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Abstract: Improving the hydrophilicity and mechanical strength of membranes in water treatment
applications remains challenging. In this study, modified vermiculite (VT-M) and a hydrophilic
polyvinylpyrrolidone (PVP) were introduced into a polyethyleneimine-functionalized polyvinylidene
fluoride composite membrane (PVDF/PEI) to prepare a comprehensively modified mixed-matrix
PVDF composite membrane adsorbent that exhibited high mechanical strength and excellent hy-
drophilicity. The modified composite membrane featured good tensile properties, with a maximum
tensile strength of 2.093 MPa, which was 2.5 times that of the PVDF/PEI membrane. After 7 s, the
water contact angle of the composite membrane decreased to 0◦, leading to significantly improved
hydrophilicity. The modified composite membrane exhibited excellent adsorption selectivity for
mercury ions, with a fitted maximum adsorption capacity of 807 mg/g. In a mixed-metal ion solution,
the selectivity of the membrane for Hg(II) ions was 1.2 × 105 times that for Cd(II) ions. The adsorption
mechanism of Hg(II) ions involved chelation, electrostatic attraction, and crystal growth processes.
The present work suggests the great potential of mixed-matrix PVDF composite materials in the
remediation of mercury-polluted water environments.

Keywords: mixed-matrix membrane; polyvinylidene fluoride; hydrophilicity; mechanical strength;
mercury removal

1. Introduction

Mercury (Hg) is an environmental pollutant that has existed in the atmosphere for
a long time and has global migration, and the toxicity of mercury has been known by
humans for centuries. The main sources of mercury pollution are coal burning, non-ferrous
metals, chlor-alkali production, and polyvinyl chloride manufacturing [1–3]. Reducing
emission concentrations is the most effective means to control mercury pollution [4–8].
Membrane adsorption has emerged as a promising water treatment method in the field
of environmental engineering owing to its easy recovery, simple operation, convenient
post-treatment, and potential for repeated use compared to traditional powder adsorption
methods [9–13].

Polyvinylidene fluoride (PVDF) is a homopolymer of vinylidene fluoride or a copoly-
mer of vinylidene fluoride with a small number of other fluorinated vinylidene monomers.
In addition to its piezoelectric, dielectric, and thermoelectric properties [14,15], PVDF also
has good chemical corrosion resistance, high temperature resistance, oxidation resistance,
radiation resistance, and other properties, which makes it suitable for membrane fabrica-
tion through the phase inversion method [16–20]. Owing to its hydrophobic properties,
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PVDF is susceptible to fouling when exposed to water contaminated with hydrophobic
organic substances such as organics, proteins, and microorganisms [21–24]. Notably, the
mechanical strength of the PVDF membranes is often reduced after functionalization and
modification. For example, a strong alkali can induce an elimination reaction in PVDF to
remove hydrogen chloride, leading to changes in the molecular structure of PVDF and,
consequently, a decrease in the mechanical strength of the membrane [25–28]. In addition,
a conventional PVDF membrane lacks active functional groups, limiting its application
in heavy metal adsorption. Therefore, improving the comprehensive properties of PVDF
membranes is vital for their practical application and is usually achieved through the
combination of the advantages of various materials.

Polyethyleneimine (PEI) is one of the most popular adsorbents in recent years. Due
to the large number of primary ammonia, secondary amine, and tertiary amine groups,
PEI has a high adsorption capacity and selectivity for metal ions. In addition, the amino
group has good reactivity and can be easily modified by functional modifications, which
broadens the application range of PEI. As an adsorbent, however, PEI has the disadvantages
of difficult operation, difficult separation and recovery, and easy loss because it exists in
a free molecular state form in the water phase. The shape and material that are more
suitable for environmental pollution control can be prepared by supporting PEI on the
substrate material through graft or crosslinking modifications. A PVDF/PEI polymer
composite membrane prepared in a previous study exhibited good heavy metal adsorption
performance but featured poor hydrophilicity [29]. Therefore, the PVDF/PEI membrane
was more susceptible to pollution by organic matter, proteins, microorganisms, etc., and
was limited in the application of water treatment. As a result, the hydrophilic modification
of PVDF/PEI membranes is of great significance.

Polyvinylpyrrolidone (PVP) is a water-soluble linear polyamide with a strong hy-
drophilic property and is widely used as an additive or modifier in the preparation of
hydrophilic materials [30–33]. Despite the high solubility of PVP in water, materials modi-
fied by PVP often exhibit unstable hydrophilicity. This instability can be addressed through
the addition of crosslinking agents to effectively prevent the loss of PVP during usage
and ensure persistent hydrophilic properties. In the present study, to further improve the
tensile strength and mechanical properties of the composite membrane, a certain amount
of vermiculite (VT) was added to prepare a mixed-matrix PVDF composite membrane co-
modified with VT and PVP. A semi-interpenetrating network structure was formed through
a crosslinking reaction, and PVP and VT were firmly fixed in the PVDF/PEI matrix. The
hydrophilicity, pure water flux, and tensile resistance of the membrane were characterized
by the contact angle, water flux, and a tension test, respectively. Through simulation exper-
iments, the adsorption kinetics and equilibrium isotherm were examined systematically to
investigate the adsorption mechanism and influencing factors for mercury ions.

2. Materials and Methods
2.1. Materials and Characterizations

Vermiculite with an average size of 8 mm was provided by Xinjiang Nonmetallic Min-
erals Xiazijie vermiculite Co., Ltd. (Korla, China) 3-aminopropyl triethoxysilane (APTES)
was purchased from Sigma-Aldrich (Shanghai, China). PVDF powder was provided from
Arkema (Shanghai, China). Details on the other reagents, instrumentation, and analytical
methods related to this study are provided in the Supporting Information. The reagents
used in all experiments were of analytical grade, and ultrapure water (18.2 MΩ·cm) was
used in all experiments.

2.2. Fabrication of Mixed-Matrix PVDF Adsorption Membrane

The mixed-matrix adsorbent was fabricated via a non-solvent-induced phase inversion
method [13]. First, APTES-modified vermiculite (VT-M) was prepared according to the
procedure reported in the literature [34]. Then, 2.0 g acidified vermiculite, 1.0 mL water,
and 2.0 mL APTES were added to 50 mL ethanol with ultrasonic dispersion for 30 min.
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The mixture was then agitated overnight on a magnetic stirrer at 45 ◦C. The solid was
centrifuged and washed repeatedly with ethanol and water to remove excess modifiers
and possible hydrolysates. The obtained sample was freeze-dried and named VT-M.
Subsequently, 20 mg of VT-M was dispersed in 22 mL of dimethylformamide through
sonication. Afterward, 2.7 g of PEI (50%) was fully dissolved in the above suspension at
70 ◦C, and the mixture was magnetically stirred. Then, 2.0 g of PVDF was added to the
mixture. After vigorous agitation for 1 h, 100 mg of PVP was added to the mixed solution.
Following 30 min of stirring, 350 µL of epichlorohydrin (ECH) was added dropwise, and the
mixture underwent a crosslinking reaction at 70 ◦C for 8 h to form a brown, viscous solution.

Furthermore, the as-prepared hot-casting solution was uniformly coated on a clean
glass plate using a 200 µm air-gap-thick coating rod. The coated glass plate was kept at
a constant temperature and humidity (30 ◦C, RH: 55%) for 30 s, followed by immersion
in an ultrapure water bath at room temperature. After 2 h, the nascent membrane was
removed from the glass plate and placed in a freshwater bath. The water was then replaced
every 4 h to remove any residual solvent. Finally, the membrane was freeze-dried. The
pristine PVDF/PEI membrane was prepared using the same procedure, except without the
addition of VT-M and PVP.

2.3. Adsorption Tests of Hg(II) Removal

Adsorption and desorption processes were conducted according to the guidelines
outlined in reference [29]. All details are provided in the Supporting Information section.

2.4. Tests of the Anti-Fouling Ability of Membranes

A circular diaphragm with a diameter of 3.2 cm was cut, moistened with ultrapure
water, and fixed in an ultrafilter cup (MSC50). The pure water flux (J) of the membranes was
measured at 0.1 MPa using Equation (1) [35]. Then, 0.1 g/L of the bovine serum albumin
(BSA) solution was filtered through the membrane. After 30 min of filtration, the water
flux of the contaminated membrane was tested using ultrapure water. The flux attenuation
coefficient is calculated as Equation (2) [36]:

J =
V

S × t
(1)

where J (L/m2·h) is the pure water flux at 0.1 MPa, V (L) is the volume of water penetrating
the membrane in time t, S (m2) is the membrane area penetrated by water, and t (h) is the
measured time.

m =
J0 − J1

J0
(2)

where J0 and J1 represent the pure water flux of the membrane before and after filtration
with a BSA solution, respectively. A smaller m value indicates a stronger anti-fouling
property of the membrane.

3. Results
3.1. Characterization
3.1.1. Morphology

Figure 1(a1–a4) were referenced from our previous research [29]. In the non-solvent-
phase transformation process, the formation of a dense top layer directly affected the
development of the supporting sub-layer with a porous structure. In the absence of PVP
and VT, an instantaneous liquid–liquid split phase occurred on the membrane surface,
resulting in the formation of a macroporous structure owing to the low viscosity of the
casting solution (Figure 1(a1)). These surface macropores facilitated the exchange between
the solvent in the casting solution and the non-solvent in the coagulation bath. In particular,
the solvent in the sub-layer diffused outward into the coagulation bath at a higher rate
than the non-solvent diffused into the membrane. Consequently, the liquid membrane
shrank, resulting in a thinner top layer and the formation of finger-like holes in the internal
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structure (Figure 1(a2–a4)). After introducing PVP and VT-M into the casting solution,
the viscosity of the casting solution increased, leading to a delayed liquid–liquid phase
separation. This resulted in an increased thickness and reduced pore diameter of the top
layer (Figure 1(b1)), which hindered the solvent outflow from the supporting sub-layer.
Moreover, the sub-layer exhibited a reduced pore diameter and an increased thickness
owing to the lower rate of liquid membrane shrinkage (Figure 1(b2,b4)). Additionally, the
membrane structure comprised numerous crosslinking PVP gel particles (Figure 1(b3)),
which contributed to the improved hydrophilicity and effectively prevented the loss of
PVP, thereby enhancing the hydrophilic stability. Figure 2 shows the photographs of the
mixed-matrix PVDF membrane before and after drying.
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layer surfaces (a3,b3), and cross-sections (a4,b4) of PVDF-based membranes. Scanning electron
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Figure 2. Photographs of the mixed-matrix PVDF membrane before drying (a) and after drying (b).

3.1.2. Membrane Hydrophilicity and Mechanical Strength

Generally, a smaller static water contact angle indicates higher surface hydrophilicity,
a faster dynamic contact angle change, and greater material wettability [37]. In the first 1 s,
the mixed-matrix PVDF membrane featured a static water contact angle of 34.4◦ (Figure 3b),
which is significantly smaller than that of the PVDF/PEI membrane at 100.6◦ (Figure 3a).
Figure 3c shows the dynamic contact angle curves of the samples. Notably, after 11 s of
drop aging, the contact angle of the PVDF/PEI membrane did not decrease, indicating its
water stability. In contrast, the water contact angle of the mixed-matrix PVDF membrane
decreased to 0◦ after 7 s. This significant change was attributable to the introduction of
hydrophilic PVP into the membrane matrix. A comparison of the pollution resistance
between the PVDF/PEI membrane and the mixed-matrix PVDF membrane is shown in
Table S1, with their m values being 0.96 and 0.11, respectively. A smaller m value indicates a
stronger anti-fouling property, suggesting that the mixed-matrix PVDF membrane exhibited
significantly higher excellent anti-fouling ability. Pure water fluxes of the PVDF/PEI
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membrane and the mixed-matrix membrane after different numbers of immersion and
drying processes are shown in Figure S1. The hydrophilic stability of the mixed-matrix
PVDF membrane was better than that of the PVDF/PEI membrane. At the beginning of the
experiment, some uncrosslinked PVP still existed in the membrane, and the water flux was
large. With the increase in the water permeation times, the uncrosslinked PVP dissolved
gradually from the membrane into the water, and the crosslinked PVP remained in the
membrane, maintaining the hydrophilicity of the membrane and leading to the stable water
flux of the mixed-matrix PVDF membrane.
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Figure 3. Static contact angles of the original membrane (a) and the modified membrane (b); dynamic
contact angle curves of the original and modified membranes (c).

As an adsorbent, the mixed-matrix PVDF membrane requires a certain level of mechan-
ical strength, particularly tensile strength, to reduce the risk of membrane breakage during
adsorption and solid–liquid separation processes. Therefore, the mechanical strength of
the as-prepared membranes was measured using a universal machine. The mixed-matrix
PVDF membrane modified by VT-M exhibited a maximum tensile stress of 2.093 Mpa,
which increased by 2.5 times that of the PVDF/PEI/PVP membrane (Figure 4). An inter-
action existed between VT-M nanoparticles and the polymer matrix. VT-M served as a
crosslinking point in the composite membrane to connect the polymer chain (similar to
reinforced concrete) and enhance the rigidity of the polymer chain. When a tensile stress
was applied to the polymer chain, the binding force was able to be transferred laterally to
the other polymer chain through the crosslinking point, at which point the impact energy
was dispersed and the mechanical strength was maintained. Therefore, breaking the bond
between VT-M and the polymer matrix required additional energy. Consequently, this led
to increased tensile strength and improved mechanical properties of the membrane.
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3.2. Adsorption Studies
3.2.1. Effects of Contact Time and Solution pH on Adsorption

The conditions were maintained at a constant initial concentration of 400 mg/L, 20 mg
of adsorbent per 20 mL, an adsorption temperature of 30 ◦C, and an adsorption time of
720 min. Figure 5a shows the analysis of the adsorption efficiency of the adsorbent on
Hg(II) ions over time. In the first 60 min, the adsorption amount of Hg(II) ions signifi-
cantly increased, reaching an adsorption rate of over 90%, and then the rate decreased.
Consequently, the equilibrium was reached after 720 min, and the adsorbent featured an
experimental equilibrium adsorption capacity of 396.4 mg/g. The solution acidity featured
a certain effect on the adsorption capacity of the complex (Figure 5b). The adsorption
rate of Hg(II) ions decreased with decreasing pH levels. As the pH level decreased from
5.5 to 1.5, the removal rate of Hg(II) ions decreased from 99.1% to 85.5%. This decrease
was attributable to the protonation of the active functional group at low pH, resulting
in higher positive charges on the adsorbent surface. During this time, excess protons in
the aqueous solution with a low pH competed with Hg(II) ions and occupied the active
sites. However, as the initial pH increased, the active functional group gradually lost
protons, and the competitive effect of protons weakened, thereby improving the adsorption
efficiency of Hg(II) ions. Figure S2 shows the zeta potentials of the mixed-matrix membrane
as a function of pH, and the pH at the zero potential point is 7.32. The adsorption efficiency
(E), however, still exceeded 85% at a pH of 1.5, indicating the superior acid resistance of the
membrane. Moreover, the adsorption involved is a synergistic effect of chemical chelation
and electrostatic attraction rather than a single effect. To prevent interference due to the
precipitation of the Hg(II) ions and its effect on the adsorption capacity, pH 5.5 was selected
for the follow-up study.
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Figure 5. Dependence of the adsorption capacity on contact time (a); effect of solution pH on Hg(II)
ion adsorption by the mixed-matrix membrane (b). (Except for the investigated parameters, others
were fixed at C0 = 400.0 mg/L, sample dosage = 20 mg/20 mL, temperature = 30 ◦C, pH = 5.5, and
adsorption time = 720 min).

3.2.2. Effects of Co-Existing Ions and Reusability

In a single metal ion solution (Figure 6a), the mixed-matrix membrane exhibited a
loading capacity of 396.4 mg/g for Hg(II) ions, which is significantly higher than that of
other metal ions. The decreasing order of adsorption capacity among various metal ions
was Hg(II) > Pb(II) > Cu(II) > Cd(II). Among the four common heavy metal ion mixed
solutions, the composite membrane exhibited adsorption capacities of 273.5, 46.3, 47.3, and
0.007 mg/g for Hg(II), Pb(II), Cu(II), and Cd(II) ions, respectively (Figure 6b). This indicates
that the membrane effectively removed Hg(II) ions and featured a certain removal capacity
for Pb(II) and Cu(II) ions. However, the membrane could not adsorb Cd(II) ions, and the
selectivity of the membrane for Hg(II) ions was 1.2 × 105 times that for Cd(II) ions (Table 1).
This property made the membrane suitable for the efficient and selective removal of Hg(II)
ions from wastewater containing Cd(II). Additionally, common anions (Cl−, NO3

−, SO4
2−,

H2PO4
−, and CH3COO−) were selected as co-existing anions to investigate their effect
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on the adsorption capacity of the adsorbent, with Na+ as the cation. The result is shown
in Figure 6c. NO3

− and CH3COO− featured no significant effect on the adsorption rate
of the membrane. However, Cl−, SO4

2−, and H2PO4
− led to a significant decrease in the

adsorption rate, with a maximum decrease of 20%. The mixed-matrix PVDF composite
membrane loaded with the Hg(II) ions can be desorbed using a 2 mol/L HCl solution
and then regenerated using a dilute NaOH solution successively. After five sorption–
desorption cycles, the adsorption rate of the membrane remained above 90% (Figure 6d).
The SEM mapping images of the mixed-matrix membrane after the adsorption of single
and mixed-metal ions are shown in Figures 7 and 8, respectively.
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Figure 6. Adsorption result of the single metal ion solution (a); adsorption result of the mixed-metal
ion solution (b); interference effect of anions (c) (concentration of anion: 50 mmol/L), reusability
test on the adsorption capacity of the mixed-matrix membrane for Hg(II)ions (d). (Except for the
investigated parameters, others were fixed at C0 = 400.0 mg/L, sample dosage = 20 mg/20 mL,
temperature = 30 ◦C, pH = 5.5, and adsorption time = 720 min.)

Table 1. Selectivity of the mixed-matrix membrane to Hg(II) ions in multi-component solution.

Ions C0 (mg/L) Ce (mg/L) Qe (mg/g) E (%) Kd (mL/g) KHg/Cd KHg/Cu KHg/Pb

Hg(II) 400.0 126.5 273.5 68.4% 2.16 1.2 × 105 16.6 16.6
Cd(II) 400.0 399.993 0.007 0.002% 1.8 × 10−5

Cu(II) 400.0 352.8 47.2 11.8% 0.13
Pb(II) 400.0 353.7 46.3 11.6% 0.13

3.3. Adsorption Mechanism

Pseudo-first-order [38], pseudo-second-order [39], and intraparticle diffusion mod-
els [40] were used to fit the test results. The results are shown in Figure 9a,b and Table 2.
The adsorption of Hg(II) ions by the mixed-matrix membrane was best fitted with the
pseudo-second-order kinetic model (R2 = 0.9997), and the fitted equilibrium adsorption
capacity predicted by this model was 400.0 mg/g, consistent with the experimental result.
This indicates that the adsorption process was controlled by the chemisorption mechanism,
which involves electron sharing or electron transfer between the adsorbent and the Hg(II)
ions. This was mainly due to the chelation of Hg(II) ions with the coordination atoms of the
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active functional groups on the membrane. The adsorption process comprised two steps. In
the first step, Hg(II) ions gradually moved from the solution to the surface of the membrane
and diffused into its interior structure. This phase lasted for ~60 min and can be classified
as the rapid absorption phase. In the second step, the adsorption rate decreased, and the
adsorption approached equilibrium owing to the low concentration of the remaining Hg(II)
ions in the solution. Therefore, the removal of Hg(II) ions by the membrane involved
physicochemical processes occurring at the adsorbent–solution interface (such as dissolu-
tion, chelation, ion exchange, and electrostatic attraction) and the diffusion process of Hg(II)
ions. The adsorption isotherm of Hg(II) ions on the mixed-matrix membrane is shown in
Figure 9c. With the increasing initial concentration of Hg(II) ions, the adsorption capacity of
the membrane correspondingly increased, eventually reaching saturation (Qe = 771 mg/g).
Even in a wide range of initial concentrations (0.05–1000 mg/L), the removal efficiency of
Hg(II) ions remained above 90%. To further elucidate the adsorption mechanism, Langmuir
and Freundlich models [41–43] were used to fit the experimental data, and the results are
shown in Table 3. The Langmuir model (R2 = 0.9620) featured a higher degree of fitting
than the Freundlich model (R2 = 0.8892) and yielded a fitted Qm value of 807 mg/g. This
indicates that the adsorption process involved monolayer adsorption with both adsorption
sites and adsorption energy [44–46].

Processes 2024, 11, x FOR PEER REVIEW 8 of 13 
 

 

  
Figure 7. SEM mapping images of the mixed-matrix PVDF membrane after adsorption of single 
metal ions. 

 
Figure 8. SEM mapping images (a) and EDS (b) of the mixed-matrix PVDF membrane after adsorp-
tion of mixed metal ions. 

Table 1. Selectivity of the mixed-matrix membrane to Hg(II) ions in multi-component solution. 

Ions C0 (mg/L) Ce (mg/L) Qe (mg/g) E (%) Kd (mL/g) KHg/Cd KHg/Cu KHg/Pb 
Hg(II) 400.0 126.5 273.5 68.4% 2.16 1.2 × 105 16.6 16.6 
Cd(II) 400.0 399.993 0.007 0.002% 1.8 × 10−5    
Cu(II) 400.0 352.8 47.2 11.8% 0.13    
Pb(II) 400.0 353.7 46.3 11.6% 0.13    

3.3. Adsorption Mechanism 
Pseudo-first-order [38], pseudo-second-order [39], and intraparticle diffusion models 

[40] were used to fit the test results. The results are shown in Figure 9a,b and Table 2. The 
adsorption of Hg(II) ions by the mixed-matrix membrane was best fi ed with the pseudo-
second-order kinetic model (R2 = 0.9997), and the fi ed equilibrium adsorption capacity 
predicted by this model was 400.0 mg/g, consistent with the experimental result. This in-
dicates that the adsorption process was controlled by the chemisorption mechanism, 
which involves electron sharing or electron transfer between the adsorbent and the Hg(II) 
ions. This was mainly due to the chelation of Hg(II) ions with the coordination atoms of 
the active functional groups on the membrane. The adsorption process comprised two 
steps. In the first step, Hg(II) ions gradually moved from the solution to the surface of the 
membrane and diffused into its interior structure. This phase lasted for ~60 min and can 
be classified as the rapid absorption phase. In the second step, the adsorption rate de-
creased, and the adsorption approached equilibrium owing to the low concentration of 

Figure 7. SEM mapping images of the mixed-matrix PVDF membrane after adsorption of single
metal ions.

Processes 2024, 11, x FOR PEER REVIEW 8 of 13 
 

 

  
Figure 7. SEM mapping images of the mixed-matrix PVDF membrane after adsorption of single 
metal ions. 

 
Figure 8. SEM mapping images (a) and EDS (b) of the mixed-matrix PVDF membrane after adsorp-
tion of mixed metal ions. 

Table 1. Selectivity of the mixed-matrix membrane to Hg(II) ions in multi-component solution. 

Ions C0 (mg/L) Ce (mg/L) Qe (mg/g) E (%) Kd (mL/g) KHg/Cd KHg/Cu KHg/Pb 
Hg(II) 400.0 126.5 273.5 68.4% 2.16 1.2 × 105 16.6 16.6 
Cd(II) 400.0 399.993 0.007 0.002% 1.8 × 10−5    
Cu(II) 400.0 352.8 47.2 11.8% 0.13    
Pb(II) 400.0 353.7 46.3 11.6% 0.13    

3.3. Adsorption Mechanism 
Pseudo-first-order [38], pseudo-second-order [39], and intraparticle diffusion models 

[40] were used to fit the test results. The results are shown in Figure 9a,b and Table 2. The 
adsorption of Hg(II) ions by the mixed-matrix membrane was best fi ed with the pseudo-
second-order kinetic model (R2 = 0.9997), and the fi ed equilibrium adsorption capacity 
predicted by this model was 400.0 mg/g, consistent with the experimental result. This in-
dicates that the adsorption process was controlled by the chemisorption mechanism, 
which involves electron sharing or electron transfer between the adsorbent and the Hg(II) 
ions. This was mainly due to the chelation of Hg(II) ions with the coordination atoms of 
the active functional groups on the membrane. The adsorption process comprised two 
steps. In the first step, Hg(II) ions gradually moved from the solution to the surface of the 
membrane and diffused into its interior structure. This phase lasted for ~60 min and can 
be classified as the rapid absorption phase. In the second step, the adsorption rate de-
creased, and the adsorption approached equilibrium owing to the low concentration of 

Figure 8. SEM mapping images (a) and EDS (b) of the mixed-matrix PVDF membrane after adsorption
of mixed metal ions.



Processes 2024, 12, 30 9 of 13

X-ray photoelectron spectroscopy (XPS) was used to further analyze the adsorption
mechanism (Figure 10). Compared with the sample before adsorption, the XPS spectrum of
the sample after adsorption featured significant signals of Hg (Hg 4f, Hg 4d, and Hg 4p,
Figure 10), confirming the successful loading of Hg(II) on the membrane. Figure 10b, c, and
d show the high-resolution spectra of C 1s, N 1s, and O 1s, respectively. After adsorption,
the binding energy peak of C 1s at 286.1 eV shifted to 286.3 eV, indicating the formation
of C=N, possibly due to the partial oxidation of amino groups. Additionally, the binding
energy position of N 1s changed, with the two peaks at 397.8 and 399.1 eV shifting to
398.7 and 399.7 eV, respectively, accompanied by a significant decrease in peak intensity.
This result confirmed the strong chelation between N and Hg. After coordination between
N and Hg, the electron cloud density of N atoms decreased, resulting in a higher binding
energy. Furthermore, the O 1 s spectrum featured a change, with peaks at 529.5 and 530.4 eV
combining into one peak at 530.5 eV. This indicates that the surface O of the composite
membrane was involved in the adsorption process of Hg(II) ions. The analysis results of
kinetics, isothermal adsorption, SEM, and XPS revealed that the adsorption of the Hg(II)
ion by the mixed-matrix membrane was a comprehensive process involving both chemical
and physical adsorption, including diffusion, chemical chelation, electrostatic attraction,
and crystal growth.
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Table 2. Kinetic parameters for the adsorption of Hg(II) onto the modified membrane.

Qf (mg/g) Pseudo-First-Order Model R2

402.0 k1 (1/min)
0.0283 0.9701

Qf (mg/g) Pseudo-second-order model R2

400.0 k2 [g/(mg·min)]
2.8 × 10−4 0.9997

θ Intraparticle diffusion model R2

138.5 kint [mg/(g·min1/2)]
13.04

0.3540

Table 3. Fitted parameters of the adsorption isotherms.

Qm (mg/g) Langmuir Model R2

807 bL (L/mg)
0.12 0.9620

KF Freundlich model R2

113 nF
0.34 0.8892
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4. Conclusions

A modified mixed-matrix membrane was successfully prepared for removing Hg(II)
ions from water. Owing to its numerous active functional groups, the membrane exhibited
excellent Hg(II) ion adsorption capacity, with a maximum fitted adsorption capacity of
807 mg/g. The adsorption mechanism of the Hg(II) ions involved the single-molecular-
layer adsorption of uniform active sites. Additionally, the introduction of PVP and VT-M
considerably improved the hydrophilic ability of the composite film and enhanced its
tensile resistance. Therefore, the mixed-matrix membrane adsorbent is considered an ideal
material for removing heavy metal ions from contaminated water.
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Lists of Symbols and Acronyms

Hg Mercury
PVDF Polyvinylidene fluoride
PEI Polyethyleneimine
PVP Polyvinylpyrrolidone
VT Vermiculite
Qe (mg/g) Adsorption capacity
E Adsorption efficiency
C0 and Ce Initial and equilibrium concentrations (mg/L)
V (L) Volume of the solution
m (g) Mass of the adsorbent
Kd The distribution coefficient
Qm Theoretical maximum adsorption capacity (mg/g)
Ce Final equilibrium mercury concentration (mg/L)
bL Langmuir constant (L/mg) related to the adsorption strength
KF Freundlich constant related to the adsorption strength (mg/g) (L/mg)
nF Freundlich constant related to the adsorption capacity
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