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Abstract: In order to achieve efficient photocatalytic N2 reduction activity for ammonia synthesis,
a photochemical strategy was used in this work. UiO-66 was prepared through the solvothermal
method and further loaded with Au nanoparticles (Au NPs) onto the UiO-66 (Zr) framework. The
experimental results verified that there were metal–support interactions between Au NPs and UiO-66;
this could facilitate charge transfer among Au NPs and UiO-66, which was beneficial to enhance the
photocatalytic activity. The best N2 fixation effect of Au/UiO-66 with a loading of 1.5 wt% was tested,
with a photocatalytic yield of ammonia of 66.28 µmol g−1 h−1 while maintaining good stability. The
present work provides a novel approach to enhancing photocatalytic N2 fixation activity by loading
NPs onto UiO-66.

Keywords: photocatalytic; N2 fixation; UiO-66; Au nanoparticles

1. Introduction

Ammonia is one of the most important industrial chemicals and has been recently
considered an ideal carrier for hydrogen storage [1–3]. The reduction of N2 to NH3 is
very hard under environmental conditions because of the intrinsic nature of the N≡N
bonding, and nitrogen fixation itself is a multistep process that is kinetically complex and
thermodynamically challenging [4–6]. In recent years, more than 90% of NH3 production
has been mainly dependent on Haber–Bosch technology that operates at critical conditions
(i.e., 15–25 MPa and 673–873 K), which involves the catalytic synthesis of ammonia from
nitrogen and hydrogen over an iron-based catalyst. However, it consumes enormous quan-
tities of fossil resources and releases huge amounts of CO2 [7–9]. Therefore, it is important
to develop a green synthesis pathway for reducing N2 to NH3 under mild conditions. The
photocatalytic nitrogen reduction reaction (NRR) initiated by renewable solar energy has a
very promising future as an environmentally friendly, low-cost, and sustainable route for
NH3 synthesis, which converts N2 to NH3 (2N2 + 6H2O = 4NH3 + 3O2) using abundant
solar energy and water at ambient temperature and pressure, avoiding the need for H2 and
harsh reaction conditions [10–12]. However, the high recombination of photogenerated
charge carriers and the sluggish reaction kinetics have resulted in low photocatalytic activ-
ity in the production of ammonia [13–15]. Therefore, it is essential to rationally design the
photocatalysts for a highly efficient conversion of N2 into ammonia [16].

Metal–organic frameworks (MOFs) have been widely applied in catalysis, adsorption,
separation, and sensors because of their low cost, good stability, and large specific surface
area [13,17–19]. Compared to other MOFs, UiO-66 based on Zr-oxo clusters exhibits
relatively high thermal and chemical stability, a highly tunable defect structure, large
specific surface areas, and a stable framework [17,20,21]. Therefore, UiO-66 is widely used
in photocatalysis for nitrogen fixation [22], CO2 reduction [23], and H2 production [24].
Importantly, functional units can be anchored in the nodes, linkers, or cavities of these
Zr-MOFs. First, different kinds of active species can be immobilized in the cavities of
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MOFs, which impart the resulting MOF composites with better performances than the
MOF itself due to the synergistic effect of the different components [25,26]. Second, a
range of catalyst supporters, such as porphyrin and bipyridine, can be incorporated into
the linkers, thus endowing MOFs with excellent physiochemical properties [27,28]. Thus,
rational tailoring and engineering of MOFs may be exploited to markedly advance the
photocatalytic fixation of nitrogen [29,30]. Unfortunately, MOFs suffer from drawbacks
like limited selectivity and reproducibility [31,32]. Hence, they have to be modified using
post-synthesis strategies. The modification of UiO-66 materials with loaded metals has been
reported as an effective method to enhance their photocatalytic nitrogen fixation activity.
These metal species can modulate the partial electronic structure surrounding defects,
promote N2 excitation, and inhibit charge complexation [33–35]. In recent years, many
nanoparticle-scale (NP) catalysts have been successfully prepared using MOFs as carriers,
exhibiting high photocatalytic properties [36–39]. For the photocatalytic nitrogen fixation
reaction (NRR), MOF-based NPs have the following advantages: (i) MOF carriers have
high N2 adsorption ability to enrich the N2 concentration around the active NP sites; and
(ii) the metal–carrier interactions between the NPs and the MOFs significantly accelerate the
charge transfer, which enhances the catalytic properties by providing a suitable electronic
environment [32,36,40,41]. Among them, gold (Au) is considered an excellent catalyst
for ammonia synthesis [42–44]. As is known, sulfur and nitrogen groups have particular
affinity for Au(III), as the ligand is able to develop stabilizing complexes with Au(III) by
chelating or complexing [36,45]. Therefore, Au(III) was selectively grown on the shell layer
of UiO-66 to enhance UiO-66’s activity. Presently, NPs derived from MOFs are mostly
prepared through the thermal excitation method, which mostly involves complex synthesis
processes, expensive equipment, or cumbersome post-processing. Even more seriously, the
MOF structure may be destroyed, leading to a decrease in their gas absorption capacity
and chemical stability [46,47]. Hence, it is urgent to develop efficient photocatalysts by
loading metals onto MOFs through a simple room-temperature photochemical method.
By constructing active sites onto MOFs through the room-temperature photochemistry
method, the photogenerated electrons can be moved to the surface of UiO-66, leading
to metal nanoparticle loading, thus providing sufficient N2 adsorption sites and electron
transfer channels and thus enhancing photocatalytic N2 fixation activity.

Herein, UiO-66 in octahedral morphology was first fabricated using the solvothermal
method and further loaded with Au nanoparticles (Au NPs) onto UiO-66 (Zr) frameworks
using a room-temperature photochemical strategy. The experimental results showed that
Au/UiO-66 exhibited more efficient photocatalytic performance in the reduction of N2
to NH3 than UiO-66, which was probably due to the active Au sites loaded onto UiO-66
as well as the efficient separation of photogenerated electron–hole pairs. Combined with
experimental results and spectral analysis, the mechanism of the separation and transfer
action of the photogenerated carriers was elucidated. In general, this work provides novel
insights for the construction of surface catalytic sites at the nanoscale to optimize the
reaction pathways in the multielectron N2 photoreduction process and enhance the activity
of photocatalytic ammonia synthesis reactions.

2. Materials and Methods
2.1. Materials

All chemicals, including gold (III) chloride (AuCl3, AR), zirconium tetrachloride (ZrCl4,
99%), and terephthalic acid (H2BDC, 99%), were purchased from Aladdin Ltd. (Shanghai,
China). N,N-dimethylformamide (DMF, 99.9%) was obtained from Macklin Ltd. (Shanghai,
China), and methanol (CH3OH) was bought from Sinopharm Chemical Reagent (Shanghai,
China). All chemicals were used directly, without further treatment. The ultrapure water
used in the experiments was purified using a Millipore system (Chengdu, Sichuan, China).
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2.2. Materials Synthesis

Synthesis of UiO-66 catalysts: Firstly, 169 mg of ZrCl4 and 121 mg of H2BDC were
dissolved in a mixed solution of 28 mL DMF in a 50 mL Teflon-capped jar (Anhui Kemi
Instrument Co., Ltd, Hefei, China). The mixture was blocked and reacted at 120 ◦C for
12 h. The product was gathered by centrifugation and washed three times using DMF and
methanol, then sequentially immersed in methanol, and the solvent was changed every 12 h
for 36 h. Finally, UiO-66 was dried by removing the solvent in a vacuum dryer overnight.

Synthesis of Au/UiO-66 catalysts: A total of 0.50 g of UiO-66 was first dissolved in
100 mL of a 10% methanol–water solution and then sonicated for 30 min. A AuCl3 solution
was added to the UiO-66 dispersion while stirring. The suspensions were continually
bubbled with high-purity N2 (>99.99%) for 30 min while stirring in the dark prior to
illumination. The dispersion was then treated with UV light as described above, with
stirring at room temperature. After 60 min of illumination, the light gray Au/UiO-66
product was gathered by centrifugation and further washed with water. After being dried
in a vacuum oven, the product was used for a variety of characterizations and analytical
tests. The loading content of Au could be easily adjusted by introducing different amounts
of AuCl3 solution. The fabrication of Au/UiO-66 is shown in Figure 1.
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Figure 1. Schematic illustration of the preparation of Au/UiO-66.

Synthesis of M/UiO-66 (M = Pt, Pd, Ag, Ru) catalysts: Similarly, M/UiO-66 catalysts
(M = Pt, Pd, Ag, Ru) were also synthesized by a procedure similar to that described
above for the preparation of Au/UiO-66, utilizing H2PtCl6, PdCl2, AgNO3, and RuCl3 as
precursors, respectively.

Thereafter, unless otherwise noted, the following discussion will mainly focus on
UiO-66 at a Au loading of 1.5 wt% (denoted as Au/UiO-66), which exhibited the best
photocatalytic nitrogen fixation activity.

2.3. Characterizations

The X-ray diffraction (XRD) patterns taken by Rigaku RINT 2500 TTRAX-III (Rigaku
Corporation, Tokyo, Japan) with Cu Kα radiation were used to characterize the phase
composition and phase type of the prepared samples. The structural and morphological
features of the samples were studied by scanning electron microscopy (SEM, ZIESS Gem-
ini 300, Oberkochen, Germany) with EDX spectroscopy spectra attached. The detailed
structure and surface topography of the sample were investigated by transmission electron
microscopy (TEM, HT 7700, Tokyo, Japan) and high-resolution transmission electron mi-
croscopy (HRTEM, FEI Tecnai G2 F30, FEI, Hillsboro, OR, USA) operated at 300 kV. The
valence state and elemental composition of the prepared compounds were determined
by X-ray photoelectron spectroscopy (XPS, Thermo Scientific K-Alpha, Thermo Fisher
Scientific, Cambridge, UK) with monochromatized Al-Kα (hν = 1486.60 eV). The UV-Vis
Diffused Reflectance Spectra (DRS) of the samples were recorded using a TU-1901 spec-
trophotometer (Pu xi Ltd. of Beijing, China). The prepared material was detected in the
range of 200–800 nm to detect the band gap of the catalyst. Photoluminescence (PL) was
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recorded using an F-7000 fluorescence spectrophotometer (HitachI, Tokyo, japan) to study
the recombination and migration of electron–hole pairs under 320 nm excitation.

2.4. Photocatalytic N2 Fixation Tests

For the ammonia production test of the photocatalytic nitrogen fixation experiment,
30 mg of photocatalysts and 60 mL of distilled water were first added to the photoreactor.
After fully sealing the reactor, N2 (>99.999% purity) was bubbled in a sealed reactor for
30 min to remove any possible nitrogen contaminants. Afterwards, the reactor was contin-
uously irradiated for 1 h at full spectrum using a 300 W Xe lamp (Beijing Perfect Lighting
Co., Ltd., Beijing, China). The distance from the lamp to the vessel was calculated to be
approximately 11 cm, and the average light intensity was 491 mW cm−2 (measured by an
optical power meter (CEL-NP2000–2(10)A, Beijing, China)). After the reaction, 10 mL of
solution was withdrawn and filtered through a 0.22 µm filter membrane in order to remove
the residual catalyst. It was then injected into a 10 mL small glass vial to which Nessler
was added, while 10 mL of distilled water was taken and added to another small glass vial
to add Nessler as a blank control sample. The concentration of NH4

+ was quantified by
Nessler’s reagent spectrophotometry (Nessler’s reagent method) and ion chromatography
(ICS-1100). The concentration–absorbance curve was calibrated using a standard ammonia
solution with a series of concentrations (Figure S1). The fitting curve (y = 0.1123x − 0.0027,
R2 = 0.999) showed a good linear relation between absorbance value and ammonia concen-
tration. Additionally, a standard curve of ammonia determined by ion chromatography is
presented in Figure S2. The calibration curve (y = 0.2286x − 0.0019, R2 = 0.999) was plotted
based on peak area versus the concentration of ammonia. Then, apparent quantum effi-
ciency (AQE) was further measured under filters of different wavelengths (300, 400, 500,
and 600 nm). The photon flux of the incident light was measured with an optical power
meter (CEL-NP2000-2(10)a, Beijing, China). AQE was calculated according to Equation (1)
as follows:

AQE =
Ne

NP
× 100% =

3·nAM·NA
W·A·t

h·ν
× 100% (1)

where Ne and NP are the total number of reactive electrons transferred and the number of
incident photons, respectively. nAM, W, A, t, and ν represent the molar number of generated
ammonia (mol), the incident light intensity (measured as 491 mW cm−2), the irradiation
area (cm2), the time (s), and the frequency, respectively. NA and h are the Avogadro’s
constant (6.02 × 1023/mol) and Planck constant (6.62607015 × 10−34 J·s), respectively.

2.5. Electrochemical Tests

The electrochemical measurements were taken on a CHI 660E electrochemical worksta-
tion. A standard three-electrode system consists of a working electrode, a graphite carbon
rod as a counter electrode, and a saturated calomel electrode as a reference electrode. The
working electrode was prepared by depositing tin fluoride oxide (FTO) on the sample
membrane. Typically, 5 mg of photocatalyst and 20 µL of Nafion were dispersed in 200 µL
of deionized water, then 40 µL of solution was immersed on 1 × 1 cm2 FTO glass and then
dried at room temperature. The transient photocurrent and the electrochemical impedance
spectroscopy (EIS) of different samples were analyzed in a 0.5 M Na2SO4 aqueous solution.

3. Results and Discussion
3.1. Structural and Surface Characterizations

Figure 2 displays the SEM and TEM images of UiO-66 and Au/UiO-66. The SEM
images of the as-prepared UiO-66 show that it was an ortho-octahedral structure with a par-
ticle size of around 200 nm (Figures 2a and S3). After modification, the obtained Au/UiO-66
had the same structure as UiO-66, but it had better dispersion (Figure 2b). Additionally,
as shown in Figure 2c, black particles with isolated bright spots loaded onto UiO-66 were
seen in the TEM image of Au/UiO-66, indicating a nanoscale-dispersed Au species. The
nanoscale microstructure of Au was further characterized using a high-resolution trans-
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mission electron microscope (HRTEM) (Figure 2d). In addition, EDX elemental mapping
images of Au/UiO-66 were obtained (Figure 2e,f), and the results demonstrated that C, O,
Zr, and Au achieved a uniform distribution over the entire skeleton of the scaffold. The
results mentioned above confirmed that Au nanoparticles were uniformly dispersed on the
surface of UiO-66.
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The XRD patterns of UiO-66 and the x wt% Au/UiO-66 (x = 0.5, 1.0, 1.5, 2.0, 3.0)
samples are shown in Figure 3a. When Au was loaded onto UiO-66, the behavior of the
main diffraction peaks was similar to that of UiO-66, and no diffraction peaks of the Au
species were detected, which might be due to the fact that the content of loaded Au was
low and the dispersion was high. In addition, the introduction of Au sites did not induce
a phase transition in the UiO-66 crystals. As the Au content increased, the intensity of
the characteristic peaks first increased and then decreased. This indicated that the Au
nanoparticles had been successfully loaded onto UiO-66 [48].

X-ray photoelectron spectroscopy (XPS) was used to further probe the surface chemical
state of the samples. As seen from the full spectrum of XPS, peaks of C, O, and Zr were
observed in both samples (Figure S4). After the introduction of Au nanoparticles, the peaks
of Au were not detected in Au/UiO-66, which might be explained by the low loading of Au.
Figure 3b shows the Zr 3d spectra of the samples, and the peaks of Zr 3d5/2 and Zr 3d3/2
can be seen at 182.9 eV and 185.3 eV, corresponding to the Zr4+ oxidation state [49]. The O
1s spectra of the two samples were divided into three peaks at 530.3, 531.7, and 532.8 eV
(Figure 3c), which belong to Zr-O, O-C/O-C, and -OH, respectively [50]. Compared with
UiO-66, the Zr and O peaks of Au/UiO-66 moved to higher binding energies, implying
that there were interactions between Au and UiO-66 carriers, accelerating electron transfer
from UiO-66 to Au. Figure 3d shows the Au 4f spectrum of Au/UiO-66, with two peaks at
84.0 and 87.6 eV corresponding to Au0 and two peaks at 85.5 and 89.5 eV corresponding
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to Au+ [51]. This further proves that the Au nanoparticles have been successfully loaded
onto UiO-66.
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3.2. Photocatalyst Performance Analysis

The synthesized samples were tested for photocatalytic N2 reduction under a 300 W
xenon lamp, and the nitrogen fixation properties of the catalyst were assessed by detecting
the ammonia yield (Figure 4). The ammonia concentration was measured using Nessler’s
reagent method and confirmed via the ion chromatography method. Figure 4a shows the
activity plots for photocatalytic ammonia production of the x wt% Au/UiO-66 (x = 0.5, 1.0,
1.5, 2.0, 3.0) samples with different loadings. Pure UiO-66 had a low ammonia synthesis
activity of 14.14 µmolg−1 h−1. The ammonia production first improved and then declined
with Au loading. The highest activity was observed at a loading of 1.5 wt%, reaching
66.28 µmolg−1 h−1, which was about 4.7 times that of pure UiO-66. However, the ammonia
generation rate gradually decreased when the loading exceeded 1.5%, which might be
caused by the higher amount of Au saturating the surface active sites or the aggregation of
Au [22,35]. Later on, the nitrogen fixation activity of M/UiO-66 (M = Pt, Pd, Au, Ag, Ru)
with different metal loadings was tested (Figure 3d). The higher activity of metal-modified
UiO-66 compared to pristine UiO-66 was in agreement with the literature reporting that
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Au favored the nitrogen fixation reaction of UiO-66 [36,44]. Thus, Au preferred to create π

orbital feedback to adsorb N2 and used the excess empty orbitals to act as active centers to
undermine the N≡N bonding, which also proved that the choice of an adequate noble metal
could promote the NRR reaction. The concentration of NH4

+ was further determined using
the ion chromatography method (Figure S5), and the two methods were almost identical
in the detection of ammonia, which ensured the accuracy of Nessler’s reagent method
for determining NH3 concentrations. Compared with other UiO-66-based photocatalysts,
the Au/UiO-66 photocatalyst prepared in this work exhibited high photocatalytic activity,
which was superior to previously reported photocatalysts (Table 1).
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Table 1. Summary of photocatalytic N2 fixation on UiO-66-based catalysts in the recent literature.

Catalyst Sacrificial Agent Light Source NH3 Yield
(µmol gcat−1 h−1) Ref.

UiO-66 (SH)2 No 300 W Xe lamp 32.38 [33]
Ru1/d-UiO-66 No 300 W Xe lamp 53.28 [22]

UiO-66/PDA/CNNS K2SO3 Full spectrum 147.8 [52]
UiO-66-HAc No Full spectrum 31.81 [53]

MoS2/UiO-66 (SH)2 No Visible light
(λ > 400 nm) 54.08 [54]

Au/UiO-66 No Full spectrum 66.28 This work

Chemical stability was an important parameter for the evaluation of the catalyst.
In addition, the stability of Au/UiO-66 was also examined through extended-duration
experiments and cyclic tests (Figure 4c,d). The results indicated that Au/UiO-66 activity
increased linearly within 6 h, and the ammonia yield reached 274.1 µmol/g at 6 h (Figure 4c).
In the continuous photocatalytic nitrogen fixation test, the activity of Au/UiO-66 for
ammonia synthesis had a negligible decrease after four cycles while maintaining high
productivity (Figure 4d). This indicated that Au/UiO-66 had high chemical stability for
photocatalytic nitrogen fixation.

In order to assess the efficiency of the use of light, the corresponding apparent quantum
efficiency (AQE) was determined by testing different wavelengths of monochromatic light.
As shown in Figure 4e, AQE decreased with increasing wavelengths of monochromatic
light, with an AQE of 0.38% at 300 nm, 0.06% at 400 nm, and 0% at 500 nm and 600 nm,
which was in good agreement with the DRS test of Au/UiO-66.

For the oxidation products (Figure 4f), no O2 was detected in the photocatalytic prod-
ucts over Au/UiO-66 with increasing light illumination time. Moreover, a gradual increase
in the detection of ammonia confirmed that the Au/UiO-66 photocatalyst contributed to N2
fixation. Notably, no H2 was detected during the photocatalytic process, which indicated
the excellent selectivity of Au/UiO-66 for ammonia synthesis.

3.3. Optical and Electronic Properties

The synthesized samples were characterized using UV-vis DRS to probe the light
absorption as well as the forbidden band width of the catalyst. As shown in Figure 5a,
it was observed that UiO-66 had a very low visible light absorption, but after loading a
trace amount of Au, the absorption band edges of x wt% Au/UiO-66 red-shifted, leading
to a significant increase in the absorption of light. This could be explained by the fact that
the loading of Au broadened the range of light absorption. Meanwhile, by converting the
UV-vis DRS into the corresponding Tauc plot, according to the intercept of the tangent, the
Eg values of UiO-66 and Au/UiO-66 were computed to be 4.05 and 3.94 eV, respectively
(Figure 5b). Therefore, the light absorption and band gap results indicated that Au loading
via the UV reduction method could effectively reduce the bandwidth of UiO-66. In addition,
the valence band (VB) spectrum of XPS showed that the EVB values of UiO-66 and Au/UiO-
66 were estimated to be 3.13 and 2.97 eV, respectively, as determined by VB-XPS mapping
(Figure 5c). According to the band gap equation (Eg = EVB − ECB) [1], the ECB values of
UiO-66 and Au/UiO-66 were calculated to be −0.92 and −0.97 eV, respectively. In addition,
the slightly higher CB after Fe doping was thermodynamically more conducive to the
photoreduction reaction of nitrogen. From this, the energy band schematics of UiO-66
and Au/UiO-66 could be established (Figure 5d). The results indicated that the reduced
forbidden bandwidth of Au/UiO-66 enabled it to respond to incident light over a wider
range and to be excited to produce more carriers, giving the material a greater potential for
ammonia production.
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Photoluminescence, hole separation, and carrier dynamics are important components
of photocatalysis. In order to compare with UiO-66 and research the reason for the enhanced
photocatalytic activity of Au/UiO-66, photoluminescence spectra (PL), photocurrent re-
sponse, and electrochemical impedance spectroscopy (EIS) were further measured. The PL
spectrum of Au/UiO-66 was tested under 550 nm laser excitation and is shown in Figure 6a.
In general, the weaker the fluorescence intensity, the stronger the carrier separation abil-
ity [55]. It could be seen that both UiO-66 and Au/UiO-66 had strong emission peaks near
400 nm. Compared to UiO-66, the intensity of Au/UiO-66 was less pronounced, indicating
a more effective inhibition of the complex reaction of the photogenerated electron–hole pair
in Au/UiO-66 after the loading of Au nanoparticles. Therefore, it was likely that this was
one of the factors that improved the efficiency of photocatalytic nitrogen fixation. Figure 6b
shows the photocurrent response. UiO-66 had the lowest photocurrent response because
of the quick complexation of photogenerated carriers on UiO-66. It can also be seen that
the responsivity of Au/UiO-66 was much higher than that of UiO-66, which indicated that
the loading of Au greatly suppressed the complexation of electron–hole pairs, allowing
Au/UiO-66 to capture more visible photons. Subsequently, EIS tests were performed on
the samples (Figure 6c), yielding results identical to those observed in the photocurrent.
UiO-66 had large charge transfer resistance. With the photoreduction method to load Au,
Au/UiO-66 has the smallest arc radius, indicating that its charge transfer resistance is
smaller, which favors the separation of electrons and holes. The above results indicated that
Au/UiO-66 had a stronger charge transfer capability and a lower carrier recombination
rate, which was more favorable for the separation and migration of electrons and holes,
allowing higher charge transfer efficiency and a lower possibility of charge recombination,
thereby enhancing the utilization of photogenerated electrons.

According to the above experimental results, a probable reaction mechanism for
photocatalytic N2 fixation by Au/UiO-66 was proposed, as shown in Figure 7. N2 was
easily adsorbed by UiO-66’s pores [33,54], and the redox reaction took place inside the
catalyst, which lowered the transfer distance of electrons and facilitated the subsequent
reaction. As shown in Figure 7, under light irradiation, Au/UiO-66 was excited to produce
electrons and holes in CB and VB. The ligand H2BDC in Au/UiO-66 was excited under light
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irradiation, and electrons were transported from the excited ligand to the Au nanoparticles.
The Au nanoparticles transferred the obtained electrons to N2 to make it react in a reduction
reaction to lose electrons, and they reacted with the hydrogen atoms to produce ammonia
gas. Moreover, the Au nanoparticles continuously received the electrons generated by the
ligand, which eventually led to the synthesis of ammonia [33]. Therefore, Au/UiO-66 had
a strong photocatalytic nitrogen fixation performance under environmental conditions.
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Figure 7. Possible mechanism of photocatalytic N2 fixation by Au/UiO-66 under simulated solar
light irradiation.

4. Conclusions

In summary, we synthesized Au/UiO-66 with a photocatalytic N2 reduction function
by inducing UiO-66 with UV light. The experimental results indicated that the synthesized
Au/UiO-66 photocatalysts produced an ammonia yield of 66.28 µmol g−1 h−1 without
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using a sacrificial agent. This yield was 4.7 times higher than that of pure UiO-66 and
maintained good stability within 6 h. It was shown that the nanoscale-dispersed Au
was stably loaded onto UiO-66, which provided an electron-rich environment for NRR.
The present work not only provided an attractive MOF-based material for photocatalytic
nitrogen fixation but also a new idea to further research the synergistic interaction between
nanoparticles and MOFs to improve the performance of artificial N2 immobilization.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pr12010064/s1, Figure S1: (a) Standard curves for NH4

+ with Nessler’s
reagent and (b) chromogenic reaction of Nessler’s reagent with NH4

+ ions; Figure S2: Calibration
curve used for calculation of NH4

+ concentrations using ion chromatogram method; Figure S3: SEM
image of UiO-66; Figure S4: XPS survey spectra of UiO-66 and Au/UiO-66 samples; Figure S5: Ion
chromatography profile.
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