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Abstract: Digital twins have emerged as a powerful concept for real-time monitoring and analy-
sis, facilitating Quality by Design integration into biopharmaceutical manufacturing. Traditionally,
lyophilization processes are developed through trial-and-error, incorporating high security margins
and inflexible process set points. Digital twins enable the integration of adaptable operating con-
ditions and implementation of automation through Advanced Process Control (APC) with Process
Analytical Technology (PAT) and validated physicochemical models that rely on heat and mass trans-
fer principles, allowing us to overcome the challenges imposed by the lyophilization process. In this
study, a digital twin for freeze-drying processes is developed and experimentally validated. Using
the digital twin, primary drying conditions were optimized for controlled nucleation and annealing
methods by carrying out a few laboratory tests beforehand. By incorporating PAT and modeling, the
digital twin accurately predicts the product’s temperature and drying endpoint, showing smaller
errors than the experiments. The digital twin significantly increases productivity by up to 300% while
reducing the costs by 74% and the Global Warming Potential by 64%.

Keywords: lyophilization; Process Analytical Technology; process modeling; Quality by Design;
digital twin; process optimization; Advanced Process Control; controlled nucleation

1. Introduction

Freeze-drying, also known as lyophilization, plays a critical role in the pharmaceutical
industry for the production of high-quality medications [1]. Approximately 16% of the
TOP100 medications are freeze-dried [2]. The process consists of three distinct phases:
freezing, primary and secondary drying. During the freezing phase, the liquid water is
transformed into solid ice. In the subsequent primary drying, the solid ice is removed
via sublimation, and in the following secondary drying, the remaining bound water is
removed via desorption to achieve the desired residual moisture.

Lyophilization offers several challenges to process design:

- Nucleation [3–5]: in typical lyophilization processes, the degree of supercooling and
the nucleation time are not controlled, resulting in intra- and inter-batch variability
in ice crystal size and distribution, and, hence, a variable pore structure in the final
freeze-dried product.

- Edge effects [6,7]: during primary drying, vials that are positioned on the outside
of the shelf receive more heat than center vials due to radiation and nesting effects,
resulting in higher product temperatures in edge vials.

- Process dynamics [8]: the product temperature is a function of shelf temperature and
chamber pressure and cannot be directly controlled.

Typically, lyophilization processes are developed using a trial-and-error approach that
relies heavily on empirical values, causing high experimental workloads. The resulting
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process is then validated and remains unchanged throughout the entire product’s life
cycle, incorporating significant safety margins [9,10]. Here, a paradigm shift away from
Quality by Testing towards Quality by Design (QbD) is necessary to design robust and
efficient processes [11–13]. QbD is a systemic, science-based method that focuses on process
understanding and enables continuous data-driven process improvement [14].

Process Analytical Technology (PAT) plays a crucial role in QbD implementation. It
enables in-process data collection, real-time analysis and decision making. By integrating
PAT, deep process understanding, control and reduced quality variability can be achieved.
For lyophilization, several PAT tools are available: controlled nucleation [3,5,15–18], temper-
ature sensors (wired or wireless), comparative pressure measurement [19–25], near-infrared
and Raman spectroscopy [26–37], heat flux sensors [38–43], mass spectrometry [24,44–46],
manometric temperature measurement (MTM) [9,19,20,22,24,45,47–52], and tunable diode
laser absorption spectroscopy [53–59].

Besides PAT, modeling plays an important role in QbD implementation. It provides
an irreplaceable tool for predicting and optimizing process parameters, facilitating the
design of robust processes to achieve the desired product attributes. By simulating dif-
ferent process conditions, potential risks can be identified and addressed prior to actual
implementation. Modeling can help optimize process parameters, reduce the experimental
workload, and eliminate the need for costly and time-consuming trial-and-error approaches.
Fully dynamic models (sorption–sublimation) use complex mathematical descriptions to
explain the process dynamics that require time-consuming solution approaches [8,60–69].
To reduce the complexity of these models, a simplified model has been developed that
assumes pseudo-stationary conditions during primary drying [20,70–84], leading to faster
solutions while reducing the resolution of the effects [70]. Process optimization has been
achieved through the utilization of these process models [61,74–76,78–80,84].

By utilizing real-time data from PAT and incorporating these into a dynamic model, it
is possible to create a digital twin that reflects the current state and behavior of the system.
The difference between elementary digital models and comprehensive digital twins is
determined by the modeling complexity and the degree of information exchange with the
physical system (see Figure 1) [85]. Digital twins lay the foundation for the implementation
of manufacturing processes that operate under proven acceptable ranges (PAR) rather than
fixed set points, revealing the optimization potential of conventional processes [86–88].

In this work, a digital twin for the lyophilization process is developed, combining
the previous scientific work of the authors [18–20,89], and validated against experiments.
Figure 2 shows the digital twin concept. Comparative pressure measurement is used for
endpoint detection and as a forwarding condition to secondary drying. MTM enables
online model parameter determination of the dry layer resistance, and the newly developed
ice ruler is calibrated for sublimation rate monitoring. Combined with a pseudo-stationary
process model, the digital twin enables process development, optimization and control.
Using the digital twin, the primary drying conditions were fully dynamically optimized to
achieve the fastest drying while ensuring process safety for two different freezing steps:
one using a controlled nucleation method to control the ice crystal size, further facilitating
process control; and one using a widely applied annealing step. Cost and Global Warming
Potential analyses further prove the optimization capability of the digital twin.
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Figure 1. Levels of a digital twin (adopted to lyophilization in accordance with the work of Udugama
et al. [85]).
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Figure 2. Digital twin for lyophilization processes (adopted from [18]).

2. Materials and Methods
2.1. Product Mixture

Saccharose (d(+)-saccharose (VWR International, Leuven, Belgium)) is dissolved in
purified water (arium™ pro, Sartorius AG, Göttingen, Germany) to obtain a 25 g/L solution.
The weights are measured using a laboratory scale LC 1200 S balance (Sartorius AG,
Göttingen, Germany).

2.2. Freeze-Drying Equipment

The freeze-drying experiments were performed using an Epsilon 2-6D LSCplus pilot
freeze-dryer (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Ger-
many). A total of 2 mL of the product solution was filled into 6R injection vials (Martin
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Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) using an Eppendorf
Research® plus 0.5–5 mL pipette (Eppendorf AG, Hamburg, Germany). A total of 135 vials
were loaded onto the middle shelf of the freeze-dryer. Throughout the freeze-drying pro-
cess, the product temperature was measured using “Wireless Temperature Measurement
plus” (WTMplus) sensors (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode am
Harz, Germany) placed centrally on the vial bottom, and the data were recorded using
the LPCplus process visualization software (Version 1.5.30.1, Martin Christ Gefriertrock-
nungsanlagen GmbH, Osterode am Harz, Germany).

2.3. Freeze-Drying Experiments

Two different freezing methods were employed: annealing, and controlled nucleation
with the ice fog method LyoCoN (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode
am Harz, Germany). The annealing step was adopted from the literature [49]. The shelf
temperature is initially decreased to −45 ◦C and maintained for 2 h. Subsequently, it is
raised to −20 ◦C and held for 1 h before returning it to −45 ◦C for a final 2 h hold time. The
shelf temperature is changed at a rate of 1 ◦C/min.

The ice fog experiments are conducted using LyoCoN. Initially, the shelf temperature
is lowered to the desired nucleation temperature of −8 ◦C. The samples are allowed to
reach equilibrium at the nucleation temperature for a duration of 30 min. Subsequently,
the chamber is evacuated to 4 mbar and then aerated to introduce the ice crystals into the
chamber. The model is utilized to design an optimal primary drying cycle for both freezing
methods. During primary drying, a comparative pressure measurement is implemented as
a forwarding condition. The secondary drying phase is conducted at a shelf temperature of
40 ◦C for 10 h.

2.4. Glass Transition Temperature

A DSC 3 (Mettler-Toledo, Greifensee, Switzerland) is used for the determination of the
glass transition temperature. STARe (Mettler-Toledo, Greifensee, Switzerland) is used for
documentation and analysis.

2.5. Vial Heat Transfer Coefficient

The vial heat transfer coefficient Kv is determined through ice sublimation tests, which
provide individual values for measured vials [90]. In these tests, 6R vials filled with water
are loaded onto the shelf. The top and middle shelf are loaded with 135 vials each. Prior
to initiating the freeze-drying process, selected vials are weighed. During the primary
drying phase, variations in shelf temperature and chamber pressure are implemented. The
shelf temperature setpoints are −25 ◦C, −12.5 ◦C, and 0 ◦C, while the chamber pressure is
set to 0.05 mbar, 0.1 mbar, 0.15 mbar, and 0.3 mbar. After approximately 4 h, the primary
drying process is stopped. The selected vials are weighed again following thawing. Kv is
calculated using the following equation:

Kv =
(∆m·∆Hsubl)/∆t

Av·
(
Ts − Tp

) (1)

∆m is the measured mass difference, ∆Hsubl the sublimation enthalpy, ∆t the primary
drying duration, Av the outer cross-sectional area of the vial, Ts the shelf temperature,
and Tp the product temperature. The product temperature is measured with Wireless
Temperature Measurement sensors WTMplus.

2.6. Maximum Allowable Sublimation Flux

The maximum allowable sublimation flux Jmax that is allowed for the freeze-dryer to
ensure pressure control is determined with ice slab tests [91]. Before performing the tests,
the Kv of the trays is determined following the same procedure as shown above. A shelf
temperature of 0 ◦C is used and four different pressure setpoints (0.05, 0.1, 0.15 and 0.3
mbar) are used. Three trays filled with 1 L purified water each are loaded onto the three
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shelves. During the ice slab tests, the shelf temperature is decreased to −40 ◦C and held for
8 h to ensure a full solidification of the water. Then, the chamber is evacuated to the lowest
pressure possible for 1.5 h. The setpoints for the shelf temperature are −40, −30, −20, −10
and 0 ◦C, each held for 3 h. During the ice slab test, the chamber pressure, and shelf and
product temperature are documented. The calculation of Jmax is carried out as follows:

Kv = K1 +
K2·pc

1 + K3·pc
(2)

Jmax =
Kv·

(
Ts − Tp

)
∆Hsubl

(3)

K1, K2 and K3 are constants to fit the equation to experimental data.

2.7. Dry Layer Resistance

The dry layer resistance Rp is determined using an optimized periodic MTMplus (Mar-
tin Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany). The MTMplus
measurement is conducted every 10 min and lasts for a maximum of 30 s, depending on the
pressure increase. This optimized measurement approach ensures minimal temperature in-
crease in the product, as the measurement is terminated if no pressure rise is detected for 3 s.
The MTMplus Analysis software (Version 1.0.0.2, Martin Christ Gefriertrocknungsanlagen
GmbH, Osterode am Harz, Germany) is utilized to analyze the data.

2.8. Ice Ruler

The ice ruler is a device comprising a 3D-printed holder with an attached ruler and is
affixed to the pipe of the ice condenser. Throughout the freeze-drying process, the ice ruler
is monitored using a LyoCam (Martin Christ Gefriertrocknungsanlagen GmbH, Osterode
am Harz, Germany) positioned at the sight window of the ice condenser.

2.9. Modeling

A pseudo-stationary model is employed to calculate the endpoint and the product
temperature of individual vials during the primary drying phase, taking the coupled
heat and mass transfer into account. A detailed derivation of the model can be found
elsewhere [70]. The model assumes pseudo-stationary conditions during primary drying,
where all heat supplied by the shelf is utilized for sublimation. The accumulation of heat in
the frozen and dried regions is disregarded.

Kv·(TS − TP)·Av =
∆Hsubl

RP
(pi − pc)·Ap (4)

pi is the partial vapor pressure on the sublimation interface, pc is the chamber pressure,
and Ap the inner cross-sectional area of the vial.

2.10. Software

Data collection during freeze-drying cycles was performed using LPCplus (Martin
Christ Gefriertrocknungsanlagen GmbH, Osterode am Harz, Germany) and the MTM data
were analyzed using MTMplus Analysis (Martin Christ Gefriertrocknungsanlagen GmbH,
Osterode am Harz, Germany). Thermo-analysis was performed via STARe (Mettler-Toledo,
Greifensee, Switzerland). Statistical analysis was carried out using JMP (JMP Inc., SAS
Institute, Cary, NC, USA). For the simulations, Aspen Custom Modeler (Aspen Technology
Inc., Beford, MA, USA) was utilized.

3. Results

First, the results of the model parameter determination are shown. Necessary parame-
ters for the model are the vial heat transfer coefficient Kv and the dry layer resistance Rp.
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The glass transition temperature and maximum sublimation flux are necessary constraints
to ensure product safety during optimization for the used product solution.

3.1. Glass Transition Temperature

The glass transition temperature Tg
′ has been determined via DSC measurement at

−32.6 ◦C for the saccharose solution used. The high viscosity prevents the flow of the
product; therefore, the collapse temperature lays higher at −29 ◦C [49]. Exceeding this
temperature will result in collapse and a structural loss of the product.

3.2. Heat Transfer Coefficient

The heat transfer from the shelf to the product is described by Kv. It can be split into
three contributions (direct conduction, gas conduction, and radiation) and it depends on vial
type and position, the type of freeze-dryer and process parameters. Kv has been determined
for an edge and center vial at two different shelf temperatures and four pressure setpoints.
Experiments have been conducted twice. Kv generally increases with the chamber pressure
because of an increased gas conduction. At a shelf temperature of −25 ◦C, the value in-
creases from 18.63 W/m2/K ± 0.8 W/m2/K (0.05 mbar) to 34.3 W/m2/K ± 1.6 W/m2/K
(0.3 mbar) for an edge vial and from 10.19 W/m2/K ± 0.18 W/m2/K (0.05 mbar) to
21.94 W/m2/K ± 0.07 W/m2/K (0.3 mbar). The Kv value of edge vials at this shelf tempera-
ture is 56.3 to 84% higher than corresponding center vials values due to increased radiation.

At a shelf temperature of 0 ◦C, the Kv of edge vials increases from 12.22 W/m2/K
± 1.04 W/m2/K (0.05 mbar) to 20.18 W/m2/K ± 2.42 W/m2/K (0.3 mbar). An increase
in shelf temperature decreases the edge Kv by 34 to 47%. The center Kv increases from
7.93 W/m2/K ± 0.1 W/m2/K (0.05 mbar) to 17.87 W/m2/K ± 3.55 W/m2/K (0.3 mbar).
A change of 2.8 to 22% from the center Kv at lower shelf temperature. The deviation
between edge and center Kv decreases to a range of 7.6 to 35%.

Next, a statistical analysis was carried out to assess the statistically significant parame-
ters for edge and center Kv. In Figure 3, the evaluation for edge Kv is shown. The p-value is
significantly below 0.05, allowing us to determine significant parameters. Two significant
parameters could be detected:

- Chamber pressure (+): increased chamber pressure allows for higher gas conduction
since more molecules are available to transfer heat.

- Shelf temperature (−): increased shelf temperature lowers the radiation contribution
towards Kv, reducing the edge effect.
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Figure 3. Statistical evaluation for edge vials. (a) Actual-vs-predicted plot (red shadow confidence
interval). (b) Pareto diagram of standardized effects (dashed line: significance threshold).
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In Figure 4, the statistical evaluation for center Kv is shown. Again, the p-value is
significantly below 0.05, allowing us to determine significant parameters. For the center Kv,
only the chamber pressure could be identified as significant. An increased chamber pressure
allows for increased heat transfer via gas conduction. Center vials are already shielded
from radiation; therefore, an increase in shelf temperature leads to no significant change.
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3.3. Equipment Constraint

Next, the maximum allowable sublimation flux has to be determined. It presents a
second boundary to the process development workflow since exceeding this value will
increase the chamber pressure, resulting in the loss of pressure control and an increased
product temperature, possibly leading to product loss. To calculate it from the experiments,
the Kv of the tray has to be determined first. The results can be seen in Figure A1. Kv
increases from 6.54 W/m2/K ± 0.34 W/m2/K (0.05 mbar) to 17.6 W/m2/K ± 2.18 W/m2/K
(0.3 mbar). The parameter from Equation (2) can be determined via the minimization of
the square error sum. The calculated and experimentally determined Kv shows a good
agreement (R2 = 0.99).

Equation (3) can now be used to calculate the corresponding sublimation flux for the
different shelf temperature setpoints and established pressures. The results are shown in
Figure A1. At a chamber pressure of 0.046 mbar ± 0.001 mbar, a maximally allowable
sublimation flux of 5.7 × 10−5 kg/m2/s ± 4.73 × 10−7 kg/m2/s could be determined. The
sublimation flux increases to 1.42 × 10−4 kg/m2/s ± 2.5 × 10−6 kg/m2/s at a pressure of
0.079 mbar ± 0.006 mbar. A linear regression could be used to describe the experimental
results with excellent precision (R2 = 0.9985). During primary drying, it is of the utmost
importance to keep the sublimation flux below these critical values to ensure chamber
pressure control and product safety.

3.4. Dry Layer Resistance

Rp represents the resistance of the dried layer to the vapor flow. It can be determined
using different methods, e.g., TDLAS [56] and pressure rise test [47,50,92]. The dry layer
resistances have been determined elsewhere [18,20].

3.5. Optimization

Four parameters are necessary to calibrate the model for the used formulation and
equipment (see Figure A2). After the determination of the critical temperature Tc, Kv, Jmax
and Rp, the primary drying process can be simulated regarding primary drying endpoint,
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product temperature and sublimation rate. The model can be used for prediction and
optimization and/or validation against available experimental data. Since the dependencies
of the parameters vary, it is not necessarily required to re-determine all parameters during
development. The dependencies are:

- Tc: formulation composition.
- Kv: vial type, freeze-dryer, primary drying process parameters.
- Jmax: freeze-dryer.
- Rp: formulation composition, freezing process, occurrence of structural changes.

Four different optimization studies were calculated:

- Annealing, optimization for edge vial.
- Annealing, optimization for center vial.
- Controlled nucleation, optimization for edge vial.
- Controlled nucleation, optimization for center vial.

Annealing is often employed in freeze-drying to homogenize the ice crystal struc-
ture [93]. Controlled nucleation is used to further explore the optimization potential of
controlled nucleation protocols.

The optimized recipes are shown in Figure A3. The optimized shelf temperature
profile (black) is shown together with the measured product temperature of a selection of
probed vials. For an optimization for an edge vial and freezing with controlled nucleation,
the shelf temperature is initially increased to 3.9 ◦C (annealing: 8.9 ◦C) and then slowly
decreased to −6.2 ◦C (annealing: −13.8 ◦C) after 6.1 h (annealing: 7.6 h). An optimization
for a center vial leads to an initial shelf temperature of 24.4 ◦C (annealing: 29.2 ◦C) and, in
the end, to 8.4 ◦C (annealing: −4.9 ◦C).

3.6. Dry Layer Resistance

Optimization for the center vial allows for much higher shelf temperatures compared
to the usage of edge vials. However, since edge vials generally receive higher radiation
energy compared to the center vials, they can be at risk for structural changes or, in the
worst case, product collapse. Figure 5 shows the dry layer resistances for the different opti-
mization cases over the dry layer height and the cake appearance of selected lyophilizates
after freeze-drying has finished. For both freezing methods, the optimization for the edge
vials showed comparable dry layer resistances compared to the reference process. No
collapse or structural changes could be detected.

Following freezing with annealing, Rp initially starts at 26,834 m/s ± 7404 m/s
with the reference primary drying, then increases to 76,088 m/s ± 38,082 m/s (Ldry =
0.0035 m), and finally to 113,993 m/s ± 24,635 m/s (Ldry = 0.007 m). Applying the pri-
mary drying conditions for optimization of an edge vial leads to Rp values starting from
29,052 m/s ± 7874 m/s and increasing to 84,676 m/s ± 30,893 m/s (Ldry = 0.0035 m) and
140,300 m/s ± 53,912 m/s (Ldry = 0.007 m). Rp deviates 8.27 to 23.08% from the reference
value; however, an intact lyophilization cake could be observed. The increase in dry layer
resistance is mainly caused by the MTM measurement. It is based on the rise in pressure,
and applying more aggressive primary drying conditions leads to an increased Rp com-
pared to slower sublimation processes [52]. An optimization for center vials decreases
the Rp up to 53.15%. Here, the primary drying conditions are too aggressive and lead to
structural changes in the lyophilized cakes that can be monitored and detected via MTM.
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Figure 5. Dry layer resistance, (a) annealing, (b) controlled nucleation, (c) cake appearance annealing
optimized for edge vial, (d) cake appearance annealing optimized for center vial.

When applying freezing with LyoCoN, the initial dry layer resistance starts at 33,161 m/s
± 1047 m/s (reference), 34,037 m/s ± 2632 m/s (optimization edge vial) and 27,757 m/s
± 3920 m/s (optimization center vial). Rp for the edge vial optimization deviates 2.64% from
the reference, and for the center vial optimization, the deviation is of 16.3%. Increasing the
dry layer height increases Rp to 78,819 m/s ± 5546 m/s (reference), 85,901 m/s ± 8869 m/s
(optimization edge vial) and 47,440 m/s ± 8153 m/s (optimization center vial), resulting
in a deviation of 8.98% (optimization edge vial) or 39.81% (optimization for center vial)
compared to the reference. Here, the slight increase in dry layer resistance can also be
explained by the increased sublimation rate, and the optimization for a center vial also
causes primary drying conditions that lead to structural changes in the cake.

3.7. Product Temperature and Primary Drying Endpoint

Next, the experimentally determined and simulated primary drying product tempera-
ture and endpoints for edge and center vials are shown.

At first, the experimental and simulated product temperature and primary drying
endpoints for the optimization of an edge vial and annealing are shown in Figure 6. For
an edge vial, the product temperature initially increases to −31 ◦C ± 3.9 ◦C and then
decreases to −32.2 ◦C ± 4.2 ◦C. During the simulation, an average product tempera-
ture of −32.3 ◦C ± 2.5 ◦C is predicted. For the center vial, an average product temper-
ature of −34.9 ◦C ± 2.7 ◦C could be experimentally determined and a temperature of
−35.6 ◦C ± 1.6 ◦C predicted. Edge vials dry faster and are finished after 6.7 h ± 2.2 h
(simulation: 7.3 h ± 1.5 h), while center vials need 9.4 h ± 2.3 h (simulation: 9.1 h ± 2 h).
The simulation and experiments show good agreement. The forwarding condition, imple-
mented with the PAT comparative pressure measurement, holds the primary drying to a
duration to 10.9 h ± 1.2 h, therefore ensuring a safe primary drying duration and removal
of all ice before advancing into secondary drying.
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Figure 6. Primary drying endpoint (circle) and product temperature (annealing, optimized for edge vial).
(a) Edge vial, (b) center vial (black triangle: forwarding condition, blue: simulation, red: experiment).

Similar results can be found with the implementation of LyoCoN. The resulting
experimental and simulated product temperature and primary drying endpoint are shown
in Figure 7. For the edge vial, an average product temperature of −32.4 ◦C ± 1.6 ◦C
could be determined and a temperature of −32.6 ◦C ± 2.1 ◦C simulated. The center vial
establishes an average primary drying product temperature of −34.7 ◦C ± 0.8 ◦C during the
experiments and −34 ◦C ± 2.4 ◦C during simulation. The forwarding conditions also ensure
a safe primary drying process by prolonging the primary drying duration to 9.7 h ± 0.7 h.
During this period, the edge (experiment: 5.6 h ± 0.9 h, simulation: 5.9 h ± 1.4 h) and
center vials (experiment: 8.3 h ± 0.9 h, simulation: 8 h ± 1.3 h) are finished.
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Figure 7. Primary drying endpoint (circle) and product temperature (LyoCoN, optimized for edge vial).
(a) Edge vial, (b) center vial (black triangle: forwarding condition, blue: simulation, red: experiment).

Next, the resulting product temperature profiles and primary drying endpoints are
shown for the optimization of the center vials. Figure 8 shows the results for the annealing
process. The edge vials dry at an average product temperature of −31.3 ◦C ± 4.4 ◦C. This
exceeds the collapse temperature of the solution, and therefore structural changes will occur
that can be detected via MTM as an alteration in the dry layer resistance. Since the shelf
temperature is lowered, no complete structural loss is observed. The simulations showed
an average product temperature of −31.3 ◦C ± 4 ◦C and are in good agreement with the
experiments. The center vials dry at a lower product temperature of −33.4 ◦C ± 3.2 ◦C
than edge vials because they receive less radiative energy. However, structural changes
also occur here. The simulated product temperature establishes a value of −32.3 ◦C ± 5 ◦C,
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confirming the values of the experiment. Increasing the shelf temperature by optimizing
the primary drying for center vials increases the product temperature for edge vials by
3.5% (simulation: 4%) and by 3.9% (simulations: 4.9%), resulting in structural changes.
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Figure 8. Primary drying endpoint (circle) and product temperature (annealing, optimized for center vial).
(a) Edge vial, (b) center vial (black triangle: forwarding condition, blue: simulation, red: experiment).

However, the forwarding condition still maintains a safe process duration regarding
the removal of ice. No complete loss due to too early advancement to secondary drying
could be detected. The primary drying endpoint has been detected through comparative
pressure measurement at 8.3 h ± 1.1 h, giving the edge (experiment: 5.05 h ± 0.9 h,
simulation: 4.8 h ± 1.3 h) and center vials (experiment: 7 h ± 1.2 h, simulation: 6.9 h ± 1.5 h)
enough time for primary drying. Although structural changes occurred, the simulations
were able to predict the experiments well.

The same results regarding structural changes and agreement between the experiment
and simulation could be found when employing controlled nucleation in the freezing step
(see Figure 9). For the edge vials, an average temperature of −31.2 ◦C ± 1.7 ◦C could be
measured and a temperature of −29.8 ◦C ± 3.9 ◦C predicted. The product temperature
decreases to −32.8 ◦C ± 0.7 ◦C (simulation: −34 ◦C ± 1.9 ◦C) for the center vials. The
simulated and experimentally determined product temperatures show good agreement
even though structural changes could be detected.
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Figure 9. Primary drying endpoint (circle) and product temperature (LyoCoN, optimized for center vial).
(a) Edge vial, (b) center vial (black triangle: forwarding condition, blue: simulation, red: experiment).
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3.8. Sublimation Rate

The control and prediction of the sublimation rate is important to ensure product
safety. In this study, the sublimed ice mass is determined via MTM, process model and
the ice ruler. The ice ruler has already been introduced [89]. Here, the ice height on the ice
condenser needs to be calibrated to a mass value.

The sublimed water amount is plotted against the corresponding ice ruler height to
describe the relationship between them (see Figure A4). Experiments are carried out twice.
Next to the measurement points, some ice ruler pictures are depicted to see the height in-
crease. A fill quantity of 100 g water results in an ice height of 0.58 cm ± 0.25 cm. Doubling
the fill quantity to 200 g increases the ice height to 0.8 cm ± 0.1 cm. The other ice heights
for the different fill quantities are as follows: 1.55 cm ± 0.1 cm (500 g), 2.55 cm ± 0.12 cm
(750 g) and 3.05 cm ± 0.29 cm (1000 g). A linear regression through the zero point is used
to describe the experimentally determined water amount over ice height. The determina-
tion coefficient is 0.98; therefore, a very good agreement between the experiment and the
correlation could be achieved.

The sublimed ice mass profiles for ice ruler, simulation, MTM and experimental
determination for both optimization protocols are shown in Figure 10. To determine the
experimental value, the primary drying is aborted at the desired time point, the samples
are allowed to thaw, and the mass difference is determined.
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Figure 10. Sublimed ice mass over primary drying duration, (a) LyoCoN, optimization for edge vial,
(b) LyoCoN, optimization for center vial.

The primary drying endpoint of the optimized process for the edge vial is determined
at 9.9 h ± 0.66 h with the ice ruler, 10 h ± 1.3 h with the simulation, and 9.6 h ± 0.6 h with
MTM. After 2.5 h, the ice ruler shows a sublimed ice mass of 0.63 g/vial ± 0.23 g/vial, while
the simulation and MTM determine 0.7 g/vial ± 0.17 g/vial and 0.36 g/vial ± 0.02 g/vial.
The ice ruler and simulation deviate by 3.1 or 7.7% from the experimentally determined
0.65 g/vial ± 0.18 g/vial, while MTM deviates by 44.6%. Throughout the primary drying
process, the sublimed ice mass increases from 1.08 g/vial ± 0.18 g/vial (4.1 h, experiments)
to 1.61 g/vial ± 0.24 g/vial (6.5 h, experiments) and finally to 1.89 g/vial ± 0.1 g/vial
(8.5 h, experiments). The ice ruler deviates between 0 and 14.8%, the simulation from 0 to
7.4%, and MTM from 33.3 to 44.6% from the experimentally determined values, showcasing
the efficiency of ice ruler and simulation to determine the sublimed ice mass.

The results for the optimized process for the center vial are similar. After 1.5 h
primary drying time, the ice ruler shows a sublimed ice mass per vial of 0.32 g/vial ±
0.23 g/vial (simulation: 0.55 g/vial ± 0.08 g/vial, MTM: 0.29 g/vial ± 0.07 g/vial), causing
a deviation of 45.8% for the ice ruler, 6.8% for the simulation and 50.8% for MTM compared
to the experimental value of 0.56 g/vial ± 0.29 g/vial. These values increase to 1.81 g/vial
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± 0.23 g/vial (ice ruler), 1.74 g/vial ± 0.19 g/vial (simulation) and 1.11 g/vial ± 0.05 g/vial
(MTM) after 6 h. The ice ruler deviates 2.5 to 8.8%, the simulation 0 to 10.3% and MTM
36.3 to 42.8% from the experimentally determined values. Primary drying is finished after
6.4 h ± 0.4 h (ice ruler), 6.5 ± 1.19 h (simulation) and 6.7 h ± 0.22 h (MTM).

3.9. Cycle Time Reduction

The optimization of the primary drying conditions leads to a shortened cycle time,
increasing productivity while maintaining product safety. Since the optimization for the
center vials leads to changes in the products’ structure, only the cases of optimization for
the edge vial are compared with the reference. As the reference process, the protocol of
Lewis et al. has been chosen, which uses annealing for freezing [49]. In Table 1, the cycle
times for the different protocols are shown. In all protocols, the same secondary drying
and downtime for unloading, defrosting and preparations are used.

Table 1. Cycle times (value in brackets stand for the reduction based on the reference duration).

Reference
Annealing

Optimization
LyoCoN

Optimization
Annealing

Freezing duration 6:55 3:20 (49%) 6:55 (0%)
Primary drying duration 50:00 9:40 (81%) 11:00 (78%)

Secondary drying duration 11:00 11:00 (0%) 11:00 (0%)
Downtime 4:00 4:00 (0%) 4:00 (0%)

Total process time 72:00 28:00 (61%) 33:00 (54%)

Compared to the reference process, the application of LyoCoN reduces the freezing
duration by 49% from 6.92 h to 3.33 h. More drastic changes are seen in the primary drying
duration. The reference process has a primary drying duration of 50 h. The optimization of
the primary drying conditions for the annealing freezing protocol decreases the primary
drying duration by 78% to 11 h. The application of LyoCoN further shortens the primary
drying time to 9.67 h, leading to a reduction of 81% compared to the reference and 12% to
the optimized reference process. The total cycle time can be reduced by 54% (optimization
annealing) and 61% (optimization LyoCoN) compared to the reference process.

Substituting annealing with a controlled nucleation process step leads to a further
reduction of 15% in total process duration. The decreased cycle time leads to an increased
productivity (see Figure A5). During a 5-day working week, the reference process can
only be carried out once, while the optimized annealing process allows for three and the
optimized LyoCoN process for four cycles, increasing the productivity by 200 or 300%.
Compared to the optimized annealing protocol, the implementation of controlled nucleation
increases the productivity by 33%. During a 7-day working week, 2.3 cycles of the reference,
5.1 of the optimized annealing and 6 of the optimized LyoCoN cycles can be finished,
increasing the productivity by 118% (optimized annealing) or 157% (optimized LyoCoN).
The implementation of controlled nucleation allows for a productivity increase of 18%
compared to the optimized annealing process step.

3.10. Cost Analysis

Next, a cost analysis was carried out with the model of Stratta et al. [94]. Freeze-
dryer equipment parameters from these authors have been used for estimation of the costs
together with the cycle conditions developed here. The Cost of Goods (COGs) for the
different cycles for 5- and 7-day working weeks are shown in Table 2. For the reference
annealing process, a COG of 70 EUR/kgproduct with a 5-day and 32 EUR/kgproduct for a
7-day working week are calculated. A switch to a 7-day working week reduces the COG by
54%, caused by the increased cycles per week reducing the share of Capital Costs (CC) on
the Total Costs (TC) from 94 to 87%. As Stratta et al. mentioned, the COG of freeze-dried
products can be lowered most efficiently by incorporating more cycles into the lifecycle
of a freeze-dryer [94]. Optimizing the primary drying of the annealing process reduces
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the COG for a 5-day working week by 66% to 24 EUR/kgproduct and for a 7-day working
week by 55% to 15 EUR/kgproduct. Incorporating controlled nucleation further reduces the
COG for a 5-day working week by 24% compared to the optimized annealing process (75%
compared to the reference annealing process) and by 15% (60% compared to the reference
annealing process) for a 7-day working week to 13 EUR/kgproduct.

Table 2. Cost of Goods (COG) for different cycles (value in brackets stands for the reduction based on
the reference).

Reference
Annealing

Optimization
LyoCoN

Optimization
Annealing

COG (5 days) EUR/kgproduct 70 18 24
EUR/Vial 0.14 0.036 (75%) 0.047 (66%)

COG (7 days) EUR/kgproduct 32 13 15
EUR/Vial 0.064 0.025 (60%) 0.029 (55%)

The optimization of the primary drying conditions decreases the share of operational
costs of this phase from 78% to 48% (53% with controlled nucleation), showing that the
optimized processes increase the primary drying efficiency. The increased efficiency of the
process leads to a reduction in energy consumption and carbon footprint via a reduction in
the Global Warming Potential (GWP) between 49 and 64% (see Figure 11).
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Figure 11. GWP vs. COG for different process scenarios (a) 5-day working week, (b) 7-day
working week.

4. Discussion

In this study, a digital twin has been validated for process optimization and control for
a sucrose-based example system. The digital twin consists of a process model and PAT-tools
to adopt the model status to time-dependent process reality. Controlled nucleation is used
to control the ice crystal size in the freezing step, while comparative pressure measurement,
MTM and ice ruler are used to gather distinct information during primary drying to
incorporate them into the process model, allowing for a forecast of the process conditions.
To establish a digital twin, several parameters need to be determined beforehand: the
critical temperature of the formulation, the maximum allowable sublimation flux of the
freeze-dryer, the vial heat transfer coefficient, and the dry layer resistance.

During primary drying, it is of the utmost importance to keep the product’s tempera-
ture under the critical temperature of the formulation. Tg’ for sucrose has been determined
via DSC at −32.6 ◦C.

The maximum allowable sublimation flux has been determined through ice slab tests.
At a chamber pressure of 0.046 mbar ± 0.001 mbar, a maximally allowable sublimation
flux of 5.7 × 10−5 kg/m2/s ± 4.73 × 10−7 kg/m2/s could be determined that increases to
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1.42 × 10−4 kg/m2/s ± 2.5 × 10−6 kg/m2/s at a pressure of 0.079 mbar ± 0.006 mbar. The
experimental data can be excellently described through a linear regression (R2 = 0.9985).

The vial heat transfer coefficient is determined via ice sublimation tests for dis-
tinct vials. The edge vials have a 7.6 to 84% higher Kv, ranging from 12.22 W/m2/K
± 1.04 W/m2/K to 34.3 W/m2/K ± 1.6 W/m2/K, than the center vials (7.93 W/m2/K
± 0.1 W/m2/K to 21.94 W/m2/K ± 0.07 W/m2/K), which is caused by increased radiation
and nesting effects. They also show different statistical significances. For the edge vials,
the shelf temperature negatively correlates and the chamber pressure positively correlates
with the Kv values, while for the center vials, the chamber pressure is the only significant
parameter. The dry layer resistance is determined online via MTM.

Gathering all these parameters allows for the model-based optimization of the primary
drying for the used formulation. Four optimization studies have been tested:

- Annealing, optimization for edge vial.
- Annealing, optimization for center vial.
- LyoCoN, optimization for edge vial.
- LyoCoN, optimization for center vial.

LyoCoN is implemented to establish a controlled nucleation approach resulting in
more control of the digital twin, while annealing is commonly used in freezing processes.
The resulting shelf temperature is at first increased to values between 3.9 and 29.2 ◦C, and
is then asymptotically lowered to values ranging from −4.9 to 8.4 ◦C depending on the
optimization case.

These have been experimentally investigated to validate the digital twin. The results
for the product temperatures are summarized in Table 3. The simulation and experiments
are in good agreement. The mean value deviates between 0.16 and 4.73%, which is smaller
than the experimental errors of 4.64% to 14.93%.

Table 3. Determined and calculated average product temperature of edge and center vials (simulation
results in brackets).

Freezing Method Primary Drying Primary Drying Product Temperature (◦C)
Edge Center

LyoCoN

Optimization
edge vial −32.4 ± 1.6 (−32.6 ± 2.1) −34.7 ± 0.8 (−34 ± 2.4)

Optimization
center vial −31.2 ± 1.7 (−29.8 ± 3.9) −32.8 ± 0.7 (−34 ± 1.9)

Annealing

Optimization
edge vial −32 ± 4.2 (−32.3 ± 2.5) −34.9± 2.7 (−35.6 ± 1.6)

Optimization
center vial −31.3 ± 4.4 (−31.3 ± 4) −33.4 ± 3.2 (−32.3 ± 5)

The edge vials dry at a temperature between 1.5 ◦C and 2.9 ◦C (about 5% to 9%) hotter
than that of the center vials. Therefore, a rigorous optimization for the center vials increases
the product temperature of the warmer vials over the critical product temperature, causing
structural changes. This could be evidenced with the dry layer resistance and through a
visual inspection of the lyophilized cakes.

The dry layer resistances are summarized in Table 4. An optimization for the edge
vials with annealing leads to a deviation of 8 to 23% of the dry layer from the reference
process, while an optimization of the center vials leads to 53% change caused by structural
damage of the lyophilizate. Employing a controlled nucleation method leads to a deviation
of Rp of 9% for the optimization for the edge vials, and of 40% for the optimization of the
center vials.
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Table 4. Dry layer resistances for different freezing and primary drying conditions at selected dry
layer heights.

Freezing
Method

Primary Drying Dry Layer Resistance (m/s)
Ldry = 0 m Ldry = 0.0035 m Ldry = 0.007 m

LyoCoN

Reference 33,161 ± 1047 55,990 ± 3296 78,819 ± 5546
Optimization

edge vial 34,037 ± 2632 59,969 ± 5751 85,901 ± 8869

Optimization
center vial 27,757 ± 3920 47,228 ± 8245 47,440 ± 8153

Annealing

Reference 26,834 ± 7404 76,088 ± 38,082 113,993 ± 24,635
Optimization

edge vial 29,052 ± 7874 84,676 ± 30,893 140,300 ± 53,912

Optimization
center vial 31,448 ± 9295 53,263 ± 6859 53,404 ± 6586

The primary drying endpoint is critical for maintaining a safe process while increasing
the productivity of the freeze-drying cycle. The endpoints are summarized in Table 5. Since
the edge vials dry at a hotter temperature, their primary drying is finished 1.4 to 2.6 h
earlier than that of the center vials, leading to deviations of 37 to 46.5% between these two
vial classes. The simulations can predict the primary drying endpoint with a deviation of
1.5% to 8%, which is smaller than the experimental error of 10.9 to 32%. The forwarding
condition implemented using comparative pressure measurement increases the duration
of the primary drying process based on real-time data, leading to a safe primary drying
duration that is increased between 14% and 16% compared to the center vial value.

Table 5. Determined and simulated primary drying endpoints for distinct vials and forwarding
condition (brackets: simulation results).

Freezing Method Primary Drying Primary Drying Endpoint (h)
Edge Center Forwarding

LyoCoN

Optimization
edge vial 5.63 ± 0.9 (5.9 ± 1.4) 8.25 ± 0.9 (8 ± 1.3) 9.65 ± 0.7

Optimization
center vial 3.8 ± 0.5 (4 ± 0.8) 5.2 ± 1.3 (5.4 ± 1.3) 6.7 ± 0.3

Annealing

Optimization
edge vial 6.7 ± 2.2 (7.3 ± 1.5) 9.4 h ± 2.3 (9.1 ± 2) 10.88 ± 1.15

Optimization
center vial 5.05 ± 0.9 (4.8 ± 1.3) 7 ± 1.2 (6.9 ± 1.5) 8.3 ± 1.1

Besides the product temperature, the sublimed ice mass can also be monitored using
the digital twin. The results are summarized in Table 6. The ice ruler and simulation show
small deviations compared to the experimental values. The deviations for the ice ruler
range from 0 to 14.8%, and for the simulation, from 0 to 10.3%, which is smaller than the
experimental error ranging from 5 to 49%, showcasing the precision of the digital twin.

Next, the process optimization potential of the digital twin is assessed. Here, only the
optimization of the edge vial cases has been evaluated because no structural changes could
be detected.

A literature process has been used as a reference that uses annealing during freez-
ing [49]. Employing primary drying optimization in this process results in a cycle reduction
of 39 h (54%). Implementing controlled nucleation allows for further optimization of the
primary drying and freezing step, leading to a further shortening of 15% to 61% compared
to the reference. For a 5-day working week, the productivity of the digital twin incorporat-
ing control of freezing and primary drying increases by 300% (5-day week), and by 157%
for a 7-day working week compared to the reference process. This drastic cycle shortening
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results in a cost reduction of 75% (5-day week) or 60% (7-day week) compared to the
reference process, and a 24% (5-day week) or 14.6% (7-day week) reduction in comparison
to the optimized reference process.

Table 6. Sublimed ice mass of the two optimization cases with controlled nucleation.

Primary
Drying Timepoint (h) Sublimed Ice Mass (g/vial)

Ice Ruler Simulation MTM Experiments

Optimization
edge vial

2.5 0.63 ± 0.23 0.7 ± 0.17 0.36 ± 0.02 0.65 ± 0.18
4.1 0.92 ± 0.23 1.08 ± 0.25 0.68 ± 0.05 1.08 ± 0.18
6.5 1.55 ± 0.23 1.56 ± 0.23 1.06 ± 0.06 1.61 ± 0.24
8.5 1.89 ± 0.23 1.75 ± 0.17 1.26 ± 0.09 1.89 ± 0.1

Optimization
center vial

1.5 0.32 ± 0.23 0.55 ± 0.08 0.29 ± 0.07 0.56 ± 0.29
3 1.03 ± 0.23 1.12 ± 0.16 0.72 ± 0.06 1.13 ± 0.25

4.5 1.55 ± 0.23 1.59 ± 0.21 1.01 ± 0.04 1.59 ± 0.28
6 1.81 ± 0.23 1.74 ± 0.19 1.11 ± 0.05 1.94 ± 0.01

5. Conclusions and Recommendations

The time required for cycle development depends on several factors: product complex-
ity, the experience and knowledge of the development team, and availability of resources.
The development process typically involves a series of experiments, like trial runs, iterative
adjustments or Design of Experiments, making it labor and time consuming, requiring a
time of development ranging from weeks up to several months.

Implementing QbD with a digital twin can accelerate this development process by
providing a strong science-based foundation that emphasizes process understanding and
risk assessment.

First, appropriate freezing methods have to be established. Controlled nucleation is
recommended as it can facilitate the freezing design by enhancing process consistency and
reproducibility. Here, the Design of Experiments with different nucleation temperatures
and post-nucleation holds should be tested with a low amount of product to establish the
freezing step for the formulation.

The primary drying optimization follows. For the model-based optimization, four
parameters are necessary:

- Critical temperature Tc of the formulation: The critical temperature of the formulation
should be characterized during formulation development with DSC or Freeze-Drying
Microscopy (FDM), and the maximum allowable sublimation flux of the freeze-dryer
should be determined beforehand during equipment qualification because they are
the two constraints of the primary drying design space.

- Vial heat transfer coefficient Kv: This study showed the different behavior of edge
and center Kv depending on the process conditions. Since process optimization
yields high shelf temperatures, the authors recommend determining the Kv of distinct
edge and center vials at a shelf temperature of 0 ◦C. Three pressure setpoints are
necessary to describe the pressure dependency of Kv. An ice sublimation test only
requires water and takes one day. The duration of Kv tests can be calculated as follows:
1 day*Number of pressure setpoints × repetition. In this study, four pressure set
points have been determined twice, resulting in 8 days of work.

- Maximum allowable sublimation flux Jmax: In this study, ice slab tests have been
used for equipment qualification. With increasing chamber pressure, the freeze-dryer
allows for higher sublimation rates while maintaining pressure control. This needs to
be carried out once and requires around 5 working days.

- Dry layer resistance Rp: In this study, we used two experiments with a partial load
(one fully loaded shelf), controlled nucleation and more optimized primary drying
conditions to determine it. A total of 540 mL product solutions have been used
(135 vials × 2 mL/vial × 2 experiments) and 5 working days were needed.
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For model-based optimization, the target temperature was set 3 ◦C below the critical
temperature (if only center Kv is known, a target temperature of 5–6 ◦C lower than Tc
should be utilized to prevent the collapse of the hotter vials). The simulations were finished
and analyzed in one working day.

In total, 14 working days and a 540 mL product solution were necessary to develop
optimized and robust primary drying conditions for the given formulation with the intro-
duced digital twin. For a new formulation in the same vial, only the dry layer resistance
and critical temperature have to be determined, resulting in a total of only 5 days. For a
new formulation in a new primary container, the whole workflow has to be repeated.

In this study, a digital twin approach for process optimization and process control is
validated. A pseudo-stationary process model is used to predict the product temperature
and optimize the primary drying conditions. The experiments and the simulation are in
good agreement. A comparative pressure measurement, MTM and ice ruler are used to
measure critical process parameters during primary drying and allow for the adoption
of the digital twin status to reality. Applying the digital twin significantly reduces the
workload of designing optimized and robust primary drying conditions from several weeks
to 14 days while consuming small amounts of product solution. Implementing a controlled
nucleation method into the digital twin further deepens the process control and allows for
a 160% to 300% increase in productivity while maintaining a safe process, leading to a cost
reduction of 60–75% based on the working schedule described.
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Figure A1. (a) Kv over chamber pressure for tray. (b) Sublimation flux over chamber pressure.
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Figure A2. Workflow for model-based optimization and validation of primary drying processes.
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Figure A3. Optimized shelf temperature profiles (black: shelf temperature, color: product tempera-
ture). (a) Controlled nucleation, optimized for edge vial. (b) Annealing, optimized for center vial.
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