is
extremely energy intensive and economically disadvantageous. A more efficient method
of obtaining electrodes is blade coating, since this method is feasible using available
modern industrial equipment and processing technology, which ensures low costs and
high efficiency of their production. In addition, an important problem in obtaining MXenes
is their lamination into individual nanosheets. In order to laminate multilayer accordion-
like MXenes, additional intercalation of TBAOH, TMAOH, or DMSO molecules into the
interlayer space of the MXene, and then long-term ultrasonic treatment, is usually required.
And even when using these procedures, the yield of single-layer MXene is about 40%.
Although laminated MXenes exhibit higher specific electrochemical capacitance, direct use
of multilayer MXenes is a simpler and more cost-effective approach.

The second important component of SCs is the electrolyte. SCs can operate both
on aqueous electrolytes and on the basis of organic and ionic electrolytes. However, the
use of organic electrolytes makes it possible to obtain a wider potential window of 3–4 V
compared to aqueous 0.8–1.2 V, which leads to a higher energy density. Despite this, the
development of high-performance SCs powered by aqueous electrolytes is an extremely
important task since this significantly reduces safety requirements and costs. It is known
that Ti3C2Tx MXene exhibits the best energy storage efficiency in sulfuric acid solutions
due to very fast redox reactions between H+ ions and MXenes [40,41]. However, compared
to acidic or alkaline electrolytes, neutral electrolytes are safer and allow a larger potential
window to be achieved by suppressing oxygen and hydrogen evolution. Compared to
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sulfuric acid, LiCl aqueous solution is one of the most common electrolytes, which is a safe
neutral salt with high solubility.

For the first time, in this work, multilayer MXenes are studied as an active component
of the electrode material of a symmetrical supercapacitor using an aqueous solution as
an electrolyte. The aim of this study is to determine the effect of LiCl concentration in
the electrolyte of a symmetrical SC with electrodes based on multilayer Ti3C2Tx MXene
deposited by the doctor-blade method.

2. Materials and Methods
2.1. Synthesis of Multilayered Ti3C2Tx MXene

For the synthesis of Ti3AlC2 MAX phase powder, elemental powders of titanium
carbide (TiC, 0.8–1.5 µm, 99.9%, Mreda, Beijing, China), titanium (Ti, PTM-1, 99%, Polema,
Tula, Russia), aluminum (Al, PA 4, 98%, Nizhny Novgorod, Russia), potassium, and
sodium chlorides were used. Ti3AlC2 MAX phase powder was obtained using molten salt
shielded synthesis. This synthesis method was chosen because of the higher diffusion rate
and property of non-oxide materials’ oxidation inhibition. For synthesis, TiC, Ti, and Al
powders were ground in a Frisch Pulverisette 6 planetary mill for 1 h using ZrO2 balls
2 mm in diameter. The stoichiometric molar ratio TiC:Ti:Al was 2:1:1.4 due to the high
volatilization of aluminum. Cylindrical granules 12 mm in diameter and 15 mm in height
were obtained from the resulting reaction mixture by uniaxial pressing. The granules were
immersed in an Al2O3 crucible preheated to 800 ◦C containing the eutectic composition
of the NaCl:KCl salt flux with a molar ratio of 0.506:0.494. Then, the crucible was covered
with a lid and kept in a furnace at 1250 ◦C for 3 h in a natural air atmosphere. After natural
cooling, the mixture was washed with distilled water to remove sodium and potassium
chlorides, and then washed in HCl solution for 18 h to remove possible intermetallic phases.
For washing 1 g of the MAX phase, 7.5 mL of HCl (11.8 M) and 2.5 mL of H2O were
used. Then, the powder was washed on a vacuum filter and dried at 60 ◦C. It should be
noted that the resulting Ti3AlC2 product was a gray powder without the use of additional
grinding procedures.

Ti3C2Tx MXene multilayer materials were obtained by selective etching of an Al layer
from the precursor structure of Ti3AlC2 MAX phase by treating it in a mixture of HCl
(HCl, 11.8 M, NizhHimProm, Nizhny Novgorod, Russia) and LiF (≥98.5 wt.%, Guangfu
Fine Chemical Research Institute, Tianjin, China) under hydrothermal conditions [42]. A
mixture of 75 mL HCl (11.8 M), 75 mL H2O, and 2.8 g LiF was placed in a 400 mL Teflon
autoclave, and then 6 g of Ti3AlC2 precursor was added. The autoclave was hermetically
sealed and kept in an oven at 140 ◦C for 24 h. It should be noted that an excess of the
indicated volume of the etchant mixture in the volume of the autoclave is unacceptable
for safety reasons, since the ongoing reaction is accompanied by a large release of thermal
energy. After natural cooling, the resulting black dispersion was washed with distilled
water on a vacuum filter until a neutral pH was established, and then dried at 60 ◦C for
24 h.

2.2. Materials Characterization

An ARL X’TRA diffractometer (Thermo Scientific, Ecublens, Switzerland) with Cu-Kα

radiation at a wavelength of λ = 0.15412 nm and an ASPEX Explorer scanning electron
microscope (ASPEX, Framingham, MA, USA) were used to study the phase composition
and morphology of the multilayer Ti3C2Tx MXene powder. To study the chemical composi-
tion by the EDX method, cylindrical granules 12 mm in diameter and 1.5 mm thick were
pressed from Ti3AlC2 and Ti3C2Tx powders. EDX spectra were obtained from the surface
of granules with an area of 6 × 6 µm.

2.3. Electrochemical Testing

The SCs’ electrodes were fabricated using the blade coating method. For this, a
dispersion of multilayer Ti3C2Tx MXene and carbon black (Printex RX2B) was prepared
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in a 2% poly(vinylidene fluoride) solution (PVDF, Sigma Aldrich, Mw~530,000, St. Louis,
MO, USA). The mass ratio of the components of the Ti3C2Tx/CB/PVDF electrode system
was 8/1/1, and 1-methyl-2-pyrrolidone was used as a solvent. The coating was uniformly
deposited on nickel foil 50 µm in thickness, and then dried at 80 ◦C under vacuum. The
density of the resulting coating was 2.5 mg·cm−2. Electrochemical studies of the fabricated
electrodes were carried out in assembled symmetrical supercapacitors coin cell CR2032
using a P-50 PRO potentiostat (OOO, Elins, Russia) and a Z1000P impedancemeter (OOO,
Elins, Russia). Aqueous solutions of lithium chloride (LiCl, 99.2%, TC 6-09-3751-838,
Rushim, Moscow, Russia) with concentrations of 1, 5, 10, and 20 M were used as electrolytes.
Cyclic voltammetry was used at scan rates from 1 to 100 mV·s−1 in a two-electrode circuit
with a voltage range from 0 to 1 V. Galvanostatic charge/discharge was recorded at current
densities of 0.5–5 A·g−1.

The capacitance of a symmetric SC was estimated based on the results of CVs and the
curves of GCDs using Equations (1) and (2), respectively:

CSC =

∫
jdU

2·∆UCV ·ν
, F (1)

CSC =
jGD∆t
∆UGD

, F (2)

where
∫

jdV is the integral of the current curve of the graph of the CV (mA·mV); ∆UCV is the
change in cell voltage CV (mV); ν is the scan rate (mV·s−1); jGD is the current galvanostatic
discharge (mA); ∆t is the discharge or charge duration (s); and ∆UGD is the change in cell
voltage galvanostatic discharge corrected from the ohmic drop (mV).

Thus, the specific capacitance Cm (F·g−1) of a single electrode is:

Cm =
2·CSC
0.5·mel

, F·g−1 (3)

where mel is the total mass of MXene electrodes (g).

3. Results and Discussion

Powder diffraction patterns of the Ti3AlC2 MAX phase precursor and the correspond-
ing Ti3C2Tx MXene are shown in Figure 1. As can be seen, a pure Ti3AlC2 phase is formed
by the processing of the TiC:Ti:Al mixture in the eutectic melt at 1250 ◦C. This result con-
firms the effectiveness of this method, since the reaction temperature and time are much
lower than in solid-phase synthesis in an inert atmosphere. In addition, the absence of
secondary phases of intermetallic compounds should be noted; these are probably removed
during the processing of the MAX phase powder in an HCl solution. Further hydrothermal
treatment of the Ti3AlC2 powder in an HCl/LiF mixture leads to the disappearance of
most of the MAX phase diffraction peaks and the appearance of diffraction peaks at 6.7◦,
13.84◦, 24.8◦, and 34.14◦ corresponding to the (002), (004), (006), and (008) planes. This
indicates the transformation of the MAX phase into the corresponding Ti3C2 MXene [43].
In addition, during the formation of MXene, the appearance of a non-basal diffraction
peak (110) is observed at an angle different from the MAX phase. It should be noted
that the reflection peak (002) is significantly shifted to a smaller angle, from 9.4◦ to 6.7◦.
This indicates successful etching of the Al layers from the Ti3AlC2 structure, leading to
the breaking of the metallic bond and successful exfoliation of the Ti3C2Tx MXene layers.
It should be noted that a strong shift of the reflection peak from the (002) plane, which
characterizes an increase in the d-spacing, is associated with the intercalation of lithium
ions into the MXene interlayer space.
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Figure 1. XRD patterns of Ti3AlC2 MAX phase and Ti3C2Tx MXene powders.

The microstructure and morphology of the obtained Ti3AlC2 MAX phase and Ti3C2Tx
MXene powder can be observed on the SEM image in Figure 2. As can be seen, the resulting
Ti3AlC2 MAX phase has a platelet-like morphology typical of MAX phase of layered
structures. The obtained Ti3C2Tx MXene has an accordion-like morphology formed from
interconnected 2D nanolayers, which corresponds to the typical multilayer structure of
MXene and confirms the successful etching of Al from the structure of the Ti3AlC2 MAX
phase, leading to exfoliation of Ti3C2 MXene layers.

EDX spectra of the Ti3AlC2 precursor powder and the Ti3C2Tx MXene obtained from
it are shown in Figure 2c. Intense peaks of Ti (4.508 keV) and Al (1.486 keV), as well as a
small presence of Cl (2.621 keV) associated with washing the sample in an HCl solution are
observed on the EDX spectrum of the Ti3AlC2 powder. After treatment of Ti3AlC2 in an
HCl/LiF mixture, an almost complete disappearance of the Al peak (1.486 keV) is observed,
which leads to exfoliation of the Ti3C2 MXene layers. In addition, the presence of peaks
characteristic of Cl and F, which are present in the sample in the form of surface functional
groups (Tx = F, Cl), should be noted.

Cyclic voltammetry (CV) was performed to evaluate the specific capacitance. The
CV curves for supercapacitors tested at scan rates from 1 to 100 mV·s−1 at LiCl electrolyte
concentrations from 1 M to 20 M are shown in Figure 3. As can be seen, the CV curves
show almost rectangular shapes at electrolyte concentrations up to 10 M, which indicates
a capacitive charge accumulation mechanism. With an increase in LiCl concentration to
20 M, a strong deviation of the CV curves from a rectangular shape is observed, which may
be associated with an increase in resistance. At the same time, an increase in the electrolyte
concentration suppresses the reaction of oxygen evolution from H2O, which, in turn, makes
it possible to expand the potential window.
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The dependence of the specific capacitance on the potential scan rate is shown in
Figure 4a. All measurements were carried out using an aqueous LiCl electrolyte with
various salt concentrations. The electrolyte concentration significantly affected the specific
capacitance of SCs. At a scan rate of 5 mV·s−1, for SCs with electrolyte concentrations of 1,
5, 10, and 20 M, the specific capacitances were 105, 120, 126, and 151 F·g−1, respectively.
In addition, it can be seen that with an increase in the potential scan rate, the specific
capacitance decreases, since at a low scan rate, discharge current ions can penetrate into the
layered structure of the entire electrode, which leads to maximum capacitive characteristics.
However, the sample with 5 M aqueous electrolyte demonstrates the best stability with
respect to scan rate, for which the specific capacitance decreases from 120 F·g−1 to 90 F·g−1

as the scan rate increases from 5 to 100 mV·s−1. At the same time, the sample with 10 M
electrolyte also demonstrates high stability with increasing scanning rate. In addition, for
a sample with a 10 M electrolyte, the potential window is wider than for a 5 M sample,
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which corresponds to its higher specific energy at a similar value of specific capacitance.
The relatively high scan rate stability for samples with 5 and 10 M electrolytes can be
explained by the higher electrical conductivity of the electrolytes at these concentrations,
which results in rapid ion transport between the electrode and electrolyte.
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It is acknowledged that two components contribute to charge accumulation [44]:
(1) pseudocapacity due to the fast Faraday transfer process and non-Faraday component
due to ion adsorption; (2) diffusion-controlled Faraday processes. When testing electro-
chemical properties using CV curves, the current i can be represented as a combination of
the current generated in a diffusion driven process idiff and processes dominated by surface
capacitance icap, whether electric double-layer capacitors or pseudocapacitors, which can
be described as empirical dependencies [45–47]:

j = jcap + jdi f f = a·νb (4)

where ν is the scan rate, a and b are adjustable parameters, and parameter b is determined
directly by the slope of the logi vs. logν. As a rule, if the slope of b is 1, a surface redox
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reaction involving processes not controlled by diffusion is expected; at the same time, for
an ideal Faraday process controlled by diffusion, the slope of b is 0.5 [48,49].
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As shown in Figure 4b for the Ti3C2Tx MXene electrode, the obtained b values are
in the range of 0.64–0.89 depending on the electrolyte concentration, which indicates the
presence of diffusion and surface-capacitive processes. Further quantification of the capac-
itive and diffusive contributions to the total capacitance is analyzed using the following
equation [50–53]:

j(U) = jcap + jdi f f = k·ν1 + kν0.5
2 (5)

where ν is the scan rate, and k1 and k2 ν0.5 represent currents due to the contribution of
surface capacitance and diffusion-controlled processes, respectively. The values of k1 and
k2 can be estimated from the slopes and intersections on the linear plots of i(U)/ν0.5 vs. ν0.5,
respectively.

As shown in Figure 5, the shaded area corresponds to the contribution of the surface
capacitance to the total capacitance of the Ti3C2Tx electrode in the 5 M LiCl electrolyte. In
this case, the contribution of the surface capacitance to the total capacitance is about 40%
and depends little on the scan rate.

Wide peaks are observed on the CV curves, which indicates the presence of pseudoca-
pacity. However, based on the quantitative definition, the diffusion process is predominant.
This is not surprising, since MXene also can be considered as electrode materials for energy
storage devices capable of reversibly intercalating lithium ions into the structure. The syn-
thesized MXene contains lithium in the structure. The reversible extraction of lithium from
the structure of the studied MXene provides an additional contribution to the diffusion pro-
cess due to the operation of the Ti4+/Ti3+ couple. In addition, the redox contribution occurs
in MXene from changes in the oxidation degrees of the surface atoms of transition metals.
Redox processes are not limited to diffusion and, thus, represent controlled processes of
“semi-diffusion” [45].
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Galvanostatic charge–discharge curves from 0.25 to 5 A·g−1 are shown in Figure 6a. As
can be seen, the charge–discharge curves show a slight deviation from the triangular curves,
which is due to the contribution of the redox reaction of the Ti3C2Tx MXene electrodes. The
discharge curve has a shape close to an inclined straight line, which indicates the absence
of redox transformations of the electrode material. With increasing current density, an
increase in the voltage drop IR after charging can be observed. In addition, as shown in
Figure 6b, the symmetrical supercapacitor with 5 M electrolyte exhibits good cyclic stability
with capacitance retention of 88% over 10,000 cycles, at a galvanostatic charge–discharge at
1 A·g−1 current density.
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The impedance of symmetrical supercapacitors based on MXene consists of the
impedance of current collectors, electrolyte, and electrode–electrolyte interfaces. So, the
shape of the Nyquist plots for supercapacitors (Figure 7a–f) describes the inherent property
of electrode materials in three main segments (high-, medium-, and low-frequency regions).
It consists of a semicircle in the high-frequency region and two linear sections in the mid-
frequency region, corresponding to the diffusion impedance, and in the low-frequency
region for electrochemical capacitance of the electrodes. The equivalent circuit for such
supercapacitors consists of series sections: 1. series resistance Rs; 2. parallel connected
CPEdl and Rct; 3. Warburg impedance W; 3. CPEel capacitive impedance of the electrodes.
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It can be written like this: Rs + (CPEdl/Rct) + W + CPEel. The high-frequency region
describes a combination of resistances (Rs) consisting of an electrolyte, a separator, and
a current collector. The semicircle in the mid-frequency region shows the charge transfer
resistance and capacitance of the double layer, i.e., determines the values of the equivalent
series resistance (ESR). The mid-frequency sloping region may be related to the diffusion
of ions on the electrode surface, which indicates pseudocapacitive behavior. The low-
frequency sloping region for all samples has a larger slope angle than the mid-frequency
one, which confirms the capacitive processes of the electrodes. The Rs values (Table 1,
Figure 7a) for the four tested supercapacitors with LiCl concentrations of 1, 5, 10, and
20 M have a dependence corresponding to the conductivity of the electrolyte solutions. For
concentrations of 1 M and 20 M, the resistances are greater than for 5 M and 10 M, which
confirms that Rs is mainly associated with electrolyte behavior. A significant change in
Rs (Table 2, Figure 7f) at a constant voltage can be associated with a small difference in
migrating ions in the electrode–electrolyte boundary layers. There is an increase in the
values of the Warburg element with an increase in the electrolyte concentration, which
indicates an increase in the proportion of diffusion restrictions on charge accumulation with
an increase in the ion concentration. A sample with electrolyte concentration of 5 M has
the low-frequency region closest to the vertical angle, which indicates the predominance
of capacitive processes in it at the electrode–electrolyte interface. The deviation from the
verticality of the low-frequency region for the remaining samples, tending to 45◦, indicates
poor capacitive characteristics.
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Table 1. Impedance parameters of supercapacitors based on MXene for different electrolyte concentration.

Electrolyte Concentration 1 M 5 M 5 M
after Cycling 10 M 20 M

Rs, Ohm 2.594 1.172 1.918 0.940 3.503
CPEdl, mF·s(a−1) 0.1 7.228 191 0.286 0.96

ndl 0.888 0.486 0.750 0.817 0.688
Rct, Ohm 1.19 0.358 1.384 0.423 0.789

W, Ohm·s−1/2 1.372 1.530 9.560 2.453 1.964
CPEel, F·s(a−1) 0.087 0.191 0.148 0.179 0.136

nel 0.718 1 0.982 0.837 0.851
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Table 2. Impedance parameters of supercapacitors based on MXene with electrolyte of 5 M LiCl for
different applied voltage.

Applied Voltage, mV 0 200 400 600 600
after Cycling

Rs, Ohm 1.172 1.228 1.325 1.208 1.898
CPEdl, mF·s(a−1) 7.228 8.697 2.323 93 0.237

ndl 0.486 0.510 0.730 0.304 0.731
Rct, Ohm 0.358 0.297 0.206 0.481 1.475

W, Ohm·s−1/2 1.530 1.480 1.434 0.798 8.245
CPEel, F·s(a−1) 0.191 0.186 0.184 0.164 0.128

nel 1 1 0.960 0.883 0.777

Impedance measurements without applied voltage provide limited information on
the physicochemical properties of materials and are insufficient to understand the char-
acteristics of electrodes. In addition to conventional electrochemical measurements, this
study used an advanced method of dynamic electrochemical impedance spectroscopy
(DEIS) [54,55]. Comparative Nyquist plots for supercapacitors based on MXene electrodes
with 1, 5, 10, and 20 M LiCl electrolytes obtained using DEIS under charging voltage
conditions are shown in Figure 7b–e. At the same time, for electrolyte concentrations of
1, 5, and 10 M, the voltage series was 0 mV, 200 mV, 400 mV, and 600 mV; for 20 M, it is
supplemented with a voltage of 800 mV since the potential window for it is about 1000 mV.
A capacitive tail with a slope value above 80◦, almost parallel to the imaginary axis, exhibits
relatively excellent capacitive behavior and only corresponds to the 5 M electrolyte sample.
An increase in the applied voltage leads to a decrease in the angle of the low-frequency
region of the impedance hodographs.

In Figure 7b–e, the size of the semicircle is determined by the capacitance of the double
layer (Cdl) and cuts off the value of the charge transfer resistance (Rct) from the real axis.
The sum of Rs and Rct increases from the applied voltage for all electrolyte concentrations.
In this case, for example, for the 5 M concentration (Table 2), the nonlinear change in Rct
can be explained by the inhomogeneous pore structure with no mesoporosity. The typical
behavior of an ideal capacitor is an increase in Cdl and a decrease in Rct with applied
voltage, which clearly shows the electrochemical characteristics of the material, such as
capacitance and discharge current density. Thus, a sample with an electrolyte concentration
of 5 M exhibits downward behavior at a higher applied voltage for Rct. An increase in the
applied voltage decreases the values of the Warburg element.

After cycling the supercapacitor with 5 M electrolyte with 10,000 galvanostatic charge–
discharges cycles, a change in the shape of the hodograph (Figure 7f) and the values of
the fitted parameters in Table 1 for DC 0 (column 5 M after cycling) and Table 2 column
(600 mV after cycling) are observed. Thus, the value of the charge transfer resistance
and the Warburg impedance increase significantly, which confirms the degradation of the
electrode material. The capacitance values decrease by 14%, which correlates with the
value obtained by the galvanostatic charge–discharge method. The results of the DEIS
experiments correlate with CV and galvanostatic charge–discharge.

The parameters of SCs’ analogs based on layered MXene are presented in Table 3. As
can be seen, the cyclic stability of SCs based on multilayer Ti3C2Tx and LiCl electrolytes is
also at a high level, as in analogs based on layered MXene with LiPF6, H2SO4, and NaClO4
electrolytes, which confirms the high reversibility of redox reactions occurring during
energy storage. At the same time, the specific capacitance of the studied SCs may exceed
some analogues but has lower values compared to layered MXene operating with H2SO4
electrolytes. However, LiCl is a safer neutral electrolyte than sulfuric acid, which makes
it more attractive for practical applications. In addition, the use of multilayer MXenes
is preferred due to their ease of preparation and scale production compared to layered
2D MXenes.
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Table 3. Summary of electrochemical performance for MXene electrode materials and electrolyte
in supercapacitors.

Electrode Material Electrolyte Capacitance, F g−1 Capacitance
Retention Ref.

CTAB-Sn(IV)@Ti3C2//AC
1 M LiPF6 in

EC:DEC:EMC (1:1:1
v:v:v) + 1 wt.% FEC

51 71.1% (4000 cycles) [56]

Co(OH)2/Ti3C2Tx 5 M LiCl 153 99.0% (1000 cycles) [57]

Bistacked 2D titanium carbide Non-aqueous
1 M NaClO4

104 84.2% (4000 cycles) [58]

Ta4C3 0.1 M H2SO4 120 89.0% (2000 cycles) [59]
EDA-Ti3C2Tx 3 M H2SO4 249.4 89.7% (10,000 cycles) [60]

Ti2CTx/OLS(5%) 1 M H2SO4 102.03 100% (10,000 cycles) [61]
Multilayered Ti3C2Tx 5 M LiCl 120 88% (10,000 cycles) This work

4. Conclusions

Ti3C2Tx MXene powder was successfully synthesized as a result of selective etching
of an Al layer from Ti3AlC2 MAX phase by hydrothermal treating in a mixture of HCl and
LiF. The obtained MXenes were studied as the active electrode material of a supercapacitor,
which additionally included carbon black and poly(vinylidene fluoride) at a mass ratio
of Ti3C2Tx/CB/PVDF = 8/1/1. Its electrochemical studies were carried out in assembled
symmetrical coin cell using aqueous solutions of LiCl with concentrations of 1, 5, 10, and
20 M. At a scan rate of 5 mV·s−1, for SCs with electrolyte concentrations of 1, 5, 10, and
20 M, the specific capacitances are 105, 120, 126, and 151 F·g−1, respectively. The value of
the parameter b from empirical dependency for capacitors found graphically was in the
range 0.64–0.89 depending on the electrolyte concentration, which indicates the presence
of diffusion and surface-capacitive processes. The contribution of the surface capacitance
to the total capacitance of studied SCs with Ti3C2Tx MXene electrodes was about 40%
and depends little on the scan rate. In addition, Ti3C2Tx electrodes showed high redox
reversibility and good cyclic stability with capacitance retention of 88% over 10,000 cycles.
A relationship has been found between the parameters of the impedance equivalent circuit
with changes in the electrolyte concentration, the applied constant voltage, and their
degradation after cycling with 10,000 cycles of galvanostatic charge–discharge for a sample
with an electrolyte concentration of 5 M.
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