
Citation: Tkáčik, M.; Jadlovský, J.;

Jadlovská, S.; Jadlovská, A.; Tkáčik, T.

Modeling and Analysis of Distributed

Control Systems: Proposal of a

Methodology. Processes 2024, 12, 5.

https://doi.org/10.3390/pr12010005

Academic Editor: Hsin-Jang Shieh

Received: 9 October 2023

Revised: 8 December 2023

Accepted: 11 December 2023

Published: 19 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Modeling and Analysis of Distributed Control Systems:
Proposal of a Methodology
Milan Tkáčik 1, Ján Jadlovský 1, Slávka Jadlovská 2,*, Anna Jadlovská 1,* and Tomáš Tkáčik 1

1 Department of Cybernetics and Artificial Intelligence, Faculty of Electrical Engineering and Informatics,
Technical University of Košice, Letná 9, 042 00 Košice, Slovakia; milan.tkacik@tuke.sk (M.T.);
jan.jadlovsky@tuke.sk (J.J.); tomas.tkacik@tuke.sk (T.T.)

2 Department of Industrial Engineering and Informatics, Faculty of Manufacturing Technologies with the Seat
in Prešov, Technical University of Košice, Bayerova 1, 080 01 Prešov, Slovakia

* Correspondence: slavka.jadlovska@tuke.sk (S.J.); anna.jadlovska@tuke.sk (A.J.)

Abstract: A Distributed Control System is a concept of Network Control Systems whose applications
range from industrial control systems to the control of large physical experiments such as the ALICE
experiment at CERN. The design phase of the Distributed Control Systems implementation brings
several challenges, such as predicting the throughput and response of the system in terms of data-flow.
These parameters have a significant impact on the operation of the Distributed Control System, and
it is necessary to consider them when determining the distribution of software/hardware resources
within the system. This distribution is often determined experimentally, which may be a difficult,
iterative process. This paper proposes a methodology for modeling Distributed Control Systems
using a combination of Finite-State Automata and Petri nets, where the resulting model can be used
to determine the system’s throughput and response before its final implementation. The proposed
methodology is demonstrated and verified on two scenarios concerning the respective areas of ALICE
detector control system and mobile robotics, using the MATLAB/Simulink implementation of created
models. The methodology makes it possible to validate various distributions of resources without
the need for changes to the physical system, and therefore to determine the appropriate structure of
the Distributed Control System.

Keywords: Cyber-Physical System; Hybrid System; Finite-State Automata; Petri net; Distributed
Control System; Detector Control System

1. Introduction

A Distributed Control System (DCS) is a concept of Network Control Systems [1,2]
often used in industrial applications where the distribution of resources throughout the
system brings significant advantages. The DCS is characterized by a multi-level architec-
ture, where individual control levels are connected by different types of communication
networks, as described in the IEC 61499 [3,4]. In the case of the need to control and capture
data from the controlled process in real-time, it is necessary to consider the limitations
resulting from the communication and computing processes in terms of throughput and
response: these system parameters can have a significant impact on the quality and stability
of implemented control [5]. The estimation of these parameters may not be a trivial task in
the case of more complex Distributed Control Systems with a variable size of transmitted
data [6]. To estimate the throughput and response of a DCS, this system can be considered
a Cyber-Physical System (CPS) that can be modeled and analyzed using the concept of
Hybrid Systems [7,8]. Computing processes and communication networks within the DCS
can be considered as systems with discrete events, which are convenient to model using a
number of approaches including Finite-State Automata and Petri nets [9–11].

A prominent example of the implementation of Distributed Control Systems architec-
ture is the Detector Control System (ALICE-DCS) of the ALICE experiment (A Large Ion

Processes 2024, 12, 5. https://doi.org/10.3390/pr12010005 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0001-8308-7882
https://doi.org/10.3390/pr12010005
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12010005?type=check_update&version=1

Processes 2024, 12, 5 2 of 20

Collider Experiment) at the Large Hadron Collider (LHC) at the European Organization
for Nuclear Research (CERN). The ALICE experiment helps understand the formation of
the early universe by studying the quark–gluon plasma, i.e., the fifth state of matter that is
presumed to have filled the universe shortly after the Big Bang, when quarks and gluons
could move freely. In the LHC, the quark–gluon plasma is created by heavy ion collisions,
which are captured by a complex of ALICE experiment detectors [12]. The ALICE-DCS
ensures stable and safe operation of the detectors while ensuring the tasks of control, moni-
toring, and data acquisition from the detector electronics [13]. The ALICE experiment and
its detectors underwent modernization from 2018 to 2022, which also increased the mon-
itoring frequency of the detector electronics and caused an order-of-magnitude increase
in the amount of data that needs to be processed and distributed in real time [14]. Such
an increase in real-time data processing requirements would result in an unbearable load
on the supervisory control and data acquisition (SCADA) systems within the ALICE-DCS.
For this reason, a new software layer, ALICE Low-Level Front End Device (ALFRED),
co-developed by the authors of this paper as part of the ALICE experiment at the CERN LHC:
The study of strongly interacting matter under extreme conditions project, was included in the
control system of the detectors of the ALICE experiment. ALFRED ensures data processing
before being forwarded to the SCADA system while also creating an abstraction layer for
detector electronics from the point of view of the SCADA system [15]. The distribution of
software and hardware resources within the ALICE-DCS is mostly determined experimen-
tally, which is a lengthy and iterative process, which results in the need for modeling the
ALICE-DCS to determine the appropriate distribution of the used resources [16]. As similar
conclusions were drawn regarding the application of mobile robotics in the context of the
DCS infrastructure, which had been developed beforehand at the Center of Modern Control
Techniques and Industrial Informatics (CMCT&II) at the Department of Cybernetics and
Artificial Intelligence (DCAI) FEEI TU of Košice [17,18], an idea for a unified methodology
for modeling and analysis of Distributed Control Systems was conceived.

This paper is structured as follows. The first part presents the DCSs in the context
of CPSs, including the possibilities for their modeling. The following part describes the
infrastructures of DCSs, which are to be considered in scenarios to illustrate the methodol-
ogy. The last part of the paper is devoted to the step-by-step description of the proposed
methodology for modeling and analysis of Distributed Control Systems. The methodology
is subsequently applied to the control system of the detectors of the ALICE experiment and
to the application of mobile robotics in the context of the DCS at the CMCT&II.

2. Modeling of Distributed Control Systems—Fundamental Concepts

As is the case with a variety of processes, the numerous modeling methods for
Distributed Control Systems can be applied both in DCS design and subsequent anal-
yses [19,20]. Based on the idea that CPSs integrate the computational and physical part
of the system through the hierarchical layers of the DCS automation pyramid, we will
hereafter show how Distributed Control Systems can be represented as Cyber-Physical
Systems and subsequently modeled as systems with discrete events. Basic related concepts,
including Hybrid Systems formalisms and their pertinent applications, are introduced.

2.1. Cyber-Physical Systems and Hybrid Systems

Cyber-Physical Systems, a prominent technology of Industry 4.0 [21], are computer
systems whose physical processes are monitored, controlled, and coordinated by computing
and communication resources. From the conceptual point of view, CPSs can be defined
as an aggregate consisting of interconnected computational and physical processes [22].
An essential element of CPSs are networks that ensure communication between individual
computing processes, actuators, and sensors. A conceptual diagram of the structure of the
CPS can be seen in Figure 1.

Processes 2024, 12, 5 3 of 20

Physical
processes

Communication
network

Computational
processes

A1

A2

S2

S1

S3

Actuators Sensors

Figure 1. Schematic representation of the concept of a Cyber-Physical System.

Given the definition of the CPS, the Distributed Control System can also be considered
a Cyber-Physical System. The DCS is a computer control system for complex processes
in which individual control and coordination processes are distributed within the system
without a central control node [23]. Unlike a Centralized Control System, individual control
processes are located closer to the controlled processes, which makes the control system
more reliable and characterized by lower initial costs for implementation. At the same time,
supervisory systems monitor and supervise individual subsystems, thereby obtaining a
comprehensive overview of the state of controlled processes. The architecture of the DCS
is standardly classified into several control/functional levels, as specified by IEC 62264
(ANSI/ISA-95) [24], with some variations in level nomenclature and numbering in actual
implementations [25,26]. The hierarchical structure and nomenclature employed in the
DCS architecture at the CMCT&II [27] is illustrated in Figure 2.

0. Level of sensors and actuators

1. Technological level of control and regulation

2. SCADA/HMI level

3, 4. Information control level

5. Management control level

Figure 2. Considered multi-level architecture of Distributed Control Systems.

In terms of modeling, a Cyber-Physical System (and therefore the DCS it represents)
can be described using the concept of Hybrid Systems [7]. Hybrid Systems are characterized
by the fact that their behavior exhibits both continuous and discrete dynamics. A Hybrid
System can have one or more continuous dynamics, which can be described by differential
equations considering a continuous input u(t) and a continuous output y(t); thus, it is
possible to express the behavior of physical processes within the CPS. From the point of
view of the discrete dynamics of Hybrid Systems, it is possible to consider a discrete input
σ(t) and a discrete output w(t) of the system, which makes it possible to represent the
behavior of computing processes and communication networks of the CPS [28].

The continuous and discrete dynamics of the Hybrid System interact with each other,
as can be seen in Figure 3, where a continuous–discrete interface (event generator) transforms
a continuous signal into a discrete event that can result in a state transition subsystem of
discrete dynamics. At the same time, the discrete–continuous interface (injector) assigns a

Processes 2024, 12, 5 4 of 20

continuous value to the discrete signal, which acts as the input of the continuous dynamics
subsystem [29]. In order to model the discrete dynamics of a Hybrid System, it is possible
to use various formalisms [20], including the Finite-State Automata and Petri nets, which
will be subsequently characterized.

continuous-discrete
interface

Continuous dynamics

discrete-continuous
interface

Discrete dynamics

Figure 3. Interconnection of the continuous and discrete dynamics of Hybrid Systems.

2.2. Modeling of Systems with Discrete Events

Finite-State Automaton can be considered as a subset of Hybrid Automata, when we
do not take into account the continuous dynamics of the described system and only express
the discrete dynamics of the modeled system by the automata. Finite-State Automaton is
an abstract mathematical model describing a system that is in exactly one discrete state
from a finite set of states at a specific time. Supplying inputs to the automaton results in a
transition between individual states based on a defined transition function [30].

A Finite-State Automaton can be expressed as a tuple:

M = (Q, Σ, Init, R, F) (1)

where the individual elements have the following meaning:

• Q is a finite set of discrete states of the system taking the values {q1, q2, . . . , qm};
• Σ is a finite set of discrete system inputs taking on values {σ1, σ2, . . . , σn};
• Init ∈ Q is the initial state of the Finite-State Automaton;
• R : Q × Σ → Q determines the transition function, which determines the new state qs

based on the ordered pair of the previous state qi and the input σj;
• F ⊆ Q is the set of final states of the automaton (can be empty).

Figure 4 depicts an example of a graphical representation of a finite-state automaton
with three discrete states {q1, q2, q3}, two discrete inputs {σ1, σ2}, and the transition function
{R(qi, σj)} as defined for the individual ordered pairs of discrete states and inputs.

Figure 4. An example of a graphical representation of a Finite-State Automaton.

A Petri net is a mathematical model for describing systems with discrete events,
making Petri nets a suitable candidate for modeling DCSs from a data-flow perspec-
tive [11]. A Petri net can be described as a bipartite directed graph containing two types of
nodes—places and transitions. Individual places and transitions are connected by oriented

Processes 2024, 12, 5 5 of 20

edges, where two places or two transitions cannot be directly connected. Thus, there must
be a second type of node between two identical types of nodes. It is possible to place a
non-negative amount of tokens (a token representing, for example, transmitted data) on
each place, while tokens can be moved between places based on defined rules through
activated or fired transitions [31].

The formal definition of Petri nets can be expressed as a tuple

PN = (S, T, E, V, C, M0) (2)

where individual elements have the following meaning:

• S is a finite set of places taking on the values {s1, s2, . . . , sm};
• T is a finite set of transitions taking the values {t1, t2, . . . , tn}, where S ∩ T = ∅;
• E ⊆ (S × T) ∪ (T × S) is the set of edges (arcs), i.e., the union of sets of edges oriented

from places to transitions and from transitions to places;
• V : E → N∗ is a function for evaluating network edges with positive weights;
• C : S → N∗ ∪ ∞ is a function determining the maximum capacity of tokens in

individual places;
• M0 : S → N0 ∪ ∞ is the initial distribution of tokens in the network respecting the

constraint M0(p) ≤ C(p) for ∀p ∈ S.

To expand the application possibilities of Petri nets, several extensions have been
developed, such as Colored Petri nets, where it is possible to assign transmitted data to
individual tokens in form of a set of values (parameters). An example of a graphical
representation of a colored Petri net with four places {s1, s2, s3, s4}, two transitions {t1, t2},
and a sequence of parameters associated with the token and the edges can be seen in
Figure 5. Another extension of Petri nets are the Timed Petri nets, where time intervals can
be associated with individual transitions; this makes it possible to model the duration of
executed processes [32]. With the help of these extensions, it is possible to reliably model
the behavior of Distributed Control Systems in terms of data-flow through communication
interfaces and networks [33–35].

s1 t1 s2

s4

(d,t,w,r) (d,t,w,r)

1'(1,1)

(d,t)

t2 s3
(d,t,w,r) (d,t,w,r)

(d,t) = (d,t+1)

Figure 5. An example of a graphical representation of a Colored Petri net.

3. Considered Distributed Control Systems

The idea of developing a unified modeling methodology for Distributed Control
Systems was inspired by the mutual similarities at various levels of abstraction between
two different infrastructures of DCSs: the control system of the detectors of the ALICE
experiment at CERN, and a mobile robotics application as integrated in the DCS at the
CMCT&II at DCAI FEEI TU in Košice. We now present both original infrastructures.
The application of the proposed methodology on considered systems will be demonstrated
in two scenarios in Sections 4.1 and 4.2.

3.1. The Infrastructure of the Detector Control System of the ALICE Experiment

The ALICE experiment is a complex of 18 detectors at the Large Hadron Collider LHC
at CERN, which is focused on the study of ultrarelativistic collisions of heavy ions [36].
The particle collision site in the ALICE experiment is surrounded by multiple layers of

Processes 2024, 12, 5 6 of 20

particle detectors located inside an L3 magnet capable of developing a magnetic field with
an induction of 0.5 T. The resulting magnetic field ensures the curvature of trajectories of
new particles created during the collisions of accelerated beams.

Control and monitoring of the detectors of the ALICE experiment is handled by the
ALICE Detector Control System. Although the architectures of the control systems of the
individual detectors use the same concept, their structures are slightly different due to
the different detector electronics of the individual detectors [37]. As an example of the
architecture of the ALICE-DCS, the architecture of the Inner Tracking System (ITS) Detector
Control System is presented, which can be seen in Figure 6. The system structure can be
divided into four basic subsystems: the ALFRED Distributed System (Frontend System),
the Power System, the Detector Safety System, and the Cooling System [15].

O2 Data

DCS Data

ITS FLP

CRU

GBT

Readout Unit

Config.

Frontend
System

Power Power

Power
System

Power
Board

Control

Monitoring

In
te

rlo
ck

DSS

Te
m

p.

Cooling

Cooling
System

Cooling
System

Detector

Power & Bias

Configuration

Monitoring

Data (DAQ + DCS)

DCS

CAN

Figure 6. Architecture of the ITS Detector Control System [15].

The Detector Control System of the ALICE experiment can be generalized to the
multi-level DCS architecture presented in Section 2.1, while the individual components
of the ALICE-DCS can be classified into the appropriate control levels according to the
presented architecture, as can be seen in Figure 7. The lowest level includes the detector
electronics, while the next level ensures low-level control using control computers and
automata. The SCADA/HMI level ensures the coordination of control processes based on
data obtained from the configuration databases. The acquired ALICE-DCS and physics
data are stored in the archival databases, which are subsequently accessible using the
Worldwide LHC Computing Grid (WLCG) [38].

Level 4

Level 3

Level 2

Level 1

Level 0

GRID
Offline database
Data archiving

Online database
Data acquisition

and archiving
Detector

configuration

SCADA HMI
Modeling of

control processes

Control PC, PLC
Frontend devices

and data
preprocessing

Detectors, sensors
and actuators

Configuration
Database

Archival
Database

FMD T00 V00 PMD MTR MCH ZDC ACO SPD

SDD SSD TPC TRD TOF HMP PHS AD0 TRI LHC

Figure 7. The inclusion of the ALICE Detector Control System components in the concept of Dis-
tributed Control Systems.

Processes 2024, 12, 5 7 of 20

The introduced ALFRED System is also characterized by a distributed architecture [15],
where individual components can be classified into individual levels of the architecture of
the Distributed Control System, as can be seen in Figure 8. The lowest level of the ALFRED
System consists of the detector electronics, in the case of the ITS detector specifically the
Readout Unit and Power Board units. The Readout Unit provides data collection and
control of the detector itself, while they communicate with the higher level of ALICE Low-
Level Front End (ALF) and CANbus ALICE Low-Level Front End (CANALF) applications
via a gigabit optical line—GigaBit Transceiver (GBT), or by using the CAN bus interface [39].
The ALF and CANALF applications ensure the translation of messages into the Distributed
Information Management System (DIM) protocol format, through which communication
with the software layer of the Front End Device (FRED) [40] applications is carried out.

WinCC OA

FRED1 FRED2 FREDn

ALF1 ALF2 CANALF1 ALF4 ALF6CANALF2 ALFm...

...

Arch. DBConf. DB Conf. DB

Figure 8. Distributed architecture of the ALFRED system.

The FRED application creates an abstract view of the detector electronics for the
SCADA/HMI system from the point of view of unifying communication protocols and
message formats. At the same time, it relieves the SCADA/HMI system of computationally
intensive initial data processing and ensures the control and monitoring of detectors at
the lowest level [41]. The SCADA/HMI system WinCC OA ensures supervisory control
of detectors, which is implemented using Finite-State Machines (FSM) [42,43], and at the
same time provides the possibility of controlling detectors through operator panels [44].
The highest level of the ALFRED System is a layer of configuration and archiving databases,
which provide parameters for the configuration of detector electronics and archive physical
and technical data obtained during the course of the experiment [37].

3.2. Applications of Mobile Robotics within the DCS Infrastructure at the CMCT&II

A number of implementations involving mobile robots are characterized by a dis-
tributed architecture, where the components of a mobile robotics application can be clas-
sified into appropriate levels of a DCS according to the concept presented in Section 2.1.
These are often applications based on multi-agent systems, where several mobile robots
are used in one application [45]. In this case, each mobile robot is an independent func-
tional unit comprising lower levels of a DCS, including monitoring its surroundings and
controlling its own movement. Higher levels of control are usually implemented outside of
the mobile robots themselves, using external computers that provide supervisory control,
tactical planning, or data acquisition and archiving [46,47].

As a part of the DCS at the CMCT&II at DCAI FEEI TU in Košice, the application of
robotic soccer of the MiroSot category is considered [48]. The application uses differential-
drive two-wheeled mobile robots MiroSot and a supervisory computer ensuring the local-
ization of the robots and tactical planning of their movement in order to implement the
robot soccer game itself [49]. The robotic soccer application can be considered a Distributed

Processes 2024, 12, 5 8 of 20

Control System, and the individual components of the application can be integrated in the
DCS architecture (Section 2.1), according to Figure 9.

DC
micromotors

Rotary
encoders

Current
sensors

Gyroscope
Accelerometer

USB

Camera

Bluetooth

Microcontroller

Supervisory
computer

ODBC

Database

Level 0

Level 1

Level 2

Level 3

Figure 9. Inclusion of the robotic soccer application into the Distributed Control System concept at
the CMCT&II.

The Distributed Control System at the CMCT&II has also been considered in the
design and realization of the modular robotic platform ModBot, which is characterized
by high modularity in terms of configuring the robotic platform for the needs of specific
applications. Unlike MiroSot mobile robots, the ModBot platform can be easily expanded
with additional sensors and actuators using multiple slots for add-on modules, thanks to
which the ModBot platform can be used for a wide range of distributed applications [50].

4. Methodology for Modeling and Analysis of Distributed Control Systems

Design and implementation of Distributed Control Systems involve many challenging
issues including network-induced delays, time-varying topology or throughput, or in-
creasing complexity. The need to address these issues has stimulated the development of
methodologies for modeling, analysis and synthesis of DCSs [5], which standardly rely on
computational tools based on Java, C++ or MATLAB/Simulink [2,51,52] to perform simula-
tions based on resulting models. Such approaches have enabled model-based analyses of
DCS throughput/response time [53,54].

In this section, we present the proposed methodology for modeling and analysis
of Distributed Control Systems. The methodology represents a procedure for creating a
complex model of a DCS and subsequent analysis of the properties of the modeled system,
based on the considerations in Section 2. The models created using this methodology can
be easily implemented in MATLAB/Simulink using the Stateflow tool, which makes it
possible to perform simulations to determine the properties of the DCS, such as throughput
and response time, based on the supplied inputs (see illustrative scenarios). The intended
features of the methodology include universality, employment of the state-of-the-art soft-
ware tools, and various application areas. The methodology consists of three modules, each
of which is divided into several submodules, as shown in Figure 10.

Processes 2024, 12, 5 9 of 20

Methodology for modeling and analysis of Distributed Control Systems

 A1 - Decomposition of the Distributed Control System

 A2 - Analysis of communication interfaces A3 - Analysis of the functionality of system components

 M1 - Creation of a model of communication interfaces M2 - Creation of a model of system processes

 M3 - Identification of model parameters

 M4 - Completion of the system model

 E1 - Validation of the model with experimentally obtained data

 E2 - Evaluation of the model and creation of analyses

Analysis

Modeling

Evaluation

Verification of the requirements for the operation of the Distributed Control System

Figure 10. Methodology for modeling and analysis of Distributed Control Systems.

The process of obtaining the model of a DCS is preceded by an analysis of the system
in terms of structure, communication interfaces and the functionality of computational and
technical processes. This procedure is described by the Analysis module of the presented
methodology, which is divided into three submodules.

A1—Decomposition of the Distributed Control System—in this submodule, the DCS is
broken down into elementary communication interfaces and computational processes that
can be modeled independently.
A2—Analysis of communication interfaces—in this submodule, the functionality of com-
munication interfaces is analyzed in terms of data-flow and the principle of their operation.
A3—Analysis of the functionality of system components—in this submodule, the func-
tionality of computational and technical processes is analyzed in terms of data process-
ing complexity.

The second module of the methodology, Modeling, is composed of four submodules
and describes the creation of models for the system components analyzed in the first
module. Models of communication networks are created using Petri nets, and models of
computational and technical processes are created in form of Finite-State Automata.

M1—Creation of a model of communication interfaces—in this submodule, models of
communication networks are created in form of Colored Timed Petri nets, based on the
analysis of functionality performed in the A2 submodule.
M2—Creation of a model of system processes—in this submodule, models of computa-
tional and technical processes are created in form of Finite-State Automata, based on the
analysis of functionality performed in the A3 submodule.
M3—Identification of model parameters—in this submodule, parameters are determined
for the created models in terms of data transfer duration or subprocesses execution, based
on the analysis performed in submodules A2 and A3, and on the experimentally ob-
tained data.
M4—Completion of the system model—in this submodule, a complex model of the DCS,
composed of models of communication interfaces and computational processes, is created
and the interconnections of individual models are defined based on the analysis performed
in A1 submodule.

Processes 2024, 12, 5 10 of 20

The third and final module of the methodology, Evaluation, involves validation of the
created model and analysis of the properties of the Distributed Control System. The module
is composed of two submodules.

E1—Validation of the model with experimentally obtained data—in this submodule,
the resulting DCS model is validated against the experimentally obtained data. This
submodule can be applied if the DCS has already been implemented, at least in part.
E2—Evaluation of the model and creation of analyses—in this submodule, the resulting
model is used to perform analyses of the DCS, such as determining the throughput and
response of the system with respect to various supplied inputs.

The output of the proposed methodology is the analysis of the behavior of the DCS
at various inputs, which can be used to optimize the structure of the DCS, determine its
limits or modify the designed algorithms to achieve better results. The methodology is next
demonstrated in two scenarios based on the infrastructures described in Section 3.

4.1. Scenario 1: ALFRED System Throughput Modeling and Analysis

Scenario 1 deals with the modeling and analysis of the ALFRED System throughput.
In this scenario, four units of detector electronics (FEE), two instances of the ALF application,
one instance of the FRED server application, and a test client ensuring the generation of
sequences of commands for the detector electronics were considered. When creating the
model, parallel processing of data in the FRED application, as well as sequential data
transmission via the DIM interface are considered [41].

The block diagram of the modeled system can be seen in Figure 11, which defines the
decomposition of the modeled system based on the A1 submodule of the methodology.
At the same time, the system model is designed in such a way that it can be expanded
horizontally based on the number of parallel branches of the modeled system.

Client

FRED

ALF

FEE FEE FEEFEE

ALF

DIM Service

DIM RPC DIM RPC

GBT Link GBT Link

Figure 11. Block diagram of the modeled ALFRED System.

Figure 12 shows an example of a communication interface model created in Scenario 1,
which has resulted from the successive application of the A2 and M1 submodules of the pre-
sented methodology, using the formalism presented in (2) in Section 2.2. The model in the
form of a Colored Timed Petri net with the places and transitions denoted as {s1, s2, . . . , s29}
and {t1, t2, . . . , t21}, respectively, represents the functionality of the DIM RPC communica-
tion interface connecting the FRED application with two ALF applications. The routing
of tokens to the respective ALF applications is implemented based on the identification
number of the target application stored within the token (parameter d) and the restriction of
edge traversability based on the colored properties of the network. The remaining parame-
ters of the token data structure include t as the sequence identification number and r/w as
the number of read/write commands. The sequential sending of data over the network
between the client and the server is ensured through a loopback in the individual branches

Processes 2024, 12, 5 11 of 20

of the model. Transitions representing data transmission over the network (denoted as *)
also have an assigned duration which depends on the size of transmitted packets and is
determined according to the M3 submodule of the presented methodology, where the size
of the transmitted packet is stored within the token data structure.

s1
t1 s2 t2* s3 t3 s4

s6s7 t6 s8

s9s10s11s12
s13

s14 s15

t7t8t9*t10

t11

t5 s5

SEQ

SEQ SEQ SEQ SEQ

SEQSEQSEQSEQ

SEQ

ACK ACK ACK

ACK ACK

1'(1,1) 1'(1,1)

1'(1,1)

if d == 1
(d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r)

(d,t)(d,t)(d,t)=(d,t+1)(d,t)

(d,t,w,r) (d,t,w,r)

(d,t)

(d,t)=(d,t+1)

(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)

(d,t) (d,t) (d,t)=(d,t+1) (d,t)

s16 t13* s17 t14 s18

s20s21 t16 s22

s23s24s25s27

s28 s29

t17t18t19*

t21

t15 s19

SEQ SEQ SEQ SEQ

SEQSEQSEQSEQ

ACK ACK ACK

ACK ACK

1'(2,1) 1'(2,1)

1'(2,1)

if d == 2
(d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r) (d,t,w,r)

(d,t)(d,t)(d,t)=(d,t+1)(d,t)

(d,t,w,r) (d,t,w,r)

(d,t)

(d,t)=(d,t+1)

(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)(d,t,w,r)

(d,t) (d,t) (d,t)=(d,t+1) (d,t)

if d == 2
(d,t,w,r)

t12

t20

Figure 12. The model of data transfer through the DIM RPC interface between the client and two
servers in the form of a Petri net (based on the formalism declared in (2) in Section 2.2).

In Scenario 1, the computational and technical processes of the ALFRED System are
modeled in the form of Finite-State Automata, consecutively based on the A3 and M2 sub-
modules of the methodology. The elements of the resulting models were determined based
on the formalism presented in (1) in Section 2.2. As an example, we show the model of the
communication queue functionality of the FRED application, whose graphic representation
is shown in Figure 13. The communication queue of the FRED application ensures data
processing and communication with one detector electronics unit; several communication
queues run in the FRED application in parallel, depending on the number of serviced units.
The Finite-State Automaton of the communication queue of the FRED application contains
several states, qi, i = 1, . . . , 8, representing different stages of processing and forwarding of
command sequences, from receiving a request from a supervisory system, to generating
sequences, sending requests to the ALF application, to processing responses to sequences
and generating a response for the supervisory system. At the same time, the transition func-
tions R(qi, σj), i = 1, . . . , 8, j = 1, . . . , 12, which define the movement between the states of
the automaton based on the selected state-input pair, have an assigned transition duration
according to the M3 submodule based on the number of commands in the sequence, which
is the emulated time required for data processing by the FRED application.

Processes 2024, 12, 5 12 of 20

Figure 13. Model of the functionality of the communication queue of the FRED application in the
form of a Finite-State Automaton (based on the formalism declared in (1) in Section 2.2).

Figure 14 depicts how the created models of communication interfaces and computa-
tional processes are interconnected into the resulting model of the ALFRED System, created
in the M4 submodule. The connection of individual models (in the form of Petri nets and
Finite-State Automata) is realized by a mechanism where a token at the output point of the
Petri net results in the activation of the input of the Finite-State Automaton, and vice versa,
i.e., the activation of the input of the Finite-State Automaton results in the addition of a
token into the entry point of the corresponding Petri net model. The resulting model was
implemented in the MATLAB/Simulink environment using the Stateflow tool with the
purpose of using it to perform simulations with different input data.

Client

DIM
service

DIM
RPC

FRED

GBT
link

GBT
link

DIM
service

ALF

FEE

GBT
link

GBT
link

FEE

GBT
link

GBT
link

ALF

FEE

GBT
link

GBT
link

FEE

Figure 14. Linking subsystem models within the ALFRED System model.

Figure 15 shows a comparison of the duration of execution of command sequences for
detector electronics on four parallel links based on a simulation model with experimentally
obtained data, which was performed based on the E1 submodule of the presented methodol-
ogy. The created model shows the mean absolute percentage error MAPEALFRED = 11.36%

Processes 2024, 12, 5 13 of 20

and the coefficient of determination R2
ALFRED = 0.9997, so it can be concluded that the

model correctly mirrors the behavior of the real system.

1 10 100 200 500 800 1000 2000 5000 8000 10,000

Number of SWT commands in sequence

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
u

ra
ti

o
n

 o
f

e
x
e
c
u

ti
o

n
 o

f
th

e
 s

e
q

u
e
n

c
e
 [

s
]

Execution time of parallel ALFRED model sequences (4 links)

Real system

Model output

Figure 15. Comparison of the response of the parallel ALFRED System model with experimentally
obtained data.

Using the created model, it was also possible to obtain a prediction of the maximum
throughput of the parallel ALFRED System according to the E2 submodule of the pro-
posed methodology. The maximum throughput was calculated depending on the number
of commands for the detector electronics within one sequence ranging from 1 to 20,000.
The maximum throughputs obtained from the simulation model can be seen in Figure 16,
which shows a comparison of the duration of parallel and sequential execution of sequences
on four links. The highest throughput of the system is achieved with sequences of 2000 com-
mands, worth approximately 17,900 commands per second for each link. For comparison,
when executing commands sequentially, it is possible to achieve a maximum throughput of
about 5500 commands per second on four links.

1 10 100 200 500 800 1000 2000 5000 8000 10,000 20,000

Number of SWT commands in sequence

0

2000

4000

6000

8000

10,000

12,000

14,000

16,000

18,000

N
u

m
b

e
r

o
f

p
ro

c
e
s
s
e
d

S
W

T
c
o

m
m

a
n

d
s

p
e
r

s
e
c
o

n
d

[s
1
] Comparison of maximum throughput of sequential and parallel ALFRED System (4 links)

Sequential execution

Parallel execution

Figure 16. Comparison of throughputs of sequential and parallel ALFRED Systems based on simula-
tions using the created models.

4.2. Scenario 2: Modeling and Analyzing the Response of a Mobile Robotics Application

Scenario 2 is dedicated to applying the presented methodology to the mobile robotics
setup based on MiroSot mobile robots in the context of a DCS at the CMCT&II at DCAI
FEEI TU in Košice.

Based on the A1 submodule, the decomposition of the modeled process was performed:
the modeled application is composed of four MiroSot mobile robots that communicate

Processes 2024, 12, 5 14 of 20

with the Comm (communication) Module running on the supervisory computer through
the Bluetooth SPP interface [49], as shown in Figure 17. The Comm Module ensures the
translation of messages between the ROS and Bluetooth SPP interfaces, where each MiroSot
mobile robot is assigned one of the parallel running communication queues [55] within the
Comm Module. The Control Module can be used to generate trajectories for mobile robots,
but in terms of Scenario 2, the Control Module is considered a test client that generates
messages for mobile robots.

Mirosot Mirosot Mirosot Mirosot

Comm
Module

BL SPPBL SPP BL SPP

Control
Module

ROS

Figure 17. Block diagram of the modeled mobile robotics application.

Figure 18 shows a model of data transfer through the ROS interface in the form of
a Colored Timed Petri net created based on A2 and M1 submodules of the proposed
methodology. It is an example of a communication interface model created in Scenario 2
using the formalism presented in (2) in Section 2.2, with the places and transitions denoted
as {s1, s2, . . . , s6} and {t1, t2, . . . , t5}, respectively. In addition to the identification number
of the message (parameter t), the transmitted tokens contain information about the size of
the data transmitted through the interface (parameter s), as well as the identification number
of the target robot (parameter d), based on which the messages are routed within the Comm
Module. The loopback in the model represents the confirmation of received messages,
since the ROS interface uses the TCP protocol to transfer data over the network. At the
same time, transitions representing data transmission over the network have an assigned
duration based on the size of the data being transmitted and on the experimentally obtained
information on how the duration of the transmission depends on the size of the transmitted
message, which is performed based on the M3 submodule of the presented methodology.

s1 t1 s2 t2* s3 t3 s4

t5 s5s6

MSG MSG MSG MSG

ACK ACK

(t,d,s) (t,d,s) (t,d,s) (t,d,s) (t,d,s) (t,d,s)

1'(1,1)

(t) (t)=(t+1) (t) (t)

Figure 18. The model of data transfer through the ROS interface in the form of a Petri net (based on
the formalism declared in (2) in Section 2.2).

As an example of a model of computational processes in Scenario 2, we show the
model of the functionality of the Communication Module queue in the form of a Finite-State
Automaton shown in Figure 19, which is created based on the A3 and M2 submodules
of the presented methodology. Models of computational processes were created in the
form of Finite-State Automata according to (1) in Section 2.2. The states qi, i = 1, . . . , 4 of
the Finite-State Automata represent the stages of data forwarding between the Control
Module and the MiroSot mobile robot, such as receiving a request from the Control Module,

Processes 2024, 12, 5 15 of 20

translating the request, sending the request to the mobile robot, or generating a response for
the supervisory system. The transition functions R(qi, σj), i = 1, . . . , 4, j = 1, . . . , 6 between
individual states, based on the selected state–input pairs, have an assigned duration based
on the size of the transmitted messages, while the dependence between the time required
to process the message and the size of the transmitted messages was determined based on
experimentally obtained data within the M3 submodule of the presented methodology.

Figure 19. Model of the functionality of the queue of the Communication Module in the form of a
Finite-State Automaton (based on the formalism declared in (1) in Section 2.2.

Figure 20 shows how the communication interface models (in the form of Petri nets)
and computing processes (in the form of Finite-State Automata) are connected to form the
complex model according to the M4 submodule, which is realized by the same mechanism
as in Scenario 1. The resulting model was implemented in the MATLAB/Simulink environ-
ment using the MATLAB Stateflow tool to determine the properties of the modeled DCS
with respect to various input data.

Mirosot Mirosot Mirosot Mirosot

BL SPP BL SPP BL SPP BL SPP BL SPP BL SPP BL SPP BL SPP

Comm Module

ROS ROS

Control Module

Figure 20. Connection of subsystem models within the mobile robotics application model.

In Figure 21, we can see a comparison of the response of the real system and the results
of simulations using the created model for messages of different sizes forwarded between
the Control Module and MiroSot mobile robots according to the E1 submodule of the pre-
sented methodology. Validation of the model includes parallel communication with four
mobile robots, where processes that are executed sequentially are also considered in the out-
put of the model. Various message sizes from 1 to 2000 bytes were used in the experiment.
From a statistical point of view, the created model shows the mean absolute percentage error
MAPERAPP = 7.45% and the coefficient of determination R2

RAPP = 0.9994, which means
that the model the behavior of the real robotic application system is appropriately mirrored.

Processes 2024, 12, 5 16 of 20

1 10 100 200 500 800 1000 2000

Size of messages sent [B]

0

0.05

0.1

0.15

0.2

0.25

0.3

N
e
c
e
s
s
a
ry

 t
im

e
 f

o
r

c
o

m
m

a
n

d
 e

x
e
c
u

ti
o

n
 [

s
]

Robot application command execution time (4 robots)

Real system

Model output

Figure 21. Comparison of the response of the robotic application model with experimentally obtained data.

Based on the E2 submodule, the implemented model can also be used to determine
the maximum throughput of the modeled system in order to determine the optimal size of
the transmitted data to achieve the highest possible throughput. The sizes of sent messages
from 1 to 10,000 bytes were used as model inputs, where Figure 22 shows the dependence
of the maximum throughput of the system on the size of transmitted messages. As can be
seen, the robotic application system using four units of MiroSot mobile robots achieves the
highest throughput when sending messages of size 2000 bytes, when the throughput is
approximately 7000 bytes per second.

1 10 100 200 500 800 1000 2000 5000 8000 10,000

Size of messages sent [B]

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

e
r

o
f

b
y
te

s
tr

a
n

s
fe

rr
e
d

p
e
r

s
e
c
o

n
d

[B
.s

1
]

Throughput of the robotic application system (4 robots)

Figure 22. Throughput of the robotic application system based on simulations using the cre-
ated model.

The results of these simulations can be used in the design of the composition of
sent messages and control algorithms at the supervisory level to achieve the highest
possible performance and reliability of the system. At the same time, it is possible to
assess the suitability of the implemented control algorithm with regard to the possible
minimum sampling period, which is based on the predicted response and throughput of
the modeled system.

5. Conclusions

This paper presents the proposed methodology for modeling and analysis of Dis-
tributed Control Systems. The methodology is composed of three modules, each of which
is divided into several submodules. The methodology includes steps for the analysis
of communication interfaces and computational processes, and presents the method of

Processes 2024, 12, 5 17 of 20

creating models of DCS components in the form of Colored Timed Petri nets and Finite-
State automata. The result of the applied methodology is the analysis of the DCS, such
as predictions of throughput and response of the system with respect to various input
factors. The models created by applying this methodology can also be used to optimize the
structure or functionality of the investigated DCS. Various optimization methods can be
used to optimize the structure of the investigated system, where evolutionary algorithms
can be mentioned as an example.

The presented methodology was demonstrated and verified on two scenarios: first
of these was devoted to the application of the methodology onto the ALFRED distributed
system, which is a subsystem of the control system of the detectors of the ALICE experiment
at CERN, and the second one dealing with the application of mobile robotics in the context
of the DCS at the CMCT&II at DCAI FEEI TU in Košice. Thanks to the universality
of the proposed methodology, it can be applied to Distributed Control Systems with
different structures. The created models have been implemented in the MATLAB/Simulink
environment using the Stateflow tool. By performing simulations using created models, it
is possible to predict the behavior of the system at different inputs.

FSM models are used in the ALICE experiment at the SCADA/HMI system level for
the purpose of monitoring and control of the detectors. However, there was no methodology
for determining the distribution of individual processes within the system, since this
distribution was only determined experimentally. The proposed methodology enables the
existing models to be extended by the behavior of communication interfaces, thanks to
which it is possible to determine the appropriate distribution of software and hardware
resources within the system based on the system throughput requirements. The results
obtained by applying the proposed methodology were used during the modification of the
FRED system, which was first tested at the development workplace created as part of the
project ALICE experiment at the CERN LHC and then implemented within the Detector
Control System of the ALICE experiment.

Author Contributions: Conceptualization, M.T. and J.J.; methodology, M.T. and A.J.; software, M.T.
and T.T.; validation, M.T., S.J. and T.T.; formal analysis, M.T. and S.J.; investigation, J.J.; resources, M.T.
and T.T.; data curation, M.T.; writing—original draft preparation, M.T.; writing—review and editing,
M.T., S.J. and A.J.; visualization, M.T. and T.T.; supervision, J.J., A.J. and S.J.; project administration, J.J.;
funding acquisition, J.J. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the project ALICE experiment at the CERN LHC: The study
of strongly interacting matter under extreme conditions (ALICE TUKE 0410/2022 (2022–2026)).

Data Availability Statement: Data are contained within the article.

Acknowledgments: This work was supported by the Slovak Research and Development Agency
under the contract No. APVV-19-0590 and by the project KEGA 022TUKE-4/2023 granted by the
Ministry of Education, Science, Research and Sport of the Slovak Republic. This work is also the result
of project implementation: ALICE experiment at the CERN LHC: The study of strongly interacting
matter under extreme conditions (ALICE TUKE 0410/2022 (2022–2026)).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

u(·) input of the system with continuous dynamics
σ(·) input of the system with discrete dynamics
y(·) output of the system with continuous dynamics
w(·) output of the system with discrete dynamics
x(·) state of the system with continuous dynamics
q(·) state of the system with discrete dynamics

Processes 2024, 12, 5 18 of 20

X set of states of the system with continuous dynamics
Q set of states of the system with discrete dynamics
Σ set of inputs to the system with discrete dynamics
R set of transitions of the finite state automaton
S set of places in the Petri net
T set of transitions in the Petri net
s(·) Petri net place
t(·) Petri net transition
ALF ALICE Low-Level Front End
ALFRED ALICE Low-Level Front End Device
ALICE A Large Ion Collider Experiment
ALICE-DCS ALICE Detector Control System
CANALF CANbus ALICE Low-Level Front End

CERN
Conseil Européen pour la Recherche Nucléaire
(European Organization for Nuclear Research)

CMCT&II Center of Modern Control Techniques and Industrial Informatics
CPS Cyber-Physical System
DCS Distributed Control System
DIM Distributed Information Management System
FRED Front End Device
GBT GigaBit Transceiver
HMI Human–Machine Interface
ITS Inner Tracking System
LHC Large Hadron Collider
RPC Remote Procedure Call
SCADA Supervisory Control And Data Acquisition
SWT Single Word Transaction (communication protocol)
WinCC OA SCADA and HMI system from Siemens

References
1. Zhang, X.M.; Han, Q.L.; Ge, X.; Ding, D.; Ding, L.; Yue, D.; Peng, C. Networked control systems: A survey of trends and

techniques. IEEE/CAA J. Autom. Sin. 2019, 7, 1–17. [CrossRef]
2. Tomura, T.; Uehiro, K.; Kanai, S.; Yamamoto, S. Developing simulation models of open distributed control system by using object-

oriented structural and behavioral patterns. In Proceedings of the Fourth IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, ISORC 2001, Magdeburg, Germany, 2–4 May 2001; pp. 428–437.

3. Koziorek, J. Design of Distributed Control Systems Based on New International Standards. IFAC Proc. Vol. 2004, 37, 313–318.
[CrossRef]

4. Cruz, E.M.; Carrillo, L.R.G.; Salazar, L.A.C. Structuring Cyber-Physical Systems for Distributed Control with IEC 61499 Standard.
IEEE Lat. Am. Trans. 2023, 21, 251–259. [CrossRef]

5. Ge, X.; Yang, F.; Han, Q.L. Distributed networked control systems: A brief overview. Inf. Sci. 2017, 380, 117–131. [CrossRef]
6. Himrane, O.; Ourghanlian, A.; Amari, S. Response time evaluation of industrial-scale distributed control systems by discrete

event systems formalisms. Int. J. Control 2022, 95, 419–431. [CrossRef]
7. Yang, Y.; Zhou, X. Cyber-physical systems modeling based on extended hybrid automata. In Proceedings of the 2013 International

Conference on Computational and Information Sciences, Shiyang, China, 21–23 June 2013; pp. 1871–1874.
8. Sanfelice, R.G. Analysis and design of cyber-physical systems. A hybrid control systems approach. In Cyber-Physical Systems:

From Theory to Practice; CRC Press: Boca Raton, FL, USA, 2016; pp. 1–29.
9. Oumeziane, F.A.; Ourghanlian, A.; Amari, S. Analysis of distributed control systems using timed automata with guards and

dioid algebra. In Proceedings of the 2020 25th IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Vienna, Austria, 8–11 September 2020; Volume 1, pp. 1373–1376.

10. Li, J.; Wang, Z.; Sun, L.; Wang, W. Modeling and analysis of network control system based on hierarchical coloured Petri net and
Markov chain. Discret. Dyn. Nat. Soc. 2021, 2021, 9948855. [CrossRef]

11. Baldellon, O.; Fabre, J.C.; Roy, M. Modeling distributed real-time systems using adaptive petri nets. Actes 1re J. 2011, 10, 7–8.
12. ALICE Collaboration. Performance of the ALICE experiment at the CERN LHC. Int. J. Mod. Phys. A 2014, 29, 1430044. [CrossRef]
13. Augustinus, A.; Chochula, P.; Jirdén, L.; Lechman, M.; Rosinský, P.; Pinazza, O.; De Cataldo, G.; Kurepin, A.; Moreno, A.

Computing architecture of the ALICE detector control system. In Proceedings of the 13th International Conference on Accelerator
and Large Experimental Physics Control Systems—ICALEPCS 2011, Grenoble, France, 10–14 October 2011; pp. 156–158.

14. Bernardini, M.; Foraz, K. Long shutdown 2@ lhc. CERN Yellow Rep. 2016, 2, 290.

http://doi.org/10.1109/JAS.2019.1911651
http://dx.doi.org/10.1016/S1474-6670(17)30703-6
http://dx.doi.org/10.1109/TLA.2023.10015217
http://dx.doi.org/10.1016/j.ins.2015.07.047
http://dx.doi.org/10.1080/00207179.2020.1798021
http://dx.doi.org/10.1155/2021/9948855
http://dx.doi.org/10.1142/S0217751X14300440

Processes 2024, 12, 5 19 of 20

15. Jadlovský, J.; Jadlovská, A.; Jadlovská, S.; Oravec, M.; Vošček, D.; Kopčík, M.; Čabala, J.; Tkáčik, M.; Chochula, P.; Pinazza,
O. Communication architecture of the Detector Control System for the Inner Tracking System. In Proceedings of the 16th
International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS 2017), Barcelona, Spain,
8–13 October 2017; p. THPHA208. [CrossRef]

16. Chochula, P.; Augustinus, A.; Kurepin, A.; Lechman, M.; Pinazza, O.; Rosinský, P.; Kurepin, A.N.; Pinazza, O. Operational
experience with the ALICE Detector Control System. In Proceedings of the 14th International Conference on Accelerator & Large
Experimental Physics Control Systems, ICALEPCS, San Francisco, CA, USA, 6–11 October 2013.

17. Jadlovská, A.; Jadlovská, S.; Vošček, D. Cyber-physical system implementation into the distributed control system. IFAC-
PapersOnLine 2016, 49, 31–36. [CrossRef]

18. Jadlovský, J.; Čopík, M.; Papcun, P. Distributed Control Systems (In Slovak: Distribuované Systémy Riadenia); Elfa: Košice,
Slovakia, 2013.

19. Frey, G.; Hussain, T. Modeling techniques for distributed control systems based on the IEC 61499 standard-current approaches
and open problems. In Proceedings of the 2006 8th International Workshop on Discrete Event Systems, Ann Arbor, MI, USA,
10–12 July 2006; pp. 176–181.

20. Luder, A.; Hundt, L.; Biffl, S. On the suitability of modeling approaches for engineering distributed control systems. In
Proceedings of the 2009 7th IEEE International Conference on Industrial Informatics, Cardiff, UK, 23–26 June 2009; pp. 440–445.

21. Jazdi, N. Cyber physical systems in the context of Industry 4.0. In Proceedings of the 2014 IEEE International Conference on
Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania, 22–24 May 2014; pp. 1–4.

22. Rajkumar, R.; Lee, I.; Sha, L.; Stankovic, J. Cyber-physical systems: The next computing revolution. In Proceedings of the Design
Automation Conference, Anaheim, CA, USA, 13–18 June 2010; pp. 731–736.

23. Holecko, P. Overview of distributed control systems formalisms. Adv. Electr. Electron. Eng. 2011, 7, 253–256.
24. IEC 62264-1:2013 Enterprise-Control System Integration—Part 1: Models and Terminology. Available online: https://webstore.

iec.ch/publication/6675 (accessed on 8 October 2023).
25. Martinez, E.M.; Ponce, P.; Macias, I.; Molina, A. Automation pyramid as constructor for a complete digital twin, case study: A

didactic manufacturing system. Sensors 2021, 21, 4656. [CrossRef] [PubMed]
26. Apilioğulları, L. Digital transformation in project-based manufacturing: Developing the ISA-95 model for vertical integration.

Int. J. Prod. Econ. 2022, 245, 108413. [CrossRef]
27. Jadlovský, J.; Jadlovská, A.; Jadlovská, S.; Čerkala, J.; Kopčík, M.; Čabala, J.; Oravec, M.; Varga, M.; Vošček, D. Research activities

of the center of modern control techniques and industrial informatics. In Proceedings of the 2016 IEEE 14th International
Symposium on Applied Machine Intelligence and Informatics (SAMI), Herlany, Slovakia, 21–23 January 2016; pp. 279–285.

28. Van Der Schaft, A.J.; Schumacher, J.M. An Introduction to Hybrid Dynamical Systems; Springer: London, UK, 2000; Volume 251.
29. Lunze, J.; Lamnabhi-Lagarrigue, F. Handbook of Hybrid Systems Control: Theory, Tools, Applications; Cambridge University Press:

Cambridge, UK, 2009.
30. Hopcroft, J.E.; Motwani, R.; Ullman, J.D. Introduction to automata theory, languages, and computation. ACM Sigact News 2001,

32, 60–65. [CrossRef]
31. Reisig, W. Petri Nets: An Introduction; Springer: Berlin/Heidelberg, Germany, 2012; Volume 4.
32. Jamro, M.; Rzonca, D.; Rząsa, W. Testing communication tasks in distributed control systems with SysML and Timed Colored

Petri Nets model. Comput. Ind. 2015, 71, 77–87. [CrossRef]
33. Moreno, R.P.; Tardioli, D.; Salcedo, J.L.V. Distributed implementation of discrete event control systems based on Petri nets.

In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008;
pp. 1738–1745.

34. Ghanaim, A.; Borges, G.A.; Frey, G. Estimating delays in networked control systems using colored Petri nets and Markov chain
models. In Proceedings of the 2009 IEEE Conference on Emerging Technologies & Factory Automation, Palma de Mallorca, Spain,
22–25 September 2009; pp. 1–6.

35. Louis, B.D.S.; Alain, O.; Saïd, A. Delays Evaluation of Networked Control System Switches using Timed Coloured Petri Nets and
Formal Series. In Proceedings of the 2023 IEEE 28th International Conference on Emerging Technologies and Factory Automation
(ETFA), Sinaia, Romania, 12–15 September 2023; pp. 1–8.

36. Aamodt, K.; Quintana, A.A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Rinella, G.A.;
Ahammed, Z.; et al. The ALICE experiment at the CERN LHC. J. Instrum. 2008, 3, S08002. [CrossRef]

37. Chochula, P.; Jirden, L.; Augustinus, A.; De Cataldo, G.; Torcato, C.; Rosinsky, P.; Wallet, L.; Boccioli, M.; Cardoso, L. The ALICE
detector control system. IEEE Trans. Nucl. Sci. 2010, 57, 472–478. [CrossRef]

38. Huang, J.; Saiz, P.; Betev, L.; Carminati, F.; Grigoras, C.; Schreiner, S.; Zhu, J. Grid Architecture and implementation for ALICE
experiment. In Proceedings of the 16th International Conference on Advanced Communication Technology, Pyeongchang,
Republic of Korea, 16–19 February 2014; pp. 253–261.

39. Moreira, P.; Ballabriga, R.; Baron, S.; Bonacini, S.; Cobanoglu, O.; Faccio, F.; Fedorov, T.; Francisco, R.; Gui, P.; Hartin, P.; et al. The
GBT Project. In Proceedings of the Topical Workshop on Electronics for Particle Physics, Paris, France, 21–25 September 2009;
pp. 342–346. [CrossRef]

40. Gaspar, C.; Dönszelmann, M.; Charpentier, P. DIM, a portable, light weight package for information publishing, data transfer and
inter-process communication. Comput. Phys. Commun. 2001, 140, 102–109. [CrossRef]

http://dx.doi.org/10.18429/JACoW-ICALEPCS2017-THPHA208
http://dx.doi.org/10.1016/j.ifacol.2016.12.006
https://webstore.iec.ch/publication/6675
https://webstore.iec.ch/publication/6675
http://dx.doi.org/10.3390/s21144656
http://www.ncbi.nlm.nih.gov/pubmed/34300396
http://dx.doi.org/10.1016/j.ijpe.2022.108413
http://dx.doi.org/10.1145/568438.568455
http://dx.doi.org/10.1016/j.compind.2015.03.007
http://dx.doi.org/10.1088/1748-0221/3/08/s08002
http://dx.doi.org/10.1109/TNS.2009.2039944
http://dx.doi.org/10.5170/CERN-2009-006.342
http://dx.doi.org/10.1016/S0010-4655(01)00260-0

Processes 2024, 12, 5 20 of 20

41. Tkáčik, M.; Jadlovský, J.; Jadlovská, S.; Koska, L.; Jadlovská, A.; Donadoni, M. FRED—Flexible Framework for Frontend
Electronics Control in ALICE Experiment at CERN. Processes 2020, 8, 565. [CrossRef]

42. Gaspar, C.; Franek, B. Tools for the automation of large distributed control systems. IEEE Trans. Nucl. Sci. 2006, 53, 974–979.
[CrossRef]

43. De Cataldo, G.; Augustinus, A.; Boccioli, M.; Chochula, P.; Jirdén, L.S. Finite state machines for integration and control in ALICE.
In Proceedings of the ICALEPCS07, Knoxville, TN, USA, 15–19 October 2007.

44. Chochula, P.; Augustinus, A.; Bond, P.; Kurepin, A.; Lechman, M.; Lã, J.; Pinazza, O. Challenges of the ALICE Detector Control
System for the LHC RUN3. In Proceedings of the 16th International Conference on Accelerator and Large Experimental Physics
Control Systems, ICALEPCS, Barcelona, Spain, 8–13 October 2017.

45. Santos, J.M.; Portugal, D.; Rocha, R.P. An evaluation of 2D SLAM techniques available in robot operating system. In Proceedings
of the 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Linköping, Sweden, 21–26 October
2013; pp. 1–6.

46. Sechenev, S.; Ryadchikov, I.; Gusev, A.; Lampezhev, A.; Nikulchev, E. Development of a design methodology for cloud distributed
control systems of mobile robots. J. Sens. Actuator Netw. 2021, 11, 1. [CrossRef]

47. Agrawal, S.; Jain, S.K.; Ibeke, E. An orchestrator for networked control systems and its application to collision avoidance in
multiple mobile robots. Int. J. Eng. Syst. Model. Simul. 2021, 12, 103–110. [CrossRef]

48. Jadlovský, J.; Kopčík, M. Distributed control system for mobile robots with differential drive. In Proceedings of the 2016
Cybernetics & Informatics (K&I), Levoca, Slovakia, 2–5 February 2016; pp. 1–5.

49. Jadlovská, A.; Jadlovský, J.; Jadlovská, S.; Čerkala, J.; Kopčík, M.; Čabala, J.; Oravec, M.; Varga, M.; Vošček, D.; Tkáčik, M.; et al.
Proposal of a methodology for modeling, control, simulation and non-destructive diagnosis of mobile robots (In Slovak: Návrh
metodiky pre modelovanie, riadenie, simuláciu a nedeštruktívnu diagnostiku mobilných robotov). Strojárstvo/Strojírenství Eng.
Mag. 2017, XXI , 1–9.

50. Tkáčik, M.; Březina, A.; Jadlovská, S. Design of a Prototype for a Modular Mobile Robotic Platform. IFAC-PapersOnLine 2019,
52, 192–197. [CrossRef]

51. Sahraoui, Z.; Labed, A. Methodology for fast prototyping of distributed real-time systems. In Proceedings of the 2022 5th
International Symposium on Informatics and its Applications (ISIA), M’sila, Algeria, 29–30 November 2022; pp. 1–6.

52. Lora, M.; Muradore, R.; Reffato, R.; Fummi, F. Simulation alternatives for modeling networked cyber-physical systems. In
Proceedings of the 2014 17th Euromicro Conference on Digital System Design, Verona, Italy, 27–29 August 2014; pp. 262–269.

53. Imama, K.G.; Ourghanlian, A.; Amari, S. Modeling Distributed Control Systems response time: From theory to measures. In
Proceedings of the 2020 IEEE 16th International Conference on Control & Automation (ICCA), Singapore, 9–11 October 2020;
pp. 696–701.

54. dit Sollier, L.B.; Ourghanlian, A.; Amari, S. Coloured Petri Nets for Temporal Performance Evaluation of Distributed Control
Systems—Application to a FIFO Queue. IEEE Robot. Autom. Lett. 2022, 7, 11268–11274. [CrossRef]

55. Tkáčik, M. Methods and Tools for Design, Modeling and Realization of Distributed Control Systems of Large Physical Experiments
(In Slovak: Metódy a Prostriedky Pre Návrh, Modelovanie a Realizáciu Distribuovaných Systémov Riadenia Vel’kých Fyzikálnych
Experimentov). Ph.D. Thesis, Department of Cybernetics and Artificial Inteligence, Technical University of Košice, Košice,
Slovakia, 2023.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/pr8050565
http://dx.doi.org/10.1109/TNS.2006.874470
http://dx.doi.org/10.3390/jsan11010001
http://dx.doi.org/10.1504/IJESMS.2021.115531
http://dx.doi.org/10.1016/j.ifacol.2019.12.755
http://dx.doi.org/10.1109/LRA.2022.3196472

	Introduction
	Modeling of Distributed Control Systems—Fundamental Concepts
	Cyber-Physical Systems and Hybrid Systems
	Modeling of Systems with Discrete Events

	Considered Distributed Control Systems
	The Infrastructure of the Detector Control System of the ALICE Experiment
	Applications of Mobile Robotics within the DCS Infrastructure at the CMCT&II

	Methodology for Modeling and Analysis of Distributed Control Systems
	Scenario 1: ALFRED System Throughput Modeling and Analysis
	Scenario 2: Modeling and Analyzing the Response of a Mobile Robotics Application

	Conclusions
	References

