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Abstract: To address the issue of lowutilization rates, constrained operationalmodes, and the under‑
utilization of flexible energy storage resources at the end‑user level, this research paper introduces
a collaborative operational approach for shared energy storage operators in a multiple microgrids
(ESO‑MGs) system. This approach takes into account the relation of electricity generated by MGs
and the integration of diverse energy storage resources managed by ESO. A hybrid game‑theoretic
energy trading strategy is employed to address the challenges associated with energy trading and
revenue distribution in this joint operational mode. Firstly, a multi‑objective master–slave game
optimization model is developed with the objective of maximizing the revenue earned by shared
energy storage operators while simultaneously minimizing the operational costs of multiple micro‑
grids. Secondly, acknowledging the peer‑to‑peer (P2P) energy sharing dynamics inherent in the
multiple microgrid system, a non‑co‑operative game model is formulated. This model seeks to es‑
tablish a multi‑microgrid Nash equilibrium and equitable income allocation. Finally, leveraging the
Karush–Kuhn–Tucker (KKT) conditions and drawing upon the principles of strong duality theory,
precise dimensionality reduction is executed on themaster–slave gamemodel. The non‑co‑operative
income is iteratively determined using the alternating direction multiplier algorithm. The empirical
findings of this study indicate that the integration of electric vehicle clusters contributes to flexible
storage resources for shared energy storage operators. Moreover, the proposed hybrid game opti‑
mization strategy enhances the overall benefits for shared energy storage operators and multiple
microgrids, thereby affirming the economic viability and reliability of this innovative strategy.

Keywords: shared energy storage operators; electric vehicle clusters; multiple microgrids; hybrid
game theory; KKT conditions; strong duality theory

1. Introduction
The rapid advancement of emerging energy sectors, notably wind and solar power

technologies [1], has elevated the importance of effectively harnessingdistributed resources
in the context of achieving carbon neutrality. Microgrids have emerged as a promising so‑
lution to enhance the efficient utilization of multiple energy sources, balance supply and
demand dynamics, optimize energy resource allocation, and satisfy carbon neutrality ob‑
jectives [2]. Extensive studies have shown that the integration of various microgrids oper‑
ating in the same distribution network area can establish a robust multiple‑microgrids sys‑
tem facilitated by peer‑to‑peer (P2P) energy trading mechanisms [3,4]. In instances where
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one subsystem faces a shortage of dispatchable resources, it can seek support from neigh‑
boring subsystems, thereby enhancing the economic viability and dependable operation
of interconnected systems [5].

Energy storage, as a burgeoning technology in power systems, plays a pivotal role
in ensuring the dependable operation and sustainable growth of the power grid. Nev‑
ertheless, the absence of viable commercial models for energy storage has resulted in an
underutilization of available energy storage resources [6]. In recent years, the concept of
the “sharing economy” [7] has given rise to the “shared energy storage” model, which
integrates the principles of the sharing economy with large‑scale energy storage facili‑
ties [8,9]. In contrast to conventional energy storage paradigms, the operation mode of
shared energy storage (SES) leverages the synergistic effect of centralized energy storage
and the complementary characteristics of load patterns, effectively aggregating dormant
resources andmaximizing their potential across various aspects of energy generation, grid
management, load balancing, and energy storage [10]. This approach facilitates the pro‑
vision of cost‑effective energy storage services and enhances the profitability of the en‑
ergy storage business model. Large‑scale clusters of electric vehicles (EVs) can be consoli‑
dated into a generalized energy storage (GES) system with increased capacity and charg‑
ing/discharging capabilities, meeting the prerequisites for participation in the electricity
market [11]. Wu et al. [12] have proposed that EV clusters, characterized by their mo‑
bile and flexible load‑storage profiles, represents a promising shared energy storage op‑
erational strategy. This not only enhances the efficiency of electric vehicle usage but also
enhances the dispatchable potential of shared energy storage, alleviating the burden as‑
sociated with allocating shared energy storage capacity. Considering the limited scale of
new energy resources and load profiles in microgrids, relying solely on power interactions
between microgrids’ yields restricts benefits in terms of enhancing local new energy inte‑
gration rates and cost reduction. Deng et al. [13] have introduced shared energy storage
solutions into multiple microgrids, yielding significant improvements in the local new en‑
ergy integration rates in these interconnected microgrids. Xi et al. [14] have carried out
a comprehensive configuration of shared energy storage systems in community settings,
aligning the configurations with the specific requirements of community residents. Simu‑
lation results have corroborated the cost reduction achieved through the strategic deploy‑
ment of shared energy storage in community environments.

When incorporating shared energy storage into multiple‑microgrid systems, intricate
energy interaction issues arise due to the distinct energy entities of shared storage andmul‑
tiple microgrids [15,16]. These complexities stem from the presence of different energy
entities, creating interdependencies that add to the intricacy of the overall energy land‑
scape [17]. The exchange of energy inherently involves the exchange of interests [18]. As a
result, connecting a shared energy storage system to multiple microgrids introduces con‑
flicts of interest between the energy storage operators and multiple microgrids. Conven‑
tional dispatchmethods struggle to effectivelymanage themulti‑level andmulti‑agent eco‑
nomic dynamics between shared energy storage and multiple‑microgrid systems. Game
theory emerges as a valuable tool to explain the operational logic governing such complex
systems and incentivize multiple agents to participate actively in market bidding [19]. The
economic dynamics between shared energy storage and multiple microgrid systems can
be characterized through the lenses of co‑operative and non‑co‑operative game theory, of‑
fering a nuanced understanding of their interplay in the energy landscape. In characteriz‑
ing the interplay between shared energy storage and multiple microgrid systems through
co‑operative game theory, a collaborative alliance emerges where shared energy storage
and multiple microgrids engage in a co‑operative game. The overarching objective of this
alliance is to maximize collective benefits, optimizing energy transactions and profits be‑
tween the shared energy storage and multiple microgrid systems. In characterizing the
dynamics between shared energy storage andmultiple‑microgrid systems through non‑co‑
operative game theory, each entity strives to maximize its individual benefits. Commonly,
shared energy storage takes on a leadership role, while multiple‑microgrid systems act
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as followers. In the context of a leader–follower competition among energy entities, the
optimization is centered on enhancing energy transactions and profits between shared en‑
ergy storage and multiple microgrid systems. Kim et al. [20] undertook an effort to en‑
hance the overall revenue of multiple microgrids and allocate co‑operative benefits using
co‑operative game theory principles. Their findings indicated notable profit improvements
for each microgrid compared to independent operation. Guo et al. [21] developed a one‑
leader–multiple‑followers Stackelberg game model, designating the entire microgrid sys‑
tem as the leader and renewable energy, energy storage, and load as followers. This model
effectively co‑ordinated the generation, grid, load, and storage of the microgrid, resulting
in a Stackelberg equilibrium that balanced the interests of multiple parties while ensuring
system safety and stability. In a separate study, Xu et al. [22] proposed a Nash bargain‑
ing co‑ordination optimization scheduling model for shared energy storage in multiple
microgrids, employing a dual‑layer ADMM algorithm. This model promoted collabora‑
tive energy supply, leading to mutually beneficial results for shared energy storage and
microgrids, fostering a win–win scenario. Cui et al. [23] addressed energy trading com‑
petition among building clusters and devised a microgrid trading strategy based on non‑
co‑operative game theory. This strategy considered the self‑interest of each agent in the
energy trading process and maximized the benefits for all participating agents.

Despite the valuable insights provided by the aforementioned literature on energy in‑
teraction, profit allocation, and shared energy storage involvement in multiple microgrids,
there remains certain limitations. Firstly, these studies have not taken into account the in‑
tegration and effective utilization of shared energy storage resources in the geographical
region. Secondly, the formulation of real‑time electricity prices for buying and selling elec‑
tricity by the game leader, based on the real‑time electricity transactions of different entities
at lower levels, has been overlooked. Therefore, the lower‑levelmicrogrid systems struggle
to establish effective interactions with shared energy storage, dampening the enthusiasm
of microgrid members to engage in electricity trading. In light of these challenges, this pa‑
per introduces the concept of shared energy storage operators tasked with co‑ordinating
and managing shared energy storage facilities and electric vehicle shared energy storage
resources in a given region. ESO offer electricity purchase and sale services to MGs and
play an active role in guiding the economic operations of MGs by establishing electricity
prices for buying and selling electricity.

In summary, this paper introduces a novel hybrid game‑based two‑tiered optimiza‑
tion strategy tailored for an ESO‑MGs system, which is dedicated to examining the shared
energy storage operators in the context of multiple microgrids and aims to optimize the
real‑time electricity pricing set by ESO for MGs, as well as the profit distribution subse‑
quent to energy sharing in MGs. The principal contributions of this study are outlined
as follows:

(1) A descriptive methodology has been devised to characterize the uncertain distribu‑
tion of electric vehicle clusters. Utilizing a data‑driven method, it expresses the un‑
certainty range bridging the empirical distribution of EV clusters and their actual
distribution.

(2) A hybrid gamemodel has been constructed, including themaster–slave game dynam‑
ics between the shared energy storage operator and the multiple microgrid systems,
alongside a non‑co‑operative game in theMGs themselves. In themaster–slave game,
the upper‑level model seeks to maximize the ESO’s revenue, while the lower‑level
model seeks to minimize the costs incurred by the MGs. The non‑co‑operative game
formulates the problem of profit allocation among MGs as a decomposable Nikaido‑
Isoda (NI) regularizedmodel, subdivided into three iteratively solvable subproblems.
The establishment of overall and local incentive constraints for the MGs ensures opti‑
mal profits for each agent and promotes economic harmony in the settlement of the
overall system.

(3) To facilitate the effective resolution of the model, the lower‑level MGs model is trans‑
formed into a constraint for the upper‑level ESO model, leveraging the derivation



Processes 2024, 12, 218 4 of 26

of KKT conditions in the master–slave game. Building on strong duality theory, the
real‑time communication variable comprising electricity prices and power between
the upper and lower levels is linearized, thus enabling the rapid and precise solution
of the global strategic equilibrium in the multi‑level, multi‑agent system.

2. Shared Energy Storage Operator‑Multiple‑Microgrids System Operation Mode
The principal stakeholders engaged in the collaborative operation of the shared en‑

ergy storage operators‑multiple‑microgrids system (ESO‑MGs) consist of the integrated
energy storage operator. This entity combines scalable electric vehicle storage resources
and shared energy storage stations. Furthermore, it interfaces with themultiple‑microgrid
system, in conjunction with the higher‑level grid.

2.1. Service Model of the Shared Energy Storage Operator
Figure 1 provides a visual representation of the orchestration and management of

shared energy storage in the region by the shared energy storage operator. The ESO is
also tasked with overseeing the energy storage assets associated with electric vehicle clus‑
ters. While ensuring the complete fulfillment of electric vehicle charging requirements, the
ESO seeks to cultivate the adaptable characteristics of its load storage resources. This, in
turn, enhances the efficiency of energy storage asset utilization in the region, while concur‑
rently offering electricity trading services to the multiple‑microgrid system. The revenue
streams for the shared energy storage operator are primarily derived from four sources:
(1) the price differential between the settlement of energy storage and retrieval transactions
betweenmicrogrid users and the ESO; (2) the levies levied by the ESO for provisioning elec‑
tricity trading services to users, along with the fees remitted by users for grid connectivity;
(3) the variance in pricing during the settlement of electricity procurement and sales trans‑
actions by the ESOwith the grid; and (4) the charges imposed by the ESO for the provision
of charging services to the EV clusters.
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2.2. Microgrid Architecture
From Figure 2, the internal infrastructure of the microgrid comprises renewable en‑

ergy generation systems (RGs), hydrogen energy systems (HES) (operating in a combined
heat and power mode), gas boilers (GB), and electric heating (EH). Predicated on the inter‑
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nal resource allocation, the microgrid optimizes the operational outputs of these devices
and manage electricity transactions between microgrids. This optimization is executed
with the overarching aim of meeting the demand–supply equilibrium of both electricity
and heat loads. The procurement of natural gas, a necessary component for the operation
of gas boilers, is conducted through the gas system operator (GSO).
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Figure 3 explains the dynamics in the MG system. In situations where there is an
excess of electricity, it can be disseminated to other microgrids with electricity require‑
ments through localized transactions. In cases where local consumption does not suffice
to absorb this surplus, the excess electricity can be sold to the ESO. Conversely, when a
microgrid experiences a deficit in electricity supply, it has the option to acquire electricity
from fellow MG system members, and any remaining shortfall can be procured from the
ESO. It is essential to note that, due to technical prerequisites and policy constraints that
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inhibit microgrid users from feeding electricity back into the grid, microgrids are limited
to purchasing electricity from the grid or selling surplus electricity directly to the ESO or
even discarding it. In its capacity as the custodian of shared energy storage resources and
the energy provider to lower‑level MGs, the ESO possesses the capability to sell surplus
electricity to the external grid and acquire electricity from external sources during short‑
ages. Additionally, the ESO establishes the pricing framework for electricity procurement
and distribution with the objective of optimizing its own revenue.

3. Hybrid Game‑Based Optimization Model for Energy Trading between the Energy
Storage Operator and Multi‑Microgrid
3.1. Leader–Follower Game Model between the Shared Energy Storage Operator and
Multiple‑Microgrid
3.1.1. Leader Model of ESO

The shared energy storage operator is composed of shared energy storage and electric
vehicle cluster. By orchestrating and managing these two types of energy resources, the
shared energy storage operator delivers electric power services to multiple microgrids.

(1) Objective Function

The revenue of the shared energy storage operator consists of revenue from purchas‑
ing/selling electricity to/from the external power grid, revenue from purchasing/selling
electricity to/from multiple microgrids, income from collecting grid usage fees from mul‑
tiple microgrids, and income from charging fees from the electric vehicle cluster. The
shared energy storage operator aims tomaximize the sumof these revenues as the objective
function.

The upper limits for energy transmission capacities, including ESO to power grid,
ESO to MGs, and MG to MG, are outlined in Appendix A, Table A1. The upper and lower
limits for the electricity purchase and sale prices from multiple microgrids to the ESO are
illustrated in Appendix A, Figure A1. The purchasing and selling electricity prices from
ESO to the power grid are illustrated in Appendix A, Figure A2.

maxE = max(Eess + Em + Eserve + Ec)

Eess = −
T
∑

t=1
(Udb(t)Pbuy(t)− Uds(t)Psell(t))

Em = −∑
i∈I

T
∑

t=1
(γsell,i(t)Pm,s,i(t)− γbuy,i(t)Pm,b,i(t))

Eserve =
I

∑
i=1

ωserve(Pm,s,i(t) + Pm,b,i(t))

Ec = u
T
∑

t=1
(PGES

ch (t)− PGES
dis (t))

(1)

In the equation, Eess, Em, and Eserve represent the revenue from electricity purchase
and sale to the grid, the revenue from participating in electricity trading with MGs, and
the revenue from grid connection fees charged to MGs. Ec represents the fees paid by the
electric vehicle clusters to the operator for charging services. Udb, Uds, γbuy,i, and γsell,i
represent the purchase and sale prices of electricity between the ESO and the grid, as well
as the purchase and sale prices of electricity between the ESO and MGi. Pbuy(t), Psell(t),
Pm,b,i(t), and Pm,s,i(t) represent the purchase and sale power between the ESO and the
grid at time t, as well as the purchase and sale power betweenMGi and the energy storage
operator. ωserve represents the coefficient fees remitted by users for grid connectivity with
ESO. PGES

ch (t) and PGES
dis (t) represent the charging and discharging power of the energy

storage device aggregated by the EV cluster at time t. u represents the utility coefficient of
electric vehicles.
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(2) Constraints for SES

The shared energy storage is a crucial component of the shared energy storage op‑
erator. The energy capacity constraints and charge–discharge constraints for the shared
energy storage are expressed by the following equation:

ηSOCmin Eess
F ≤ Eess(t) ≤ ηSOCmax Eess

F
Eess(1) = 0.1Eess

F
Eess(t)− Eess(t − 1) =

(
ηessch Pess

ch (t)− Pessdis (t)
ηessdis

)
∆t

Eess(T) = Eess(1)
0 ≤ Pess

ch (t) ≤ Pess
ch,maxωess

ch , 0 ≤ Pess
dis (t) ≤ Pess

dis,maxωess
dis

ωess
ch + ωess

dis = 1, ωess
ch ∈ {0, 1}, ωess

dis ∈ {0, 1}

(2)

In the equation, ηSOCmin and ηSOCmax denote the charging and discharging depths of energy
storage; ηessch and ηessdis denote the charging and discharging efficiency of energy storage.
Additionally, Pess

ch,max and Pess
dis,max signify the maximum power capacity for charging and

discharging, while Pess
ch (t) and Pess

dis (t) represent the charging and discharging power of
energy storage at time t. Moreover, Eess

F , Eess(t), ωess
ch , and ωess

dis represent the capacity of
energy storage, the capacity of energy storage at time t, and the binary parameters for
charging and discharging of energy storage.

(3) Uncertainty Set for EV Cluster

Due to the limited size of the EV cluster sample, potential discrepancies may arise
between the empirical EV cluster distribution and its actual counterpart [17]. Therefore,
a data‑driven approach becomes essential to depict this uncertainty. The uncertainty set
between the empirical and actual EV cluster distributions is detailed below. A compre‑
hensive description of the electric vehicle cluster modeling can be found in Appendix B,
Equations (A1) and (A2).

Ψ =

ρ ∈ R+
Ntype

∣∣∣∣∣∣
||ρ − ρ0||1 ≤ θ1
||ρ − ρ0||∞ ≤ θ∞
||ρ||1 = 1

 (3)

In the equation, Ψ represents the uncertainty set. ρ denotes the vector consisting of un‑
certain variable distributions, i.e., representing the proportion of each type of electric vehi‑
cle. ρ0 depicts the initial empirical distribution of uncertain variables, i.e.,
ρ0 =

{
ρn,0, ∀n ∈ NEV

∗
}
, representing the frequency of each type of electric vehicle in

historical data. θ1 and θ∞ indicate the matrix boundaries of the uncertainty set.
According to Zhao et al. andDing et al. [24,25], {ρ0} satisfies the following confidence

level: {
Pr{||ρ − ρ0||≤ θ1} ≥ 1 − 2Ke(−2Mθ1/K)

Pr{||ρ − ρ0||∞ ≤ θ∞} ≥ 1 − 2Ke(−2Mθ∞) (4)

(4) Constraints for ESO‑MGs Interconnection Power
0 ≤ Pm,s,i(t) ≤ Pmaxξi
0 ≤ Pm,b,i(t) ≤ Pmax(1 − ξi)

ξi ∈ {0, 1}
(5)

In the equation, Pmax represents the maximum value for electricity purchase and sale,
Pm,b,i(t) and Pm,s,i(t) represent the electricity purchased and sold byMGi from ESO at time
t, and ξi denotes the binary parameter that restricts simultaneous electricity purchase and
sale by the Energy Storage Operator (ESO).
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(5) Constraints for ESO‑Power Grid Interconnection Power
0 ≤ Pbuy(t) ≤ µbuyPgrid,max
0 ≤ Psell(t) ≤ µsellPgrid,max
µbuy + µsell ≤ 1

(6)

In the equation, Pgrid,max represents the maximum value for electricity purchase and
sale by ESO from/to the power grid. µbuy and µsell represent the binary parameters restrict‑
ing simultaneous electricity purchase and sale by ESO.

(6) Constraints for MGs Electricity Purchase and Sale Prices
γsell,i,min(t) ≤ γsell,i(t) ≤ γsell,i,max(t)
γbuy,i,min(t) ≤ γbuy,i(t) ≤ γbuy,i,max(t)
γbuy,ave,min ≤ γbuy,i(t) ≤ γbuy,ave,max
γsell,ave,min ≤ γsell,i(t) ≤ γsell,ave,max

(7)

In the equation, γsell,i,min and γsell,i,max represent the upper and lower limits of the
electricity sale price from MGi to ESO and γbuy,i,min and γbuy,i,max denote the upper and
lower limits of the electricity purchase price from MGi to ESO. γbuy,ave,min and γsell,ave,min
depict the minimum average value of the electricity purchase and sale prices from MG
to ESO; γbuy,ave,max and γsell,ave,max indicate the maximum average value of the electricity
purchase and sale prices from MGs to ESO.

(7) Power Balance Constraints

Pbuy(t)− Psell(t) + PGES
ch (t)− PGES

dis (t) +
I

∑
i=1

(Pm,s,i(t)− Pm,b,i(t)) = Pess
ch (t)− Pess

dis (t) (8)

In the equation, PGES
ch (t) and PGES

dis (t) represent total charging and discharging power
of EV cluster at time t.

3.1.2. Follower Optimization Model for Multiple Microgrid
The specific modeling of internal devices in the multiple microgrid is shown in

Appendix C, Equations (A3)–(A7).

(1) Objective Function

MGs aim to minimize operating costs as the objective function.

minC = min
T
∑

t=1
(Crun + Ctran + Cgas + Cserve)

Crun =
I

∑
i=1

ωwPw,i(t) + ωpvPpv,i(t) + ωfuePfue,i(t) + ωelePele,i(t) + ωehPeh,i(t) + ωGBMGB,i(t)

Ctran =
I

∑
i=1

−γsell,i(t)Pm,s,i(t) + γbuy,i(t)Pm,b,i(t)

Cgas =
I

∑
i=1

cGBMGB(t)

Cserve =
I

∑
i=1

ωserve(Pm,s,i(t) + Pm,b,i(t))

(9)

In the equation, Crun, Ctran, Cgas, and Cserve represent the operation and maintenance
costs of MGs, the electricity interaction costs, the gas purchase costs, and the grid con‑
nection fees paid to the energy storage operator (ESO). ωw, ωpv, ωfue, ωele, ωeh, and ωGB
denote the operation coefficients of wind turbines, photovoltaic power plants, fuel cells,
electrolyzers, electric heating, and gas boilers, respectively. cGB depicts the cost of pur‑
chasing gas according to unit volume.

(2) Constraints
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Demand Response in MGs:

Pe,i(t) = Pe,load,i(t)− Pe,cut,i(t) + Pe,tran,i(t)
0 ≤ Pe,cut,i(t) ≤ λe,cutPe,load,i(t)
−λe,tranPe,load,i(t) ≤ Pe,tran,i(t) ≤ λe,tranPe,load,i(t)

T
∑

t=1
Pe,tran,i(t) = 0

Ph,i(t) = Ph,load,i(t)− Ph,cut,i(t) + Ph,tran,i(t)
0 ≤ Ph,cut,i(t) ≤ λh,cutPh,load,i(t)
−λh,tranPh,load,i(t) ≤ Ph,tran,i(t) ≤ λh,tranPh,load,i(t)

T
∑

t=1
Ph,tran,i(t) = 0

(10)

In the equation, Pe,i(t) and Ph,i(t) represent the electric load and heat load ofMGi after
demand response at time t. Pe,cut,i(t) and Pe,tran,i(t) denote the reducible electric load and
transferrable electric load of MGi at time t. Ph,cut,i(t) and Ph,tran,i(t) depict the reducible
heat load and transferrable heat load of MGi at time t. λe,cut and λh,cut indicate the pro‑
portion of reducible electric load and reducible heat load. λe,tran and λh,tran symbolize the
proportion of transferrable electric load and transferrable heat load.

Electric Balance Constraint:

Pw,i(t) + Ppv,i(t) + Pfue,i(t) + Pm,b(t)− Pm,s(t)− Pe,i(t)− Ptran,i(t) = 0 (11)

Heat Balance Constraint:

nex(Hele,i(t) + Hfue,i(t)) + Heh,i(t) + HGB,i(t)− Ph,i(t) = 0 (12)

In the equation, nex represents the heat conversion coefficient of the heat and power
cogeneration system with hydrogen storage.

Power Constraint for MG‑MG Interconnection Lines:
0 ≤ Pt

i,i2
≤ µt

i,i2
Pmax

i,i2
∀i, i2, i ̸= i2

Pi,tran(t) = ∑
i,i2∈I

Pt
i,i2

µt
i,i2

+ µt
i2,i ≤ 1

(13)

In the equation, I = {i1, i2, i3} represents the set of MGs. Pt
i,i2

represents the electric
power transmitted fromMGi to MGi2 at time t. Pmax

i,i2
denotes the maximum electric power

transmitted from MGi to MGi2 at time t. µt
i,i2

and µt
i2,i depict binary variables.

3.2. Profit Allocation Model for Multi‑Microgrid Based on Non‑Co‑Operative Game
The procedure for modeling electricity interaction costs and profit settlement in a

multi‑microgrid environment based on anon‑co‑operative gameunfolds as follows. Firstly,
the determination of the upper limit of individual rationality (ideal electricity interaction
cost) for each participant in the non‑co‑operative game model is executed, leading to the
formulation of the game’s strategy set. Secondly, both local and global incentive con‑
straints are imposed upon the non‑co‑operative game. Finally, leveraging the obtained
variable relationships from themodeling phase, the expression for profit settlement among
microgrids is derived.

3.2.1. Upper Limit of Individual Rationality and Construction of Strategy Set for
Non‑Co‑Operative Game Participants
(1) Upper Limit of Individual Rationality for Non‑Co‑operative Game Participants

In the calculation of electricity interaction costs, it is necessary to establish the upper
limit of individual rationality for each microgrid in the non‑co‑operative game model, sig‑
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nifying the ideal electricity interaction cost settlement. The modeling process for this ideal
cost settlement proceeds as follows:

Utilizing the electricity interaction volumes between sub‑areas acquired during the
initial phase, the determination of the worst‑case interaction price range (λmin, λmax)
becomes essential, ensuring that every sub‑area can achieve profitability through electricity
exchange, even when procuring electricity at the highest possible price and selling it at the
lowest price in this defined price range. The specific solution process is outlined in the
following equation:

max(λmax − λmin)
s.t.

T
∑

t=1
λmaxmax

{
0, et

i
}
+ λminmin

{
0, et

i
}
≤ C0

i − Cshare
i , ∀i ∈ I

λmax − λmin > 0
λmax, λmin > 0

(14)

In the equation, λmax and λmin represent the upper and lower limits of electricity
prices, respectively. Similarly, et

i , C0
i , and Cshare

i denote the electricity interaction volume
of MGi at time t, the cost associated with independent operation, and the cost associated
with participating in electricity interaction.

When an MG procures electricity from other MGs at the lowest available price and
sells its own electricity at the highest available price, the resulting cost of settled electricity
interaction can be regarded as the ideal electricity interaction cost. This ideal cost serves
as the upper boundary for individual rationality in the non‑co‑operative game involving
MGs.

Cref
i = λminmax

{
0, et

i
}
+ λmaxmin

{
0, et

i
}

(15)

In the equation, Cref
i represents the ideal electricity interaction cost for MGi when

engaging in electricity interaction.

(2) Construction of Strategy Set for Non‑Co‑operative Game

To encourage MGs to approach the ideal electricity interaction cost as closely as pos‑
sible, γ ∈ RN is introduced to assess the willingness of the MG to reduce costs.

γi =
πi − Cref

i

C0
i − Cshare

i − Cref
i

(16)

The strategy space set of the non‑co‑operative game model is obtained as
γ = {γ1, γ2, γ3} and π = {π1, π2, π3}, where represents the strategy set of MGi.

3.2.2. Local and Global Incentive Constraints for Non‑Co‑Operative Game Model
The resolution of electricity interaction costs among MGs must adhere to the subse‑

quent incentive constraints:
(1) Local incentive constraint: the cost incurred by participating in electricity interaction

for an MG must be lower than the cost of operating independently, thus indicating
that the MG can derive benefits from participating in interconnection.

Cref
i < πi < C0

i − Cshare
i (17)

(2) Global incentive constraint: in order to ensure fairness in the settlement of electricity
interaction costs among MGs and to prevent detrimental competition aimed at cost
reduction among MGs, the total cost of electricity interaction involving three MGs
must be constrained to zero.

I

∑
i=1

πi = 0 (18)
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In the equation, πi represents the electricity interaction cost of MGi.

3.2.3. Profit Settlement for MG

Proi = C0
i − (πi + Cshare

i ) (19)

The difference between the cost C0
i of MGi in independent operation and the cost

πi + Cshare
i of MGi in interconnected operation can be regarded as the profit of MGi, as

shown in the equation below.
In the equation, Proi represents the profit of MGi.

4. Mixed‑Game Bi‑Level Optimization Model Solution
The process for finding a solution to the shared energy storage operator—multi‑

microgrid master–slave—non‑co‑operative mixed game is depicted in Figure 4.
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Figure 4. Solution strategy of the two‑layer game between generalized shared energy storage service
provider and MGs.

From Figure 4, the dynamic between ESO and the MGs system is characterized as a
master–slave game. The ESO, in the role of themaster, aims tomaximize revenue, whereas
the MGs, serving as followers, strive to minimize overall operational costs. Operational
states are exchanged between ESO and MGs. Considering that the master–slave game
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presents a dual‑objective optimization challenge, the KKT conditions are employed for a
more efficient resolution, converting the dual‑level optimization into a single‑level prob‑
lem. Additionally, the application of the strong duality principle helps remove the commu‑
nication variable product in the dual‑level model, thus leading to a solution that meets the
requirements of this dual‑level optimization issue. The profit distribution in the MGs sys‑
tem follows a non‑co‑operative game framework. Firstly, the upper boundary of compe‑
tition and the set of optimization strategies for the non‑co‑operative game are established,
rooted in the results of electricity sharing from the master–slave game. Secondly, global
and local incentive constraints are implemented to manage the competition in the non‑co‑
operative game. Finally, an NI regularization function is devised, transforming the profit
distribution issue of the MGs’ non‑co‑operative game into a solvable mathematical model.
This model is then progressively resolved using the ADMM algorithm.

4.1. Solving the Master–Slave Game Model Based on KKT Conditions and Strong Duality Theory

Themaster–slave game optimization problem is transmuted into a single‑layermixed‑
integer linear programing problem through the precise application of KKT conditions and
the incorporation of the strong duality theory. The specific constraints introduced for this
purpose are depicted in Equations (20) and (21). The formulation of the augmented La‑
grangian function is detailed in Appendix D, Equation (A8).

(1) Partial derivative constraints

ωele − λ5 + λ17 + λ8 − u9 + u10 = 0; ωfue − λ5 − λ9 − λ10 − u5 + u6 = 0
ωeh − λ5 + λ11 − u7 + u8 = 0;−Pm,s + u22 − u21 = 0
Pm,b + u20 − u19 = 0; λ1 − λ5 = 0; λ1 − u1 + u2 = 0
−λ1 + λ3 − u11 + u22 = 0; λ2 − λ6 = 0
λ2 − u3 + u4 = 0;−λ2 + λ4 = 0;−λ5(:, 1) + λ13 − u13 + u14 = 0
−λ5(:, 1) + λ14 − u15 + u16 = 0;−λ5(:, 2) + λ13 = 0
−λ5(:, 2) + λ15 − u17 + u18 = 0;−λ5(:, 3) + λ14 = 0
−λ5(:, 3) + λ15 = 0; nexλ6 − λ7 = 0
nexλ6 − λ9 = 0; λ6 + λ11 = 0
−GHHV/nH2 λ8 − GHHVλ7 − k1λ12 = 0
GHHVλ9 + GHHVλ10 + k1λ12 = 0
λ12(2 : T)− λ12(1 : T)− u11(2 : T) + u12(2 : T) = 0
cGB/(ηGBLNG) + ωGB + λ6 − u23 + u24 = 0

(20)

In the equation, λ1 − λ15 represents the Lagrange multiplier introduced to address
the equality constraint.

(2) Complementary slackness condition constraints

0 ≤ u1⊥(−Pe,cut) ≤ 0; 0 ≤ u2⊥(Pe,cut − λe,cutPe,load) ≤ 0
0 ≤ u3⊥(−Ph,cut) ≤ 0; 0 ≤ u4⊥(Ph,cut − λh,cutPh,load) ≤ 0
0 ≤ u5⊥(−Pfue) ≤ 0; 0 ≤ u6⊥(Pfue − Pfue,max) ≤ 0
0 ≤ u7⊥(−Peh) ≤ 0; 0 ≤ u8⊥(Peh − Peh,max) ≤ 0
0 ≤ u9⊥(−Pele) ≤ 0; 0 ≤ u10⊥(Pele − Pele,max) ≤ 0
0 ≤ u11⊥(EH2

min − EH2) ≤ 0; 0 ≤ u12⊥(EH2 − EH2
max) ≤ 0

0 ≤ u13⊥(−Pwire − P12) ≤ 0; 0 ≤ u14⊥(P12 − Pwire) ≤ 0
0 ≤ u15⊥(−Pwire − P23) ≤ 0; 0 ≤ u16⊥(P23 − Pwire) ≤ 0
0 ≤ u17⊥(−Pwire − P13) ≤ 0; 0 ≤ u18⊥(P13 − Pwire) ≤ 0
0 ≤ u19⊥(−γbuy) ≤ 0; 0 ≤ u20⊥(γbuy − γbuy,max) ≤ 0
0 ≤ u21⊥(−γsell) ≤ 0; 0 ≤ u22⊥(γsell − γsell,max) ≤ 0
0 ≤ u23(:, 1)⊥(−HGB(:, 1)) ≤ 0; 0 ≤ u24(:, 1)⊥(HGB(:, 1)− HGB1,max) ≤ 0
0 ≤ u23(:, 2 : 3)⊥(−HGB(:, 2 : 3)) ≤ 0; 0 ≤ u24(:, 2 : 3)⊥(HGB(:, 2 : 3)− HGB2,3,max) ≤ 0

(21)
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In the equation, u1 − u23 represents the Lagrange multiplier introduced to address
the inequality constraint. Due to the nonlinear nature of Equation (21), the big‑M method
is employed to introduce Boolean variables and transform the complementary relaxation
condition into a cutting plane constraint. The specific linearization process is shown in
Appendix E, Equations (A9) and (A10).

(3) Elimination of bilinear term products using strong duality theory

Considering that the lower‑level follower model lacks Boolean variables and consti‑
tutes a convex function, it adheres to the strong duality principle. This principle asserts
that the optimal solution of the lower‑level primal problem coincides with the optimal so‑
lution of the dual problem. Therefore, in alignment with the strong duality theory, the bi‑
linear term products of electricity price and power in the objective function are substituted
with linearized expressions employing dual variables. The detailed linearization method
is depicted in Equations (22) and (23).{

Pm,s = u24 − u23
Pm,b = u21 − u22

(22)

Deriving from the constraints of partial derivatives and cutting planes, the following
results are obtained:

Substituting Equation (22) into Equation (8), the linearized expression with the cou‑
pling of master–slave game communication variable products is:

γsellPm,s − γbuyPm,b = u24γsell,max − u23γsell,min − (u21γbuy,min − u22γbuy,max) (23)

Substituting Equation (23) into Equation (1), the final objective function of themaster–
slave game is as follows:

maxE = max(Eess + Em + Eserve) +max(Ec)

Eess =
T
∑

t=1
(Udb(t)Pbuy(t)− Uds(t)Psell(t))

Em = ∑
i∈I

T
∑

t=1
(u24,i(t)γsell,max(t)− u23,i(t)γsell,min(t)− (u21,i(t)γbuy,min(t)− u22,i(t)γbuy,max(t)))

Eserve =
I

∑
i=1

ωserve(Pm,s,i(t) + Pm,b,i(t)), Ec = u
T
∑

t=1
(PGES

ch (t)− PGES
dis (t))

(24)

4.2. Solving the Non‑Co‑Operative Game Model Using the ADMM Algorithm
The strategy space of the non‑co‑operative game comprises two decision variables π

and γ, between which there are connecting constraints, Equation (16). Thus, the non‑co‑
operative game ismodeled as a regularizedNI function. In thismodel, the iterative process
for the two decision variables is divided, and the ADMM algorithm is applied to resolve
the non‑co‑operative gamemodel. The precise steps of this solutionmethod are as follows:
(1) Construct the regularized NI function:

L(π, γ, ω) = ||γ||22 +
τ

2 ∑
i∈I

(
πi − Cref

i

C0
i − Cshare

i − Cref
i

− γi +
ωi
τ

)2

(25)

(2) Update the decision variable πi(k + 1):
πi(k + 1) = argminL(πi, γ(k), ω(k))

s.t.
Cref

i < πi < C0
i − Cshare

i , ∀i ∈ I
(26)
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(3) Update the decision variable γ(k + 1):
γ(k + 1) = argminL(π(k + 1), γ, ω(k))

s.t.
∑
i∈I

γi(C0
i − Cshare

i − Cref
i ) + Cref

i = 0, ∀i ∈ I
(27)

(4) Update ωi(k + 1):

ωi(k + 1) = ωi(k) + τ

(
πi(k + 1)− Cref

i

C0
i − Cshare

i − Cref
i

− γi(k + 1)

)
, ∀i ∈ I (28)

(5) Update the iteration count k = k + 1:{
||ω(k + 1)− ω(k)||≤ ζ, convergence in the Kth iteration
k > kmax, the algorithm does not converge (29)

(6) Check the convergence of the algorithm.
According to the aforementioned procedure, the issue is addressed through iteration.

Should the convergence criterion in Equation (29) be met, the solution process concludes.
In contrast, if the criterion in Equation (29) is not fulfilled, the procedure reverts to step 2
for subsequent iteration. This continues until either the convergence criterion is met or the
maximum convergence limit is attained.

5. Case Study Analysis
This article utilizes wind power generation and load data from three adjacent mi‑

crogrids in a specific area in Xinjiang, China. The count of electric vehicle (EV) clusters
amounts to 500. MATLAB 2020 serves as the experimental platform,with theGurobi solver
used for computation. In the non‑co‑operative game, the ADMM algorithm’s upper limit
for iterations is 20, with penalty factors and convergence precision established at 2 × 10−3
and 1 × 10−10, respectively. The EVs charging and discharging coefficients and battery ca‑
pacities are listed in Appendix E, Table A2. The SES charging and discharging coefficients
and battery capacities are listed in Appendix E, Table A2. The duration of stay for EVs are
listed in Appendix F, Table A3, while the internal equipment parameters of the MGs are
available in Appendix F, Table A4.

5.1. Scheme Comparison
To verify the effectiveness of the proposed operational optimization strategy in en‑

hancing the economic benefits of energy storage operation (ESO) and reducingMGs’ costs,
the following scenarios are introduced:

Scenario 1: solely considering electricity sharing among MGs without ESO
involvement.

Scenario 2: solely focusing on the master–slave game between ESO and MGs, disre‑
garding electricity trading among lower‑level MGs.

Scenario 3: incorporating the mixed game involving ESO andMGs and the electricity
trading among lower‑level MGs.

Specific comparison results regarding benefits and costs are presented in Tables 1
and 2.

Table 1 reveals that, in Scenario 1, the total cost of MGs is CNY 6093.8218 lower than
that in Scenario 2. Scenario 3, enabled by sufficient energy supply, allows MG to achieve
local consumption through peer‑to‑peer electricity trading, reducing the total cost of MGs
by CNY 6673.4779 compared to Scenario 2. Scenario 3, integration of ESO, lowers the total
cost of MGs by CNY 579.6561 compared to Scenario 1. These results suggest that, on the
basis of power sharing in MGs, ESO offering power purchase and sale services to MGs
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enhances the overall economic and reliable operation. In Scenario 3 compared to Scenario 2,
ESO revenue increases by CNY 422.7511, demonstrating that ESO’s mixed‑game pricing
strategy effectively formulates an electricity pricing scheme, maximizing ESO’s revenue
while minimizing MGs’ costs, thus improving co‑ordination between ESO and MGs.

To verify the superiority of the proposed non‑co‑operative game strategy concerning
income distribution among lower‑level MGs, various validation scenarios are formulated.

Scenario A: allocating MGs’ income based on the Nash bargaining solution.
Scenario B: allocating MGs’ income based on the proposed non‑co‑operative game.

Table 1. The benefits of ESO and the costs of MGs under the three scenarios.

Scenario MG Cost/CNY Total Cost/CNY ESO
Revenue/CNY

1
1 8047.1779

26,386.4630 02 8255.4929
3 10,083.7920

2
1 16,629.5273

32,480.2848 5121.67712 13,744.4171
3 2106.3402

3
1 6037.4260

25,806.8069 5544.42822 15,009.4292
3 4759.9516

Table 2. MG clearing returns.

MG Pre‑P2P
Cost/CNY

Post‑P2P
Cost/CNY

P2P Rev‑
enues/CNY

A Rev‑
enues/CNY

B Rev‑
enues/CNY

1 16,629.5273 6037.4260 −10,122.8702 2224.4926 469.2311
2 13,744.4171 15,009.4292 1525.0603 2224.4926 260.0482
3 2106.3402 4759.9516 8597.8099 2224.4926 5944.1985

From Table 2, it can be seen that, following the implementation of electricity sharing
among MGs, income levels for MGs exhibit varying degrees of improvement. In the in‑
come distribution scheme based on the non‑co‑operative game, MG1′s income registers an
increase of CNY 469.2311, MG2′s by CNY 260.0482, and MG3′s by CNY 5944.1985, when
contrasted with the co‑operative game Nash bargaining solution. This non‑co‑operative
game‑based income distribution, as proposed in this study, not only reflects fairness and
equity but also aligns more closely with the maximization of individual income.

5.2. Mixed‑Game Results
5.2.1. Shared Energy Storage Operation Analysis

The charging, dischargingpower, and capacity variations of the shared energy storage
are shown in Figure 5.

FromFigure 5, it is evident that the SES attains itsmaximum charging and discharging
power at 06:00 and 17:00, respectively. Energy storage levels reach their upper limit at
06:00 and the lower limit at 01:00, 14:00, and 20:00. During other time intervals, the SES
effectively maintains the system’s energy balance through interactions with other devices
in the joint operation system.
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5.2.2. Charging and Discharging of Three EV Clusters
The charging and discharging power of the three EV clusters regulated by ESO are

shown in Figure 6.
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From Figure 6, it can be observed that, under the management of ESO, the three types
of EV clusters exhibit organized charging and discharging throughout the day. The first
type charges at 09:00 and from 15:00 to 17:00, discharging at 10:00–11:00 and 14:00. The
second type charges at 08:00–09:00 and 15:00–16:00, discharging at 10:00–11:00 and 14:00.
The third type charges at 9:00 and from 15:00 to 17:00, discharging at 11:00–14:00. This
demonstrates the flexibility of EV clusters in providing load and energy storage resources
to ESO. When SES resources are insufficient, EVs release energy to support ESO’s power
supply services while still satisfying charging needs of customers during their EV station‑
ary periods. The empirical distribution of EVs is shown in Appendix E, Figure A3.

5.2.3. Electricity Price Determination Analysis
The purchase and sale electricity prices set by ESO for MGs are shown in Figure 7.
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From Figure 7, it can be observed that MG2 has the lowest price of electricity pur‑
chased, because it purchases relatively more electricity from ESO, while MG1 and MG3,
which purchase almost no electricity, have slightly higher prices. This observation high‑
lights ESO ability to establish a rational electricity price distribution strategy based on real‑
time electricity procurement data from lower‑level MGs, thereby optimizing ESO revenue
without imposing undue electricity expenses on MGs. The rationale and determinants
influencing electricity sale pricing strategies among MGs align with electricity purchase
pricing strategies.

5.2.4. MGs Electricity Trading Analysis
The electricity trading among MGs is shown in Figure 8.

Processes 2024, 12, x FOR PEER REVIEW 19 of 29 
 

 

0 4 8 12 16 20 24
Time/h

-1500

-1000

-500

0

500

1000

1500

2000

Po
w

er
/k

W

Electric power trading of MG1
Electric power trading of MG2
Electric power trading of MG3

 
Figure 8. Interaction electricity between MGs. 

5.2.5. Internal Operation Analysis of MGs 
This section employs MG2 as a case study to dissect the dynamics of energy supply 

and demand balance. Figure 9 presents the results of electricity and heat optimization 
efforts undertaken in MG2. The results of electricity and heat optimization efforts under-
taken in MG1 and MG3 are shown in Appendix F Figure A4 and Appendix G Figure A5. 
The internal energy balance within the ESO is shown in Appendix G, Figure A6. 

0 4 8 12 16 20 24
Time/h

-2000

-1000

0

1000

2000

3000

4000

Po
w

er
/k

W

WT
FC
Purchase energy from ESO
Sell energy to ESO
ELE

EH
P2P
Purchase energy
Electrical load
DR electrical load

 
Figure 9. Power optimization results of MG2. 

From Figure 9, it is evident that MG2 exhibits the lowest electricity consumption dur-
ing the timeframe spanning from 01:00 to 09:00. Therefore, MG1 refrains from procuring 
electricity from ESO, opting instead for an internal electricity equilibrium through collab-
orative electricity sharing. During the peak hours of electricity demand, namely, from 
10:00 to 14:00 and 18:00 to 20:00, MG2 elects to acquire electricity from the ESO and facil-
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From Figure 8, it becomes apparent that electricity sharing primarily occurs in theMG
community during two timeframes: 01:00–07:00 and 18:00–24:00. During these intervals,
MG1 finds itself procuring surplus electricity from MG2 and MG3 due to a constrained
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supply of load. Conversely, during the 08:00–17:00 window, MG3 encounters a temporary
deficit in internal energy generation, leading to its acquisition of electricity fromMG1 and
MG2 to balance its energy demands. This observation highlights the role of resource‑based
electricity sharing among MGs in promoting local energy consumption. Therefore, this
practice curtails the need for extensive electricity exchanges between MGs and the central
grid, resulting in a more stabilized grid power profile.

5.2.5. Internal Operation Analysis of MGs
This section employs MG2 as a case study to dissect the dynamics of energy supply

and demand balance. Figure 9 presents the results of electricity and heat optimization
efforts undertaken in MG2. The results of electricity and heat optimization efforts under‑
taken in MG1 and MG3 are shown in Appendices F and G Figure A5. The internal energy
balance within the ESO is shown in Appendix G, Figure A6.
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From Figure 9, it is evident that MG2 exhibits the lowest electricity consumption dur‑
ing the timeframe spanning from 01:00 to 09:00. Therefore, MG1 refrains from procuring
electricity from ESO, opting instead for an internal electricity equilibrium through collabo‑
rative electricity sharing. During the peak hours of electricity demand, namely, from 10:00
to 14:00 and 18:00 to 20:00, MG2 elects to acquire electricity from the ESO and facilitate
electricity distribution amongst the various MGs to establish interconnectivity. During
this interval, the ESO establishes a lower electricity pricing structure for MG2, thus mini‑
mizing its operational expenditure. Between 08:00 and 09:00, MG2 engages in the resale of
electricity acquired from other MGs to the ESO, thereby capitalizing on arbitrage oppor‑
tunities while simultaneously satisfying its energy requisites. This serves as a compelling
illustration of MG2′s adeptness in optimizing energy utilization efficiency and realizing
economic advantages in the complex framework of multi‑level and multi‑subject energy
interactions.

From Figure 10, it becomes apparent that the hydrogen energy storage (HES), electric
heater (EH), and gas boiler (GB) collaborate harmoniously to maintain dynamic equilib‑
rium in terms of heat energy in MG2 during the dispatch cycle. Notably, GB and EH bear
substantial responsibility in offering heating services, whereas EHS combined heat and
power provision supplies heat during the windows of 10:00–11:00 and 13:00, alleviating
the heating burden on other devices in MG2. Simultaneously, between 15:00 and 23:00,
coinciding with the period of greater heat demand, the DR mechanism temporarily modi‑
fies user heating patterns, resulting in a reduction in heat load. This, in turn, facilitates the
equilibrium of heat supply and demand, thereby ensuring the steadfast operation of MG2.
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6. Conclusions
This article delves into the collaborative operational framework of ESO‑MGs, propos‑

ing a novel hybrid strategy for optimizing gaming in the context of ESO‑MGs. It conducts
an extensive analysis of the co‑operative operational dynamics of ESO and MGs across
various tiers and entities. Through an in‑depth analysis of energy exchange and profit al‑
location between ESO and MGs, the efficacy and economic advantages of the suggested
approach are duly substantiated. The ensuing observations can be drawn from the empir‑
ical analysis:
(1) ESO, employing co‑ordinated control of EVs and SES, delivers power procurement

and sales services to MGs. The hybrid game optimization strategy proposed herein
fosters systematic co‑ordination, the determination of electricity prices, and equitable
profit sharing across multiple hierarchical levels and entities. Therefore, it results in
the minimization of ESO expenditures, generating a profit of CNY 5544.4282, while
MGs incur costs amounting to CNY 25,806.8069.

(2) The inclusion of ESO in theMG environment, alongside comprehensive optimization
through the hybrid gaming mechanism, fosters an increased electricity relationship
amongMGs, thereby enhancing operational flexibility and bolstering system stability.
Moreover, this optimization leads to a reduction in the operational expenses of MGs.

(3) At the lower echelons of MG systems, profit distribution, grounded in non‑co‑
operative game theory, accentuates individual propensity towards reaping benefits,
thereby increasing the enthusiasm of MGs to partake in electricity sharing, albeit to
a certain extent.

(4) Through the implementation of precise dimension reduction and linearization meth‑
ods in the joint operational model of ESO‑MGs, leveraging KKT conditions and the
principles of strong duality theory, experimental results affirm the favorable solvabil‑
ity characteristics of the derived model.
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Appendix A

Table A1. Energy transfer parameter.

Parameter Name Values and Units

Pmax 2000 kW
Pmax

i,i2
1000 kW

Pgrid,max 8000 kW
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Appendix B
Modeling of EV Clusters
(1) Modeling of Single EV Cluster

Themodeling approach for a single EV cluster is defined by establishing its initial state
of charge, parking duration, and scheduled departure time, as illustrated in the subsequent
equation specific to a single EV cluster.

0 ≤ PEV
ch,j(t) ≤ rj ∗ PEV

ch,j,maxxEVch (t)
0 ≤ PEV

dis,j(t) ≤ rj ∗ PEV
dis,j,maxxEVdis(t)

rj ∗ sEVj,min ≤ sEVj (t) ≤ rj ∗ sEVj,max
sEVj (t) = sEVj (t − 1) + (PEV

ch,j(t)− PEV
dis,j(t))∆t

t ∈ [tEV,arrive
n , tEV,leave

n ]

(A1)

In the equation, PEV
ch,j(t) and PEV

dis,j(t) represent the charging and discharging power of
EV cluster j at time t, respectively. sEVj (t) denotes the battery capacity of EV cluster j for
the time t. PEV

ch,j,max and PEV
dis,j,max depict the maximum charging and discharging power of

EV cluster j, respectively. sEVj,min and sEVj,max indicate the lower and upper limits of EV cluster
j’s capacity, respectively, and represent the parking and departure times of EV cluster j,
respectively. xEVch (t) and xEVdis(t) symbolize the binary variable representing the charging
and discharging of EV cluster j at time t. rj expresses the empirical distribution of EV
cluster j.

(2) Modeling of Multiple EV Clusters in GES

For EV cluster j, the parking state xEVj can be introduced to unify the connection time
of the EV clusters to the same time‑feasible domain, making the EV clusters additive in the
time dimension.

PGES
dis (t) = ∑

j=1,j∈J
ζPEV

dis,j(t)xEVj (t), PGES
ch (t) = ∑

j=1,j∈J
(1 − ζ)PEV

ch,j(t)xEVj (t)

PGES
dis,max(t) = ∑

j=1,j∈J
PEV
dis,j,max(t)xEVj (t)

PGES
ch,max(t) = ∑

j=1,j∈J
PEV
ch,j,max(t)xEVj (t)

SGES(t) = ∑
j=1,j∈J

sEVj (t)

SGESmax = ∑
j=1,j∈J

sEVj,max

(A2)

In the equation, PGES
ch (t) and PGES

dis (t) represent the charging and discharging power
of GES at time t, respectively. PGES

ch,max(t) and PGES
dis,max(t) denote the maximum charging

and discharging power of GES at time t, respectively. SGES(t) depicts the capacity of GES
at time t. ζ ∈ {0, 1} indicates the binary variable for purchasing electricity from exter‑
nal sources (limiting the simultaneous purchase and sale of electricity by EV clusters). J
symbolizes the set of EV clusters.

Appendix C
Internal Device Operation Models in MGs
(1) Alkaline Electrolyzer Energy Conversion Model Pele,i(t) = nH2,i(t)GHHV + Hele,i(t)

ηele,i(t) =
nH2,i(t)GHHV

Pele,i(t)
(A3)
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In the equation, Pele,i(t) and Hele,i(t) represent the power consumption and heat gen‑
eration of the electrolyzer inside MGi during water electrolysis at time t. GHHV denotes
the high heating value of hydrogen in kJ/mol. nH2,i(t) and ηele,i(t) depict the hydrogen
production rate and efficiency of the electrolyzer at time t, respectively.

(2) Proton Exchange Membrane Fuel Cell Energy Conversion Model mH2,i(t)GHHV = Pfc,i(t) + Hfc,i(t)

ηfc,i(t) =
Pfc,i(t)

mH2,i(t)GHHV

(A4)

In the equation, Pfc,i(t) and Hfc,i(t) represent the power generation and heat genera‑
tion of the fuel cell inside MGi at time t, respectively. mH2,i(t) and ηfc,i(t) denote the hy‑
drogen consumption rate and efficiency of the fuel cell inside MGi at time t, respectively.

(3) Hydrogen Storage Tank Model

EH2
i (1) = EH2

i,0
EH2

i (t)− EH2
i (t − 1) = k1

(
nH2,i(t)− mH2,i(t)

)
EH2

i (T) = EH2
i (1)

EH2
min ≤ EH2

i (t) ≤ EH2
max

k1 = 3600ρH2R
T0
P0

(A5)

In the equation, EH2
i,0 represents the initial hydrogen mass stored in the hydrogen stor‑

age tank ofMGi. EH2
min and EH2

max denote the upper and lower limits of hydrogenmass in the
storage tank, respectively. EH2

i (t) and EH2
i (t − 1) depict the hydrogen mass in the storage

tank of MGi at time t and t− 1, respectively. k1 symbolizes the hydrogenmass conversion
coefficient for production/consumption. T0 and P0 express the temperature and pressure
at 0 degrees Celsius, respectively. ρH2 illustrates the density of hydrogen (kg/Nm

3).

(4) Electric Heating Device Model{
ηehPeh,i(t) = Heh,i(t)
0 ≤ Peh,i(t) ≤ Peh,max

(A6)

In the equation, Peh,i(t) and Heh,i(t) represent the power consumption and heat gen‑
eration of the electric heating device inside MGi. Peh,max denotes the upper limit of electric
heating power. ηeh depicts the energy conversion efficiency of the electric heating device.

(5) Gas Boiler Model {
MGB,i(t) =

HGB,i(t)
ηGB LNG

0 ≤ HGB,i(t) ≤ HGB,max
(A7)

In the equation, MGB,i(t) and HGB,i(t) represent the gas consumption volume and
heat generation power of the gas boiler insideMGi at time t, respectively. HGB,max denotes
the maximum heating power of the gas boiler. ηGB depicts the operating efficiency of the
gas boiler. LNG indicates the high heating value of gas.

Appendix D
The augmented Lagrangian function formulated for reducing the dimensions in the

master–slave game is presented in the subsequent equation.
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L =
I

∑
i=1

T
∑

t=1
ωelePele(t) + ωfuePfue(t) + ωehPeh(t) + ωwtPwt(t) + ωpvPpv(t)

−γsell,i(t)Pm,s,i(t) + γbuy,i(t)Pm,b,i(t) + ωserve(Pm,s,i(t) + Pm,b,i(t)) + λ1(Pe(t)
−Pe,load(t) + Pe,cut(t)− Pe,tran(t)) + λ2(Ph(t)− Ph,load(t) + Ph,cut(t)− Ph,tran)

+λ3
T
∑

t=1
Pe,tran(t) + λ4

T
∑

t=1
Ph,tran(t) + λ5(Pw(t) + Ppv(t) + Pfue(t) + Pm,b(t)−

Pm,s(t)− Pe(t)− Ptran(t)) + λ6(nex(Hele(t) + Hfue(t)) + Heh(t) + HGB(t)−
Ph(t)) + λ7(Pele(t)− nH2(t)GHHV − Hele(t)) + λ8(ηele(t)Pele(t)− nH2(t)GHHV)
+λ9(mH2(t)GHHV − Pfue(t)− Hfue(t)) + λ10(mH2(t)GHHV − Pfue(t)− Hfue(t))+
λ11(Heh(t)− ηehPeh(t)) + λ12(EH2(t)− EH2(t − 1)− k1(nH2(t)− mH2(t)))+
λ13(P1,2(t) + P2,1(t)) + λ14(P1,3(t) + P3,1(t)) + λ15(P2,3(t) + P3,2(t)) + u1(t)(−Pe,cut(t))
+u2(t)(Pe,cut(t)− λe,cutPe,load(t)) + u3(t)(−Ph,cut(t)) + u4(t)(Ph,cut(t)− λh,cutPh,load(t))+
u5(t)(−Pfue(t)) + u6(t)(Pfue(t)− Pfue,max) + u7(t)(−Peh(t)) + u8(t)(Peh(t)− Peh,max)+

u9(t)(−Pele(t)) + u10(t)(Pele(t)− Pele,max) + u11(t)(EH2
min − EH2(t)) + u12(t)(EH2(t)−

EH2
max) + u13(t)(−Pwire − P12(t)) + u14(t)(P12(t)− Pwire) + u15(t)(−Pwire − P23(t))+

u16(t)(P23(t)− Pwire) + u17(t)(−Pwire − P13(t)) + u18(t)(P13(t)− Pwire) + u19(t)(−γbuy(t))+
u20(t)(γbuy(t)− γbuy,max) + u21(t)(−γsell(t)) + u22(t)(γsell(t)− γsell,max) + u23(t)
(−HGB(t)) + u24(t)(HGB(t)− HGB1,max)

(A8)

The specific linearization process of Equation (20) is elaborated in Equations (A9)
and (A10).

Appendix E 

0 ≤ u1 ≤ Mv1; M(1 − v1) ≤ (−Pe,cut) ≤ 0
0 ≤ u2 ≤ Mv2; M(1 − v2) ≤ (Pe,cut − λe,cutPe,load) ≤ 0
0 ≤ u3 ≤ Mv3; M(1 − v3) ≤ (−Ph,cut) ≤ 0
0 ≤ u4 ≤ Mv4; M(1 − v4) ≤ (Ph,cut − λh,cutPh,load) ≤ 0
0 ≤ u5 ≤ Mv5; M(1 − v5) ≤ (−Pfue) ≤ 0
0 ≤ u6 ≤ Mv6; M(1 − v6) ≤ (Pfue − Pfue,max) ≤ 0
0 ≤ u7 ≤ Mv7; M(1 − v7) ≤ (−Peh) ≤ 0
0 ≤ u8 ≤ Mv8; M(1 − v8) ≤ (Peh − Peh,max) ≤ 0
0 ≤ u9 ≤ Mv9; M(1 − v9) ≤ (−Pele) ≤ 0
0 ≤ u10 ≤ Mv10; M(1 − v10) ≤ (Pele − Pele,max) ≤ 0
0 ≤ u11 ≤ Mv11; M(1 − v11) ≤ (EH2

min − EH2) ≤ 0
0 ≤ u12 ≤ Mv12; M(1 − v12) ≤ (EH2 − EH2

max) ≤ 0

(A9)



0 ≤ u13 ≤ Mv13; M(1 − v13)(−Pwire − P12) ≤ 0
0 ≤ u14 ≤ Mv14; M(1 − v14) ≤ (P12 − Pwire) ≤ 0
0 ≤ u15 ≤ Mv15; M(1 − v15) ≤ (−Pwire − P23) ≤ 0
0 ≤ u16 ≤ Mv16; M(1 − v16)(P23 − Pwire) ≤ 0
0 ≤ u17 ≤ Mv17; M(1 − v17) ≤ (−Pwire − P13) ≤ 0
0 ≤ u18 ≤ Mv18; M(1 − v18) ≤ (P13 − Pwire) ≤ 0
0 ≤ u19Mv19; M(1 − v19)(−γbuy) ≤ 0
0 ≤ u20Mv20; M(1 − v20) ≤ (γbuy − γbuy,max) ≤ 0
0 ≤ u21Mv21; M(1 − v21)(−γsell) ≤ 0
0 ≤ u22Mv22; M(1 − v22)(γsell − γsell,max) ≤ 0
0 ≤ u23(:, 1)Mv23(:, 1); M(1 − v23(:, 1)) ≤ (−HGB(:, 1)) ≤ 0
0 ≤ u24(:, 1)Mv24(:, 1); M(1 − v24(:, 1)) ≤ (HGB(:, 1)− HGB1,max) ≤ 0
0 ≤ u23(:, 2 : 3)Mv23(:, 2 : 3); M(1 − v23(:, 2 : 3)) ≤ (−HGB(:, 2 : 3)) ≤ 0
0 ≤ u24(:, 2 : 3) ≤ Mv24(:, 2 : 3); M(1 − v24(:, 2 : 3)) ≤ (HGB(:, 2 : 3)− HGB2,3,max) ≤ 0

(A10)

In this equation,M is defined as a sufficiently large constant, while v1–v24 are binary
variables introduced to facilitate the linearization process.
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Figure A3. The empirical distribution of EVs.

Table A2. ESO equipment parameters.

Device Parameter Name Values and Units Device Parameter Name Values and Units

Type I EV clusters
PEV
ch,1,maxPEV

dis,1,max: 6 kW
sEV1,min: 6.4 kWh

sEV1,max: 30.4 kWh
Type II EV clusters

PEV
ch,1,maxPEV

dis,1,max: 6 kW
sEV1,min: 8 kWh

sEV1,max: 38 kWh

Type III EV clusters
PEV
ch,1,maxPEV

dis,1,max: 10 kW
sEV1,min: 8 kWh

sEV1,max: 38 kWh
SES

PGES
ch,maxPGES

dis,max: 2500 kW
Eess: 5000 kW

ηSOCmin ηSOCmax : 0.2, 0.9

Appendix F

Table A3. EVs parameters.

Type of EV

Maximum
Charge and
Discharge
Power/Kw

Battery Ca‑
pacity/kWh

Initial
Amount of
Electric‑
ity/kWh

Arrival Time Departure
Time

Type I EV
clusters 6 32 16 09:00 17:00

Type II EV
clusters 6 40 25 08:00 16:00

Type III EV
clusters 10 40 20 09:00 17:00

Table A4. MGs equipment parameters.

Device Parameter
Name Values and Units Device Parameter

Name Values and Units

ELE ηele: 60%
Pele
max: 800 kW

FUE ηfue: 60%
Pfue
max: 650 kW

EH ηeh: 95%
Peh
max: 1050 kW

HST EH2
min: 30 kg

EH2
max: 300 kg

HHV GHHV: 282 kJ/mol GB HGB1,max: 600 kW
HGB23,max: 200 kW
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