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Abstract: In addition to main fractures, a large number of secondary fractures are formed after the
volumetric fracturing of shale gas wells. The secondary fracture properties are so complex, that it
is difficult to identify and diagnose by direct monitoring methods. In this study, a new approach
to model and diagnose secondary fracture properties is presented. First, a new pressure decline
model, which is composed of four interconnected domains, i.e., wellbore, main fractures, secondary
fractures, and reservoir matrix pores, is built. Then, the fracturing fluid pumping and post-fracturing
soaking processes are simulated. The simulated pressure derivatives reflect five fracture-dominated
flow regimes, which correspond to multiple alternating positive and negative slopes of the pressure
decline derivative. The results of sensitivity simulation show that the density, permeability, and
width of secondary fractures are the main controlling factors affecting the size ratio. Finally, based on
the simulated pressure decline characteristics, a diagnostic method for the identification and analysis
of secondary fracture properties is formed. This method is then applied to three platform wells in the
Changning shale gas field in China. This study builds the correlation between the secondary fracture
properties and the shut-in pressure decline characteristics, and also provides a theoretical method for
comprehensive post-fracturing evaluation of shale gas horizontal wells.

Keywords: secondary fracture; soaking; shale gas; fracture diagnostics

1. Introduction

Shale gas reservoir development mostly uses multi-stage hydraulic fracturing technol-
ogy in horizontal wells. Because natural fractures are a widespread growth in shale gas
reservoirs, a large number of secondary fractures that communicate with the main fractures
are formed after hydraulic fracturing. It is estimated that more than 60% of fracturing
fluid is propped by secondary fractures in Woodford shale, in the Anadarko basin [1].
The properties of secondary fractures are more complex than that of natural fractures [2],
because they have both storability and conductivity, leading to massive fracturing fluid
storage and pressure diffusion. However, field monitoring tools for fracture geometries,
like microseismic mapping, tracer tracking, and image logging, make it difficult to diagnose
subtle differences in the properties of secondary fractures [3–5].

Based on well test theory, many pressure decline models for injection falloff tests have
been proposed for post-fracturing flow regime identification. The representative work is
the semi-log derivative plot of pressure decline with pump shutdown time proposed by
Soliman in 1986 [6]. In 1989, Bourdet [7] calculated the slope of pressure derivatives of each
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flow regime by using Horner time, Agarwal effective time, and superposition time. This
method is only suitable for conventional reservoirs. In 2005, Soliman [8] drew the pressure
decline derivative of fall-off test data with superposition time as the time axis and divided
bilinear flow, linear flow, and radial flow according to the slope of the derivative curve.

Subsequently, a large number of studies emerged on the identification of fluid leak-off
and fracture closure. Mohamed et al. [9] and Marongiu-Porcu et al. [10] proposed using
Bourdert log–log special plots to identify normal leak-off and determine fracture closure.
Bachman [11] et al. proposed a systematic standardized pressure decline analysis method
based on log–log plots to identify various flow regimes before and after fracture closure.
Liu [12] and Ehlig-Economides [13] proposed G-function-based analytical models to repre-
sent before-closure non-ideal leak-off behaviors. Wang [14] and Sharma proposed pressure
decline analysis to characterize the properties of natural fractures and fracture stiffness for
propped and un-propped fractures. In addition to the analytical models, there are some
remarkable simulation studies. McClure et al. [15]. conducted rigorous simulation studies
of various fracture compliance effects on before-closure pressure responses. Zanganeh
et al. [16,17]. demonstrated progressive fracture closure behavior on various pressure
decline special plots. Several mechanisms, like wellbore storage, tip extension, and resid-
ual fracture conductivity on the fall-off test data are evaluated. The above-summarized
pressure decline models, including analytical and numerical models, pay more attention to
the main fracture and natural fractures for the injection fall-off test data. Very few studies
have attempted to investigate secondary fracture properties in volumetric fractured shale
gas wells.

Between the fracturing fluid pumping treatment and well-opening flowback, the shale
gas wells are usually shut in from 3 to 14 days for soaking. And that is a routine in the
field for bottom-hole pressure diffusion and artificial fracture closure, preventing proppant
backflow. During this soaking period, the wellhead-monitoring pressure continues to
decline. However, this pressure decline data has not been fully utilized or underappreciated
due to a lack of suitable models and methods, and that leads to difficulty in obtaining
the unique properties of hydraulically fractured shale, i.e., secondary fracture properties.
This study innovatively designs a pressure drop interpretation model during the well
shut-in time and aims to build a correlation between the secondary fracture properties
and the shut-in pressure decline characteristics. First, a post-fracturing shut-in pressure
decline model is established on the basis of our previous proposed flowback model [18] by
resetting the subprime grid and redefining the secondary fracture properties for numerical
simulation. Then, simulation cases with different parameter combinations of secondary
fracture properties are run and the corresponding characteristic curves of bottom-hole
pressure decline are obtained. Based on the simulation results, a diagnosis method for
secondary fracture properties is proposed. Finally, field case application is conducted by
real data diagnosis and history matching analysis. It proves the proposed method can be
helpful in an intensive explanation of artificial fractures in hydraulically fractured shale
gas wells.

2. Pressure Decline Model during the Post-Fracturing Soaking Process
2.1. The Physical Model

Fracturing fluid is pumped step by step during the treatment of hydraulic fracturing in
a shale gas well. After pumping at each stage, the pumping is stopped for several minutes
to ten minutes. Once the final stage of pumping is completed, the pumping is stopped and
the well is shut in for several days of soaking. The bottom-hole pressure decreases during
the soaking periods, and the high pressure contained in the main and secondary fractures
will be released into the reservoir. The fracturing fluid in the fracture system will leak into
the matrix, and the natural gas in the matrix will be displaced into the fractures. Figure 1
displays the mass transfer diagram.
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Figure 1. Schematic diagram of pressure decline model and mass transfer “matrix-secondary fracture-
main fracture” during post-fracturing soaking process.

The physical model of a volumetric fractured shale gas well is simplified into four
interconnected domains, i.e., horizontal wellbore (W), main fractures (F), secondary frac-
tures (f), and matrix (m). The wellbore is connected to the main fracture, and the main
fracture, secondary fracture, and matrix are connected in pairs. The three are continuously
coupled through the flow and pressure at the contact surface. A schematic of the grid model
design is shown in Figure 1, where X, Y, and Z represent the three directions of the grid
model. The fracture networks, composed of main and secondary fractures, are composed
of symmetrical, orthogonal vertical fractures of equal height. The grids of fractures are
characterized by length, width, and permeability. The number of main fractures is equal
to the number of perforation clusters. The density of secondary fractures is equal to the
number of secondary fractures in the fracture stage area. The matrix is evenly distributed
around the fracture network. Porosity and permeability are used to characterize the matrix
storability and mobility, respectively. Wellbore is considered a source–sink term in the
center of fracture networks.

2.2. Mathematical Model
2.2.1. Assumptions

Based on the above physical model, the assumptions for the mathematical model are
as follows:

(1) The fracturing fluid is injected through the bottom hole, and the pumping process is
considered to inject multiple stages at the same time. Each fracturing cluster creates
one main fracture. The bridge plugs at all stages are completely dissolved and the
wellbore is connected after the pumping treatment;

(2) The gas–water two-phase flow and isothermal flow are considered in this model.
Fluid is slightly compressible;

(3) The gas flow in the main fractures is considered to be a high-velocity, non-Darcy flow.
The gas flow in the secondary fractures is considered to obey Darcy flow conditions;

(4) Consider the compressibility of the main fractures, secondary fractures, and shale matrix;
(5) Consider matrix capillary imbibition.

2.2.2. Flow Conservation in Fractured Shale Reservoirs

Mass conservation equation of the water phase:

∂(ρwϕFSF
w)

∂t + ∂(ρwϕ f S f
w)

∂t + ∂(ρwϕmSm
w )

∂t +∇ ·
[
ρw

kFkF
rw

ηw
∇(pF

w − ρwgD)
]

+∇ ·
[

ρw
k f k f

rw
ηw

∇(p f
w − ρwgD)

]
+∇ ·

[
ρw

kmkm
rw

ηw
∇(pm

w − ρwgD)
]
= qs f

(1)

where ρw denotes the density of water (g/cm3); ϕF denotes the porosity of the main
fracture; SF

w denotes the water saturation of the main fracture; ϕ f denotes the porosity
of the secondary fracture; S f

w denotes the water saturation of the secondary fracture; ϕm

denotes the porosity of the matrix; Sm
w denotes the water saturation of the matrix; kF denotes
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the absolute permeability of the main fracture; kF
rw denotes the relative permeability of the

water phase of the main fracture; pF
w denotes the capillary pressure of the main fracture;

k f denotes the absolute permeability of the secondary fracture; k f
rw denotes the relative

permeability of the water phase of the secondary fracture; p f
w denotes the capillary pressure

of the secondary fracture; km denotes the absolute permeability of the matrix; km
rw denotes

the relative permeability of the water phase of the matrix; pm
w denotes the capillary pressure

of the matrix; ηw denotes the water mobility ratio; and qs f denotes the water injection rate
(g/cm3·s).

Mass conservation equation of the gas phase:

∂(ρgϕFSF
g )

∂t +
∂(ρgϕ f S f

g)
∂t +

∂(ρgϕmSm
g )

∂t +∇ ·
[

λρg
kFkF

rg
ηg

∇(pF
g − ρggD)

]
+∇ ·

[
ρg

k f k f
rg

ηg
∇(p f

g − ρggD)

]
+∇ ·

[
ρg

kmkm
rg

ηg
∇(pm

g − ρggD)
]
= −q̂g

(2)

where ρg denotes the density of gas (g/cm3); SF
g denotes the gas saturation of the main

fracture; S f
g denotes the gas saturation of the secondary fracture; Sm

g denotes the gas
saturation of the matrix; kF

rg denotes the relative permeability of the gas phase of the main

fracture; pF
g denotes the capillary pressure of the main fracture; k f

rg denotes the relative

permeability of the gas phase of the secondary fracture; p f
g denotes the capillary pressure of

the secondary fracture; km
rg denotes the relative permeability of the gas phase of the matrix;

pm
g denotes the capillary pressure of the matrix; ηg denotes the gas mobility ratio; and q̂g

denotes the gas imbibition rate (g/cm3·s).
The correction factor λ in Equation (2), which is used to correct the high-velocity,

non-Darcy flow of gas in the main fracture, can be defined as [19]:

λ =
2

1 +

√
1 + 4ρgβ

(
kFkF

rg
ηg

)2

|∇pF|

(3)

where β is the empirical coefficient of Forchheimer, which can be calculated by the following
equation [19]:

β = 3.2808 × 1.485 × 109(
kFkF

rg × 10−15
)1.021 (4)

There exists fluid inflow and outflow between the two adjacent media of fractured
reservoirs, but they cancel each other in the above conservation equation. The water phase
flow rate between the triplet media can be expressed as follows:

qFf
w =

α2ρwkfkf
rw(pF

w − pf
w)

ηw
(5)

where qFf
w denotes the water flow rate from the main fracture to the secondary fracture

(g/cm3);

qFm
w =

α3ρwkmkm
rw(pF

w − pm
w)

ηw
(6)

where qFm
w denotes the water flow rate from the main fracture to the matrix (g/cm3); and

qfm
w =

α4ρwkmkm
rw(pf

w − pm
w)

ηw
(7)

where qfm
w denotes the water flow rate from the secondary fracture to the matrix (g/cm3).
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Considering the compressibility of fractures and matrix pores, a supplementary
pressure-dependent equation for porosity and permeability is required:

ϕF/f/m = ϕF/f/m
0 eCF/f/m

ϕ (pF/f/m
g −pg0) (8)

kF/f/m = kF/f/m
0 edF/f/m(pF/f/m

g −pg0) (9)

Considering the compressibility of gas and water, a supplementary pressure-dependent
equation for density is required:

ρw = ρw0eCw(pw
F/ f /m−pF/ f /m

w0 ) (10)

ρg = ρg0eCg(pg
F/ f /m−pF/ f /m

g0 ) (11)

where ρw denotes the density of water (g/cm3) and ρg denotes the density of gas (g/cm3).
The relationship between fracture width and porosity is given using the Carman–

Kozeny equation [20]:
ϕ f = nwb (12)

Considering the two-phase flow of gas and water in the fracture and matrix, a supple-
mentary constraint equation for water saturation is required:

SF/ f /m
w + SF/ f /m

g = 1 (13)

The fluid compressibility equation is: ρw = ρweCw(pF, f ,m
w −pF, f ,m

w0 )

ρg
−1 = ρg0

−1
[
1 + Cg

(
pF, f ,m

g − pF, f ,m
g0

)] (14)

In addition, due to the relatively high permeability of the fracture network, the cap-
illary force is approximately zero, and the matrix has capillary force, which can be ex-
pressed as:

pF/f
g = pF/f

w (15)

pm
g − pm

w = pm
c (16)

2.2.3. Initial and Boundary Conditions

The selected simulation unit satisfies the closed outer boundary conditions. The
bottom-hole flow pressure is calculated according to the fluid pumping equation of hy-
draulic fracturing as follows:

q̂s f =
α1ρwkFkrw

(
pw f − pF

w

)
ηwBw

=
2πkFkF

rwρw

ηwln
(

re
rw

+ S
)

Bw∆x∆z

(
pw f − pF

w

)
(17)

where Bw denotes the water phase volume factor (cm3/cm3); qs f denotes the water injection
rate (g/cm3·s); pw f denotes the bottom-hole pressure (10−1 MPa); kF denotes the absolute
permeability of the main fractures (µm2); kF

rw denotes the water phase relative permeability
of the main fractures; ρw denotes the density of water (g/cm3); ηw denotes the viscosity
of water (mPa·s); re denotes the supply radius (cm); rw denotes the well radius (cm); S
denotes the skin factor; and ∆x and ∆z denote the grid size of different directions for the
numerical model.

The initial pressure and water saturation of the matrix and fracture are assumed
to be the same in the original, undeveloped reservoir state. The pumping stage of
fracturing is simulated as a constant bottom-hole pressure injection. By adjusting the
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pressure-dependent porosity and permeability coefficients of the fracture and matrix
(Equations (8) and (9)), the injection rate and injection volume of fracturing fluid in the
model is consistent with the actual fracturing treatment. At the end of pumping, the
pressure field and water saturation distribution obtained are used as the initial conditions
to simulate the shut-in pressure decline, which can be expressed as follows:

pF
w(x, y, z, t)

∣∣∣
t=0

= pF
wi (18)

SF
w(x, y, z, t)

∣∣∣
t=0

= SF
wi (19)

pf
w(x, y, z, t)

∣∣∣
t=0

= pf
wi (20)

Sf
w(x, y, z, t)

∣∣∣
t=0

= Sf
wi (21)

pm
w(x, y, z, t)|t=0 = pm

wi (22)

Sm
w(x, y, z, t)|t=0 = Sm

wi (23)

In this model, the finite difference method is used in the discretization of the partial
differential equations of the simulation of a shale gas well after fracturing, the semi-implicit
method is used to deal with the nonlinear equations, and the Newton–Raphson iterative
method is used to solve the equations.

3. Numerical Simulation Method

The numerical model was established according to the geological and construction
parameters of a fractured horizontal well in a typical shale gas reservoir. The initial reservoir
pressure was set to 45 MPa, the length, width, and thickness were 2000, 560, and 30 m,
respectively, and a hydraulically fractured horizontal well with a lateral length of 1800 m
was located in the center of a shale reservoir. The total fracture stages were 30. In every
stage, there were six identical, transverse, hydraulic fractures with a fracture half-length of
135 m, according to the normal fracturing operations and Microseismic monitoring results
in a shale gas field in South China. The input reservoir and hydraulic fracture parameters
of the simulation model are listed in Table 1.

In this model, gas–water relative permeability and capillary pressure in shale matrix
were set according to the core experimental data [21,22]. The parameters related to the
seepage property of the main and secondary fractures were set refer to the typical flowback
model [23,24] of hydraulically fractured shale gas reservoirs. The fracturing pumping was
simulated as a water injection process, and the total pumping volume was 45,300 m3. After
the 10 d injection, the well was shut in for 80 days for soaking up.

Table 1. The input reservoir and hydraulic fracture parameters of the simulation model.

Variable, Symbol Value Variable, Symbol Value

Main fracture half-length 135 m Rock compressibility 4.4 × 10−4 MPa−1

Main fracture conductivity 8 D·cm Gas compressibility 0.03 MPa−1

Main fracture porosity 0.3 Fracturing fluid viscosity 0.8 mPa·s

Matrix permeability 7 × 10−4 mD Fracturing fluid density 1000 kg/m3

Matrix porosity 0.06 Initial water saturation 0.35

Secondary fracture permeability [23] 0.01 mD Initial reservoir pressure 45 MPa

Secondary fracture porosity [24] 0.055 Gas viscosity 0.058 mPa·s

Fracturing fluid compressibility 4.8 × 10−7 MPa−1 Secondary fracture closure coefficient [24] 0.014 MPa−1

Main fracture closure coefficient [24] 0.0087 MPa−1 Secondary fracture density [24] 3 m−2
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4. Results and Discussion
4.1. Simulation Results of Bottom-Hole Pressure Decline Characteristics

Figure 2 displays the simulated bottom-hole flowing data. The pressure decline and
derivative of pressure decline defined by Bourdet et al. [7,8] were used to draw a double
logarithmic characteristic curve, as shown in Figure 2, that presents the pressure decline
derivative. There are five characteristic slope segments with positive and negative links. It
can be seen that stage 1⃝ is controlled by the main fracture, which is in the earliest stage and
has the fastest pressure decline rate; the first V-shape (stages 2⃝ and 3⃝) is controlled by the
secondary fracture, which is in the middle stage of the soaking and the pressure decline rate
slows down. The second V-shape (stages 4⃝ and 5⃝) is controlled by the secondary fracture
and matrix, which is in the late stage of the soaking and has a slow pressure decline rate.
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4.2. Comparison of Pressure Decline Characteristic Curves

In order to identify the characteristics of pressure decline during the soaking process,
the model was used to carry out five sets of single-factor sensitivity simulations and
combined-factor simulations for the main and secondary fractures.

Figure 3a shows the length of the main fracture, which determines the duration of
stage 1⃝ and the pressure decline derivative value at point A. The larger the length of the
main fracture is, the larger the time and derivative value at point A is, and the higher the
overall level of pressure decline derivative value is in the later stage. Figure 3b shows that
the conductivity of the main fracture has a weak influence on the shape of the pressure
decline derivative.

Figure 4 illustrates that properties of secondary fractures determine the size ratio
and concave–convex degree of the two V-shapes of the sawtooth-shaped pressure decline
characteristic curve. Figure 4a shows that the density of secondary fractures determines the
depth of the V-shapes. The higher the density of the secondary fracture is, the deeper the V
is. Figure 4b shows that the width of secondary fractures determines the concave–convex
degree of the two V-shapes. The wider the width of the secondary fracture, the shallower
the V-shape is. The V-shape reduces one log cycle. Figure 4c shows the permeability of the
secondary fracture determines the duration of stage 3⃝ and the pressure decline derivative
value at point B. The larger the conductivity of the secondary fracture, the longer the
duration of stage 3⃝, and the duration stage is prolonged 1–1.5 log cycles. The smaller
corresponding time of the derivative value is at point B.
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4.3. Diagnostic Method Based on Simulated Pressure Decline Derivatives

A diagnostic method based on simulated pressure decline derivatives can be estab-
lished for the hydraulically fractured horizontal wells in the same reservoir. There are three
steps, which are as follows:

Step 1: The dimensionless pressure decline is plotted with the unit fracturing treatment
scale, including the fracturing fluid volume and stage numbers, according to the actual
monitoring bottom-hole or wellhead pressure data. The absolute value of the dimensionless
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pressure decline determines the fracture size. The larger the absolute pressure decline
value, the larger the fracture size;

Step 2: The pressure decline and its derivative are plotted on a log–log plot. Based
on the characteristic curves in Figures 3 and 4, the main fracture length can be determined
according to the pressure decline derivative value at point A and the overall level of
pressure decline derivative value. The density, width, and permeability of secondary
fractures can be diagnosed by the size ratio and concave–convex degree of the two V-
shapes of the pressure decline characteristic curve;

Step 3: Based on the above qualitative diagnosis, the quantitative calculation of fracture
properties requires the matching of the pressure decline history during soaking periods.

5. Field Case Study
5.1. Geological and Construction Overview of the H49 Platform

The H49 Platform is located in the Changning shale gas reservoir in Southwest China.
The reservoir is the Longmaxi Formation shale, with relatively developed natural fractures
and high brittleness, but a large stress difference. The initial reservoir pressure was 45 MPa,
matrix permeability was 0.0005–0.0012 mD, porosity was 0.07, and gas saturation was 0.65.
The H49 Platform deployed three horizontal wells—H49-6, H49-7, and H49-8—with 300 m
spacing. The fracturing construction amount of each well is shown in Table 2.

Table 2. Fracturing construction parameters of H49 Platform.

Well Vertical
Depth (m)

Lateral
Length

(m)

Number of
Stages

Number of
Clusters

Fluid
Volume

(m3)

Proppant
Volume

(t)

Fracturing
Time

(d)

Shut-in
Time

(h)

H49-6 2798 1840 28 192 48,280 4172 50 599
H49-7 2814 1850 27 228 48,374 3820 27 611
H49-8 2857 2064 32 254 57,808 5348 14 832

5.2. Diagnostics of Hydraulic Fracture Properties

Three wells on the H49 Platform were continuously monitored for wellhead pressure
in each well during soaking. As shown in Figure 5, well H49-8 has the largest vertical depth
and the longest duration of the initial pressure drop among the three wells, indicating
the largest fracture scale. In wells H49-6 and H49-8, the wellhead pressure drop gradient
trends are consistent at less than 0.04 MPa/h after one day of well soaking, indicating that
the reservoir properties communicated by the fractures in both wells are consistent. Well
H49-7 has a relatively large vertical depth and high-pressure location. Well H49-7 has the
largest average pressure drop gradient, which is greater than 0.04 MPa/h, indicating that
well H49-7 has a better conductivity of secondary fractures.

The pressure declines and derivatives of the three platform wells are shown in Figure 6,
and it can be seen that the characteristic curves of both wells H49-6 and H49-8 show a
sawtooth pattern. The characteristic stages 2⃝– 5⃝ are more uniform and obvious, with more
developed secondary fractures and a high degree of fracture network. Among them, stage
1⃝ of well H49-6 is short in duration and low in position, indicating the small scale of the

main fractures, while well H49-8, in contrast to well H49-6, has a long duration and high
overall position of stage 1⃝, indicating a large number of main fractures, which is consistent
with the clusters of fracturing construction. As a side well, well H49-8 is 600 m away from
well H49-6. Its fractured main fracture is still in series with well H49-6, indicating that the
main fracture extends well. This well still forms a complex fracture network. Stages 2⃝
and 3⃝ of well H49-7 are not obvious, indicating that its number of secondary fractures
is small. It can be seen that it may be related to the fact that it was fractured last in the
middle of wells H49-6 and H49-8 and was affected by the stress field. Stages 4⃝ and 5⃝
of well H49-7 are very deeply V-shaped, indicating that the width and permeability of its
generated secondary fractures are very small.
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5.3. Calculation of Hydraulic Fracture Properties

The proposed pressure decline model was used to fit the soaking pressure drop
history of three platform wells. Based on the above qualitative diagnosis, the quantitative
calculation of fracture properties requires the matching of the pressure decline history
during soaking periods, as shown in Figure 7. The fracture parameters obtained from
the history matching are shown in Table 3. The main fracture half-length is 62–90 m,
which is less than 150 m from the half-well distance, proving that the current fracturing
treatment cannot meet the requirement of the reservoir plane utilization. The density and
permeability of secondary fracture density are 3.16–4.93 m−2 and 0.05–0.08 mD, with a
given secondary fracture width of 2 mm.

As shown in Figure 8, the microseismic monitoring results gained from the field test
show the average half-lengths of the hydraulic fractures of the three wells in the H49
Platform are 116.5 m, 125 m, and 130.7 m, respectively, and the average fracture network
widths for each stage are 61 m, 48 m, and 75 m, respectively. Through comparison, it can
be found that the ratio of the main fracture half-length and secondary fracture density
explained by our proposed model to the microseismic monitoring results is consistent.
Although due to differences in interpretation principles [25,26] and further fracture closure
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during the soaking stage, the consistent interpretation results demonstrate that the fracture
network parameters explained by the proposed method can reflect the actual fracturing effect.
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Table 3. Obtained hydraulic fracture properties.

Parameters of Fracture Properties H49-6 H49-7 H49-8

Main fracture half-length (m) 62 ± 2.5 70 ± 2.5 90 ± 2.5
Main fracture conductivity (D·cm) 9 10 9

Secondary fracture permeability (mD) 0.08 0.05 0.07
Secondary fracture density (m−2) 4.21 3.16 4.93
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6. Conclusions

1. A wellbore fracture–network gas reservoir coupled fracturing shut-in pressure decline
model is proposed. The simulated pressure derivatives show a “sawtooth” shape on
a log–log plot, reflecting five fracture-dominated flow stages. Among them, stage 1⃝
is controlled by the main fracture, which is in the earliest stage and has the fastest
pressure decline rate; the first V-shape (stages 2⃝ and 3⃝) is controlled by the secondary
fracture, which is in the middle stage of the soaking and the pressure decline rate
slows down; and the second V-shape (stages 4⃝ and 5⃝) is controlled by the secondary
fracture and matrix, which is in the late stage of the soaking and has a slow pressure
decline rate;

2. The sensitivity simulation results show that the length of the main fracture determines
the duration of stage 1⃝ and the pressure decline derivative value at point A. While
the conductivity of the main fracture has a weak influence on the shape of the pressure
decline derivative, the density, width, and permeability of the secondary fractures
determine the size ratio and concave–convex degree of the two V-shapes of the
pressure decline characteristic curve;

3. Based on the pressure decline simulation, a diagnostic method is established for
analyzing the pressure decline data and calculation of the main and secondary fracture
properties of hydraulically fractured shale gas wells;

4. A field case application proves that the proposed method works well for platform
wells. For the H49 Platform, it indicates that the extension of both the main fracture
and secondary fracture is better than that of central wells. The secondary fracture of
central wells is limited, so it intends to generate simple main fractures.
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