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Abstract: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant
(B.1.1.529) underwent a substantial number of alterations, and the accompanying structural muta-
tions in the spike protein prompted questions about the virus’s propensity to evade the antibody
neutralization produced by prior infection or vaccination. New mutations in SARS-CoV-2 have raised
serious concerns regarding the effectiveness of drugs and vaccines against the virus; thus, identifying
and developing potent antiviral medications is crucial to combat viral infections. In the present study,
we conducted a detailed in silico investigation that involves molecular docking, density functional
(DFT) analysis, molecular dynamics (MD) simulations, and pharmacological analysis followed by
an in vitro study with the spike protein. Among fifty terpenes screened, cryptotanshinone and
saikosaponin B2 were found to be potent S1-RBD spike protein inhibitors, displaying considerable
hydrogen bond interactions with key binding site residues, significant binding affinity, and high
reactivity attributed to band gap energy. In addition, 100 ns molecular dynamics (MD) simulations
further substantiated these findings, showcasing the stability of the compounds within a biological
environment. With favorable pharmacokinetic properties and a low half inhibitory concentration
(IC50) of 86.06 ± 1.56 µM, cryptotanshinone inhibited S1-RBD of the SARS-CoV-2 Omicron variant.
Our findings account for in-depth research on cryptotanshinone as a SARS-CoV-2 inhibitor.

Keywords: spike protein; COVID-19; Omicron variant; terpenes

1. Introduction

Even if the COVID-19 global pandemic has officially ended after three years, acute
illness screening and management do not appear to be the end of the struggle against
COVID-19. There is a probable concern that the present vaccinations may not be sufficiently
effective against newly emerging strains of SARS-CoV-2 variants, and a considerable
proportion of people with weak immune systems may not acquire complete protection
following vaccination [1]. Thus, advancing the discovery of simple oral coronavirus
medications is imperative [2].

The further mutation of the Omicron variant, coupled with its high transmissibility
and infectivity, increased risk of reinfection, and potential impediments to immunothera-
pies, have raised concerns about therapeutic efficacy [3,4]; thus, any breakthrough toward
the development of potent antiviral medications is essential. The spike protein is primarily
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responsible for virus pathogenesis and organ tropism in SARS-CoV-2 [5], and the Omi-
cron variant exhibits a distinctive profile with 37 mutations in the spike protein, notably
15 within the receptor-binding domain (RBD) [6]. Omicron’s spike, specifically S1-RBD,
demonstrates a significant affinity for angiotensin-converting enzyme 2 (ACE-2), surpass-
ing that of other prototypes [7,8]. Therefore, antiviral medicines that specifically target the
spike protein are important for the cure of SARS-CoV-2 infections. The antiviral potential
of natural products (NPs) against numerous viruses including SARS-CoV-2 has been effec-
tive [9]. NPs possess structural diversity that exceeds that of synthetic chemicals and can
employ mechanisms of action via routes distinct from those of conventional treatments.
NPs, such as alkaloids, flavonoids, and terpenes have demonstrated antiviral effects by
strengthening the immune system and inhibiting viral entrance and replication [10,11]. Ter-
penes, naturally occurring isoprene-based small molecules found in a variety of medicinal
plants, exhibit chemical diversity with a multitude of medicinal actions [12], including the
ability to possess anti-malarial [13], anti-bacterial [14], anti-cancer [15,16], anti-neurological
disorder [17], anti-viral [18], anti-inflammatory [19], and anti-oxidant activity [20], anti-
cardiovascular disease effects [21,22],and antiviral properties against SARS-CoV [23] and
Human Immunodeficiency Virus 1 [24]. Consequently, the use of terpenes as prototypes for
developing effective pharmacotherapeutic agents might be an effective strategy. Regarding
SARS-CoV infections, terpenes reportedly impede the binding of the S1-RBD of SARS-
CoV-2 to the ACE-2 receptor, thereby limiting the virus’s capacity to enter host cells [25].
Considering the therapeutic potential of terpenes, we used computational methods to study
additional natural terpenes targeting S1-RBD of the SARS-CoV-2 Omicron variant followed
by an in vitro study.

Computational methodologies employing algorithm-based virtual screening methods
for rapidly evaluating enormous libraries of pharmaceuticals and natural compounds are
the most practical ways to gain insights into new phytoconstituents to develop antiviral
medications against SARS-CoV-2 [26]. This study includes the molecular docking of
50 terpenes with the S1-RBD of the Omicron variant. To assess the level of reactivity in each
protein’s binding pocket, DFT analysis based on the ELUMO, EHOMO, and band gap energy
of these terpenes was conducted, and the stability behavior of the identified potential drug
candidates with the target protein was confirmed by MD simulations. Considering the
MD simulation results and pharmacological properties, an in vitro assay of a potent drug
candidate was carried out. Thereby, the focus of this study is to assess effective medications
that inhibit the spike protein of SARS-CoV-2 using comprehensive in silico techniques and
further validation acquired through in vitro investigation.

2. Materials and Methods
2.1. Preparation of Ligand Database

The terpenes were selected considering their antiviral activities reported earlier
(Table S1) and were retrieved utilizing the PubChem (https://pubchem.ncbi.nlm.nih.
gov/) [27] and ChemSpider (http://www.chemspider.com/) [28] web servers in the .sdf
format. Subsequently, PyMOL software version 4.3 (https://pymol.org/) [29] was used to
convert them into the .pdb format. The structures of some terpenes are shown in Figure 1.
Utilizing the AutoDock tool, the ligands were prepared for molecular docking purposes
in the .pdbqt format. The chemical structure of the selected 50 terpenes is displayed in
Figure S1.

2.2. Preparation of Protein

Initially, the alterations in the S1-RBD spike protein of the Omicron variant were
identified from the literature [30]. The S1-RBD crystal structure (PDB ID: 7QNW) was
then acquired from the RCSB PDB webserver (https://www.rcsb.org/), and each amino
acid was examined individually, i.e., 15 mutations in S1-RBD were analyzed, confirmed,
and cleaned via removal of the water molecules, heteroatoms, and undesirable chains.
Subsequently, the AutoDock tool (version 1.5.6, Scripps Research Institute, La Jolla, CA,

https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.chemspider.com/
https://pymol.org/
https://www.rcsb.org/
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USA) was used to prepare the protein by adding Kollmann charges and polar hydrogen
atoms and was finally saved into the .pdbqt format (https://vina.scripps.edu/) [31].
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Figure 1. Structures of some of the naturally occurring terpenes used in the computational study.

2.3. Molecular Docking

The AutoDock tool was utilized to execute the molecular docking of all the selected
terpenes within a 60 × 60 × 60 Å grid box’s dimensions, created and centered on the key
residues responsible for S1-RBD interaction. The key interacting amino acid residues of
S1-RBD that are responsible for binding with ACE-2 [32,33] were chosen as a binding pocket
of S1-RBD for the docking purpose. Using BIOVIA Discovery Studio Visualizer 2020, each
generated 9 poses were analyzed. Based on the significant binding energy and substantial
hydrogen bond interactions in addition to the hydrophobic interactions with key residues
of S1-RBD, the compounds were screened. To reduce the possibility of false-positive
results, the docking protocol was verified by re-docking and superimposition methods
(RMSD ≤ 2 Å), which guaranteed the correctness and consistency of the docking results [34,35]

2.4. DFT Analysis

A DFT analysis was used to examine the reactivity and efficacy of saikosaponin
B2, cryptotanshinone, and luteolin (reference ligand) against the S1-RBD of the Omicron
variant. The 3-parameter Becke, Lee–Yang–Parr (B3LYP) correlation function was employed

https://vina.scripps.edu/
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to acquire the energies of the highest occupied molecular orbital (HOMO) and lowest
unoccupied molecular orbital (LUMO) [36]. The following equation estimates the band
energy gap (∆Egap):

∆Egap = ELUMO − EHOMO (1)

The ionization potential (IP) and electron affinity (EA) of the molecules were calculated
using the given equations [37]:

IP = −EHOMO (2)

EA = −ELUMO (3)

The following equations were used to determine the global softness (S), global hard-
ness (η), chemical potential (µ), and electronegativity (χ) [38]:

S = 1/η (4)

η = ∆E/2 (5)

χ = (I + A)/2 ≈ − µ (6)

ω = µ2/2η (7)

2.5. MD Simulation

The MD simulations for examining the stability of anticipated protein–ligand com-
plexes were executed using GROMACS 5.1.1, and the GROMOS 43a1 force field was
chosen [39]. The ligand topology parameters were generated using PRODRG [40]. For
solvation, a cubic box model (10 Å side length margin) was employed with the SPC water
model [41]. Utilizing the steepest energy minimization, the existing network of solvent
molecules, ions, and protein–ligand complexes was relaxed over 50,000 steps. To support
the initial phase of equilibrium by maintaining the constant particle number, volume,
and temperature (NVT), the subsequent steps involved using the Berendsen temperature
coupling technique. The Parrinello–Rahman barostat was then utilized to conduct the final
equilibrium phase, ensuring that the constant particle number, pressure, and temperature
(NPT) were maintained throughout the procedure. Ultimately, at 300 K, a production run
was performed for 100 ns. A comparative analysis was conducted utilizing the root mean
square deviation (RMSD), root mean square fluctuation (RMSF), the radius of gyration
(Rg), solvent accessible surface area (SASA), and H-bondings. The plots were created using
ORIGINPRO® 2023 and analyzed through the Xmgrace application.

2.6. Pharmacokinetics Study

The drug-resembling features of cryptotanshinone and luteolin were identified using
the SwissADME web tool (http://www.swissadme.ch/) [42]. Additionally, the pkCSM
(http://structure.bioc.cam.ac.uk/pkcsm) and ProTox II servers (https://tox-new.charite.
de/) [43,44] were used for absorption, distribution, metabolism, excretion, and toxicity
(ADMET) studies and toxicity class prediction.

2.7. In Vitro S1-RBD Assay

The in vitro S1-RBD assay was conducted following the procedure outlined in the
literature [45] with slight modifications. Initially, varying concentrations of 100 µL cryp-
totanshinone were loaded onto a 96-well plate coated plate with S1-RBD of SARS-CoV-2
Omicron variant (ACROBiosystems, Newark, DE, USA; Catalog No. RP-13), followed by
preincubation at 37 ◦C for 4 h. After three washes with a PBS buffer (pH 7.2), the plate was
blocked with a blocking solution (1% BSA and 0.05% Tween-20 in PBS) and again incubated
for 1 h. After three washes, 100 µL of hACE2 receptor protein (Novatein Biosciences Inc.,
Woburn, MA, USA; Catalog no.: PR-nCoV-4) (0.1–0.2 µg/mL) and binding buffer (0.1% BSA
in PBS, pH 7.2) were added and again incubated for 1 h. After three more washes, to each
well of the plate, goat anti-human IgG-Fc, HRP (Novatein Biosciences, Woburn, MA, USA;

http://www.swissadme.ch/
http://structure.bioc.cam.ac.uk/pkcsm
https://tox-new.charite.de/
https://tox-new.charite.de/
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Catalog no.: NB-A0101) (100 µL of 1:5000) was added and subjected to incubation at 37 ◦C
for 30 min. Finally, the reaction of 3,3′,5,5′-tetramethylbenzidine (TMB) was stopped by
adding a stop solution, and the absorption was measured at 450 nm. The following formula
was employed to evaluate the inhibitory activity:

Percent inhibition =

( Acontrol − Asample

Acontrol

)
× 100,

where Acontrol = absorbance of the control; Asample = absorbance of the sample.

3. Results and Discussion
3.1. Molecular Docking Analysis

With regard to the molecular docking, redocking strategies were utilized to ensure its
accuracy and robustness. The protocol was validated with an RMSD of 0.621 Å, which is less
than 2 Å, for the reference structure of luteolin [46]. Figure S2 illustrates the superimposition
of the reference structure. Following the docking protocol validation, 50 terpenes chosen for
their antiviral properties were docked using AutoDock tools with S1-RBD of the Omicron
variant. The binding energies for the docked compounds are shown in Table S2. Based
on the interactions with key amino acid residues of S1-RBD, particularly Lys 440 [47],
which plays an important role in immune evasion and establishing a strong binding with
ACE-2 through hydrogen bonds, and considering the binding scores, the docking results
revealed saikosaponin B2 and cryptotanshinone as effective inhibitors of the target protein.
Figures 2–4 represent the 2D and 3D interaction of cryptotanshinone, saikosaponin B2, and
the reference compound luteolin, respectively, with the target protein.
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Figure 2. (a) 2D representation of saikosaponin B2-S1-RBD complex and (b) surface view showing
binding pocket for ligand; red color shows polar bond region (hydrogen bond), and blue color shows
non-polar bond region (hydrophobic interactions); the inset on the right shows a 3D structure with
different interactions.

Hydroxyl groups of the oxane ring of saikosaponin B2 were found to show hydro-
gen bonds with Phe 374, Thr 376, Asn 437, and Tyr 508. In addition, the oxane ring’s
hydroxymethyl group showed an H-bond with Pro 373, Phe 374, and Lys 440 of the S1-RBD
with a −9.3 kcal/mol binding energy. Cryptotanshinone forms pi-pi T-shaped interactions
with Phe 374 and Phe 375 and pi-alkyl interaction with Trp 436 of S1-RBD. According to a
previous study by Ong et al., Trp 436 could have contributed to the inactivation of human
coronaviruses after absorption of UVC light by Trp 436 [48]. The keto group of cyclohexa-
dienedione of cryptotanshinone forms hydrogen bond interaction with the amine group
of Lys 440 with −7.6 kcal/mol binding energy. Lys 440 is one of the S1-RBD amino acid
residues involved in immune escape [49] and is responsible for establishing an effective
interaction between ACE-2 and S1-RBD of the Omicron variant [47]. It is noteworthy that
saikosaponin B2 and cryptotanshinone exhibit an H bond with Lys 440. Luteolin with
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significant S1-RBD interactions exhibited −7.1 kcal/mol binding energy. These compounds’
binding energies and hydrogen bonds in addition to other interactions with the S1-RBD
are displayed in Table 1. Moreover, by using these kinds of computational approaches
and theoretical strategies for molecular docking, it is feasible to create an explanatory
hypothesis regarding the mode of action of metabolites.
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Table 1. Binding affinity and the interacting amino acid residues of the S1-RBD spike protein of the
SARS CoV-2 Omicron variant with potent terpenes including reference ligand.

Ligands PubChem ID Binding Affinity
(kcal/mol) Amino Acid Residues with Different Interactions

Saikosaponin B2 21637642 −9.3 Hydrogen bond: Pro 373, Phe 374, Thr 376, Asn 437, Lys 440, Tyr 508
Van der Waals: Val 503, Gln 506, Asn 439, Lys 444, Ser 443, Val 445

Cryptotanshinone 160254 −7.6

Hydrogen bond: Lys 440
Pi-Pi T-shaped: Phe 374, Phe 375

Pi-Alkyl: Trp 436
Van der Waals: Phe 342, Asn 343

Luteolin 5280445 −7.1
Hydrogen bond: Trp 436, Leu 368

Pi-Pi Stacked: Phe 342
Van der Waals: Asp 339, Phe 374, Phe 375

3.2. DFT Analysis-Based Band Gap Results

The HOMO, LUMO, and band energy gap (ELUMO − EHOMO) are regarded as cru-
cial quantum parameters since they are used to determine how a molecule interacts with
other species either through protein–ligand interactions or ligand–ligand interactions [50].
Molecules having a low band energy gap are typically more polarizable and possess strong
chemical reactivity and low kinetic stability [51]. Pearson’s principle of maximum hardness
states that the compound with the lowest chemical hardness exhibits maximum reactiv-
ity [52]. Similarly, electronegativity indicates the electrophilic nature of compounds; the
higher the electronegativity, the greater the chemical reactivity with the target protein [53].
In addition, a compound with a higher value of both chemical potential and electrophilicity
index acts as a good electrophile rather than a nucleophile [54], indicating more reactivity
with catalytic protein.

In the current study, cryptotanshinone, saikosaponin B2, and luteolin (reference com-
pound) were selected for DFT analysis. The results show that cryptotanshinone has a low
band gap of HOMO and LUMO, i.e., 0.11842 kcal/mol compared to the reference com-
pound (∆Egap = 0.14692 kcal/mol), representing its effective reactivity and binding affinity
as demonstrated in Figure 5. However, saikosaponin B2 is comparatively less reactive
than the reference compound due to a high band gap energy (∆Egap = 0.18415 kcal/mol).
Moreover, the global hardness, softness, electrophilic nature, chemical potential, and elec-
trophilicity index that are measures of the reactivity (Table 2), indicate the strong potency
of cryptotanshinone toward the respective SARS-CoV-2 protein.

Table 2. DFT results in terms of the chemical reactivity descriptors.

Ligands ELUMO
(kcal/mol)

EHOMO
(kcal/mol)

Band Gap
Energy
(∆Egap)

(kcal/mol)

Ionization
Potential

(I)
(kcal/mol)

Electron
Affinity

(A)
(kcal/mol)

Global
Hardness

(η)
(kcal/mol)

Global
Softness

(S)
(kcal/mol)

electronegativity
(χ) (kcal/mol)

Chemical
Potential

(µ)
(kcal/mol)

Electrophilicity
Index (ω)
(kcal/mol)

Saikosaponin B2 −0.01839 −0.20254 0.18415 0.20254 0.01839 0.092075 10.8607 0.110465 −0.110465 0.06626
Cryptotanshinone −0.10747 −0.22589 0.11842 0.22589 0.10747 0.05921 16.8890 0.16668 −0.16668 0.23461

Luteolin −0.007595 −0.22287 0.14692 0.22287 0.07595 0.7346 13.61285 0.14941 −0.14941 0.011162
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3.3. MD Simulations Analysis

Utilizing MD simulations, the stability and dynamic behavior of both apoprotein
and protein–ligand complexes were investigated. Two terpenes (cryptotanshinone and
saikosaponin B2) complexed with S1-RBD having high binding affinity and significant
interactions were selected for the MD simulations. The structural changes, dynamic behav-
ior, and stability of terpenes and their derivatives within the S1-RBD target protein were
analyzed in terms of the RMSD, RMSF, Rg, SASA, and number of hydrogen bonds.

3.3.1. Root Mean Square Deviation (RMSD)

RMSD analysis provided access to the dynamic behavior in addition to the conforma-
tional and structural alterations within the backbone of the apoprotein and protein–ligand
complexes [55]. From the 100 ns simulation trajectory, the RMSD plots of the apoprotein and
protein–ligand complexes are displayed in Figure 6. The RMSD plots showed that both the
apoprotein and cryptotanshinone–protein complex gained stability after 40 ns, but a slight
fluctuation was observed within the backbone of the apoprotein after 75 ns, whereas the
luteolin–protein complex gained stability after 25 ns. On the other hand, the saikosaponin
B2–protein complex did not show considerable stability with a 100 ns simulation trajectory.
The simulation results reveal that the luteolin–protein and the cryptotanshinone–protein
formed the most stable complex in contrast to the apoprotein. The average RMSD value of
all the complexes along with the apoprotein is displayed in Table 3.

Table 3. Average values of the RMSD, RMSF, Rg, and SASA of the protein–ligand complexes.

Complex Cryptotanshinone–
Protein Complex

Saikosaponin
B2–Protein Complex Luteolin–Protein Complex Apoprotein

Average RMSD (nm) 0.3474 0.5433 0.2882 0.4101
Average RMSF (nm) 0.1465 0.1708 0.0943 0.1734

Average Rg (nm) 1.6846 1.7492 1.8122 1.8101
Average SASA (nm2) 95.1708 98.0475 105.0639 96.006
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3.3.2. Root Mean Square Fluctuations (RMSF)

The dynamic behavior occurring within the individual amino acids of the backbone of
the apoprotein and the protein–ligand complexes was assessed via RMSF analysis. Higher
RMSF values indicate more flexibility and mobility in particular protein regions, revealing
information about the loop and protease-labile portions of the protein [56]. Similarly,
the lower value of the RMSF indicates the secondary structure of proteins like helices
and sheets. Both the complexes and apoprotein showed similar types of fluctuations in
the same residues during the 100 ns simulation trajectory (Figure 7). The apoprotein,
cryptotanshinone–protein, luteolin–protein, and saikosaponin B2–protein complexes have
average RMSF values of 0.1734, 0.1465, 0.09434, and 0.1708 nm, respectively (Table 3). The
apoprotein and all the ligand–protein complexes exhibited fluctuations in similar amino
acid residues, which reveals that significant conformational changes do not occur in the
protein after forming the complex with ligands. Similarly, the protein attains a secondary
structure with helix and sheets after forming a complex with luteolin.

3.3.3. Radius of Gyration (Rg)

The Rg value was used to determine the stability and compactness of the apoprotein
and protein–ligand complexes. Similarly, the Rg value is also crucial in determining
the folded and unfolded nature of the apoprotein and protein–ligand complexes. The
structural compactness of the apoprotein and protein–ligand complexes was estimated via
MD simulation trajectory for evaluating the Rg value (Figure 8).

The apoprotein, cryptotanshinone–protein, saikosaponin B2–protein, and luteolin–
protein complexes have average Rg values of 1.8101, 1.6846, 1.7492, and 1.8122 nm, respec-
tively (Table 3). All the protein–ligand complexes along with the apoprotein exhibited
comparatively stable and consistent Rg values. The Rg values indicate all complexes formed
perfectly superimposed structures and had good stability. The Rg results reveal all three
protein–ligand complexes along with the apoprotein achieved a folded conformation and
compact structure during the 100 ns simulation trajectory. Similarly, cryptotanshinone
and saikosaponin B2 have a lower Rg value compared to luteolin indicating cryptotanshi-
none and saikosaponin B2 form a more compact structure by binding effectively with key
residues of the target protein.



Processes 2024, 12, 230 10 of 17Processes 2024, 12, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 7. RMSF plots of the apoprotein and the protein complexes of saikosaponin B2, crypto-
tanshinone, and luteolin. 

3.3.3. Radius of Gyration (Rg) 
The Rg value was used to determine the stability and compactness of the apoprotein 

and protein–ligand complexes. Similarly, the Rg value is also crucial in determining the 
folded and unfolded nature of the apoprotein and protein–ligand complexes. The struc-
tural compactness of the apoprotein and protein–ligand complexes was estimated via MD 
simulation trajectory for evaluating the Rg value (Figure 8).  

The apoprotein, cryptotanshinone–protein, saikosaponin B2–protein, and luteolin–
protein complexes have average Rg values of 1.8101, 1.6846, 1.7492, and 1.8122 nm, respec-
tively (Table 3). All the protein–ligand complexes along with the apoprotein exhibited 
comparatively stable and consistent Rg values. The Rg values indicate all complexes 
formed perfectly superimposed structures and had good stability. The Rg results reveal 
all three protein–ligand complexes along with the apoprotein achieved a folded confor-
mation and compact structure during the 100 ns simulation trajectory. Similarly, crypto-
tanshinone and saikosaponin B2 have a lower Rg value compared to luteolin indicating 
cryptotanshinone and saikosaponin B2 form a more compact structure by binding effec-
tively with key residues of the target protein. 

Figure 7. RMSF plots of the apoprotein and the protein complexes of saikosaponin B2, cryptotanshi-
none, and luteolin.

Processes 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 8. Rg plots of the apoprotein and protein complexes of saikosaponin B2, cryptotanshinone, 
and luteolin. 

3.3.4. Solvent Accessible Surface Area (SASA) 
The SASA parameter is used to assess the portion of the protein that is accessible to 

organic solvent and water. To evaluate the number of conformational changes that occur 
during interactions, the SASA parameter is crucial. The bound conformation of biomole-
cules possesses a greater SASA value compared to the unbounded one [57]. The lower 
value of SASA indicates that the formed complex has a compact structure, and less surface 
area is available for interaction with solvent molecules. The average SASA for the apopro-
tein, cryptotanshinone–protein, saikosaponin B2–protein, and luteolin–protein complexes 
were observed to be 96.006, 95.1708, 98.0475, and 105.0639 nm2, respectively (Table 3). The 
SASA plot reveals that the cryptotanshinone binds effectively to the binding site of the 
protein and forms a more compact structure compared to saikosaponin B2 and luteolin. 
The SASA plot of all three complexes along with the apoprotein is displayed in Figure 9. 

Figure 8. Rg plots of the apoprotein and protein complexes of saikosaponin B2, cryptotanshinone,
and luteolin.

3.3.4. Solvent Accessible Surface Area (SASA)

The SASA parameter is used to assess the portion of the protein that is accessible
to organic solvent and water. To evaluate the number of conformational changes that
occur during interactions, the SASA parameter is crucial. The bound conformation of
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biomolecules possesses a greater SASA value compared to the unbounded one [57]. The
lower value of SASA indicates that the formed complex has a compact structure, and less
surface area is available for interaction with solvent molecules. The average SASA for
the apoprotein, cryptotanshinone–protein, saikosaponin B2–protein, and luteolin–protein
complexes were observed to be 96.006, 95.1708, 98.0475, and 105.0639 nm2, respectively
(Table 3). The SASA plot reveals that the cryptotanshinone binds effectively to the binding
site of the protein and forms a more compact structure compared to saikosaponin B2 and
luteolin. The SASA plot of all three complexes along with the apoprotein is displayed in
Figure 9.
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3.3.5. Hydrogen Bond Analysis

Because hydrogen bonds are essential for substrate binding to proteins and they affect
many biological processes, including drug affinity, metabolism, adsorption, and specificity,
it is necessary to identify hydrogen bond patterns by tracking the dynamic fluctuations in
hydrogen bonds in all protein–ligand complexes. It was observed that the cryptotanshinone–
protein, saikosaponin B2–protein, and luteolin–protein complexes maintained hydrogen
bonding throughout the 100 ns simulation trajectory. The cryptotanshinone–protein com-
plex exhibited up to three hydrogen bonds, whereas the saikosaponin B2–protein complex
exhibited four hydrogen bonds, and the luteolin–protein complex exhibited up to five hy-
drogen bonds, as displayed in Figure 10.

3.4. Pharmacokinetic Analysis

To work effectively, a medicine should reach the target organ in an adequate amount
and be in a biologically active state for sufficient time to permit the biochemical responses
to occur [42]. Among a plethora of prediction models available, we relied on SwissADME,
ProTox II, and the pkCSM Web server for exploration of the pharmacological effects of cryp-
totanshinone and luteolin. Octanol/water partition coefficients (logP values) characterize
the lipophilicity of drugs, and according to Lipinski, a desirable lipophilicity range for com-
pounds advancing to Phase II clinical trials is a logP < 5 [58,59]. Both cryptotanshinone and



Processes 2024, 12, 230 12 of 17

luteolin demonstrated “drug-likeness” characteristics and followed Lipinski’s rule of five,
which refers to the probability of a molecule acting as an oral drug. The topological polar
surface area (TPSA) is a guideline to assess the capacity of a drug to permeate cells, and a
TPSA >140 Å2 denotes the poor permeability of drugs, while a TPSA ≤ 60 Å2 denotes high
intestinal permeability [60,61]. Cryptotanshinone has a TPSA of less than 60 Å2 revealing
high intestinal permeability, whereas luteolin has 111.13 Å2 TPSA revealing its moderate
intestinal permeability. The drug-likeness of cryptotanshinone and luteolin is displayed in
Table S3.
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Additionally, the pkCSM webserver aids in evaluating a compound’s potency, pharma-
cological characteristics, and related safety concerns [43]. The primary location for oral drug
absorption is the intestine, and an intestinal drug absorption of less than 30% is considered
inadequate. Cryptotanshinone and luteolin have suitable intestinal absorption owing to
their high intestinal absorption rates. Similarly, the water solubility of cryptotanshinone is
appropriate to be a drug candidate. To evaluate the absorption and bioavailability of oral
medications, the permeability of the colon cancer cell line (Caco-2) is assessed; an apparent
permeability coefficient (Papp) value > 8 × 10−6 cm/s is regarded as a good permeability
value [62]. ADMET analysis (Table S4) revealed cryptotanshinone as moderately water
soluble and with a low Caco-2 permeability, with no AMES toxicity and hepatotoxicity. To
prevent neurotoxicity, it is preferable for drugs with an action site that is unrelated to the
brain to not cross the blood–brain barrier (BBB) [63], and remarkably, cryptotanshinone
and luteolin do not cross the BBB since compounds with a logBB ≤ 0.3 are not adequately
disseminated to the brain. Drug metabolism is shown by ADMET’s scanning of the CYP
parameters [64]. The metabolism of cryptotanshinone in human liver microsomes may be
attributed to the metabolic enzymes CYP1A2, CYP2A6, and CYP3A4 [65].

Moreover, for analyzing the toxicities, the ProTox-II server is helpful, according to
which toxicity classes have been divided into six major groups: Class I and II (deadly if
ingested), Class III (poisonous if ingested), Class IV (harmful if ingested), Class V (may be
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harmful if ingested), and Class VI (non-toxic) [44]. Given that cryptotanshinone belongs to
toxicity class VI, it might be a more effective medication than luteolin. Considering the MD
simulation results, drug-likeness, and ADMET properties of cryptotanshinone, its S1-RBD
assay was performed for further validation.

3.5. S1-RBD Binding Assay

An enzyme-linked immunosorbent assay was used to evaluate the in vitro activity
of cryptotanshinone against the S1-RBD of the SARS-CoV-2 Omicron variant and hACE2.
The in vitro results revealed that cryptotanshinone effectively inhibited the interaction
of hACE2 with the S1-RBD protein with IC50 of 86.06 ± 1.56 µM (Figure S3). Our data
indicate that cryptotanshinone exhibits better inhibition compared to luteolin (having IC50
of 0.61 mM) [66], which further concludes that cryptotanshinone is an effective inhibitor of
the interaction of hACE2 and S1-RBD.

Overall, our findings reveal that, in contrast to luteolin, which has previously demon-
strated effectiveness through in silico [67] and in vitro analyses [66], cryptotanshinone
exhibits superior inhibition against the spike S1-RBD protein.

4. Conclusions

The present study evaluated the inhibitory potential of 50 naturally existing terpenes
against the spike protein of SARS-CoV-2, utilizing detailed in silico techniques followed
by an in vitro study. In-depth computational analyses, encompassing favorable binding
affinity and significant interactions with key residues, specifically Lys 440 and Trp 436,
through molecular docking, coupled with robust reactivity within the binding pocket of
the S1-RBD as determined by DFT analysis alongside stability of its complex analyzed
through RMSD, RMSF, Rg, SASA, and H-bond parameters of MD simulation underline
cryptotanshinone’s potential as a potent drug candidate against the spike protein. Ad-
ditionally, the promising pharmacokinetic properties further support cryptotanshinone’s
candidacy. The experimentally determined IC50 of 86.06 ± 1.56 µM validates the inhibitory
potential of cryptotanshinone against the S1-RBD of the SARS-CoV-2 Omicron variant.
These findings underscore the importance of further research to comprehensively explore
cryptotanshinone against SARS-CoV-2.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pr12010230/s1, Table S1: Terpenes with antiviral activities;
Table S2: PubChem ID and binding affinity of terpenes with S1-RBD of SARS CoV-2 Omicron
variant; Table S3: Drug-like properties of cryptotanshinone and luteolin; Table S4: ADMET profiles
of cryptotanshinone and luteolin; Figure S1: Structures of selected terpenes; Figure S2: Validation
of docking protocol. (a) First docked luteolin (green) (b) second docked luteolin (magenta) and
(c) superimposition of two docked luteolin (RMSD = 0.621 Å); Figure S3: Binding curve of hACE2
receptor to S1-RBD of SARS-CoV-2 in the presence of different concentrations of cryptotanshinone as
determined by ELISA. (See Refs. [68–82]).
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