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Abstract: Data fusion, which involves integrating information from multiple sources to achieve
a specific objective, is an essential area of contemporary scientific research. This article presents
a multimodal fusion system for object identification in point clouds in a controlled environment.
Several stages were implemented, including downsampling and denoising techniques, to prepare the
data before fusion. Two denoising approaches were tested and compared: one based on neighborhood
technique and the other using a median filter for each “x”, “y”, and “z” coordinate of each point.
The downsampling techniques included Random, Grid Average, and Nonuniform Grid Sample. To
achieve precise alignment of sensor data in a common coordinate system, registration techniques
such as Iterative Closest Point (ICP), Coherent Point Drift (CPD), and Normal Distribution Transform
(NDT) were employed. Despite facing limitations, variations in density, and differences in coverage
among the point clouds generated by the sensors, the system successfully achieved an integrated and
coherent representation of objects in the controlled environment. This accomplishment establishes a
robust foundation for future research in the field of point cloud data fusion.

Keywords: density differences; LiDAR; multimodal fusion; object identification; point clouds; point
coverage

1. Introduction

Data Fusion (DF) is a significant field in science that helps extract valuable information
from raw data, reduces the dimensions and volume of the data, and improves the data
flow. In recent years, there has been a drastic increase in the use of DF techniques, probably
driven by the explosion of data from the Internet of Things (IoT) integrated into a wide
range of real scenarios such as education, agriculture, and transportation [1,2]. Other
factors that could be contributing are the availability of low-cost sensors [3] and more
widespread access to specialized hardware and software. DF can be defined as a system
composed of a data source, operation (technique), and purpose (regression, classification,
dimensionality reduction, and clustering) [4,5]. DF is known as Multi-Modal Data Fusion
(MMDF) when multiple heterogeneous data acquired from different modalities [6,7] are
integrated to obtain more useful information for a specific task. The modalities can have
different dimensionalities and temporalities. Dimensionality refers to 1D data (e.g., data
without spatial designation), 2D data (e.g., images or videos), and 3D data (e.g., point
clouds). Temporality refers to static data (e.g., data without temporal designation) or time
series (e.g., video or data sampled at regular intervals) [8]. The developments presented in
this document focus on the fusion of high-dimensional static data (3D) with a total of four
modalities, including unorganized point clouds, where each set of coordinates represents
an individual point forming M × 3 matrices.

Researchers like Yang et al. offered an improved approach to fusing scattered point
clouds and images in autonomous vehicles. They developed a deep learning framework
called ’pointpillar’ to frame the point clouds and calibrate the Light Detection and Ranging’s
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(LiDAR) coordinate systems, as well as the camera (by projecting the LiDAR point clouds
onto the camera image) [9]. Bracci et al. discussed the challenges of fusing heterogeneous
point clouds, highlighting discrepancies in density and location accuracy. They propose a
standard ICP algorithm and surface smoothing with a fifth-order polynomial, and suggest
that semantic information can enhance the ICP results [10]. Swetnam et al. examined the
fusion of data from multiple platforms for ecosystem monitoring, identifying detection
biases between LiDAR and Structure from Motion (SfM). They employ three platforms
(small Unmanned Aerial Systems, manned aircraft, and ground-based) for their study [11].

Bokade et al. observed that as the number of considered modalities increases, the
scientific publications become scarcer. They indicate a dominant use of 1D and 2D static
data [8]. P. Ghamisi et al. [12] suggested that merging datasets from diverse sources
can produce more accurate results than using a single source of information, and that
future research on the fusion of multiple sources involving point clouds should focus on
integrating point clouds from different sources with significant differences in features,
such as point density and three-dimensional accuracy. Cheng et al. [13] pointed out
that inconsistencies in 3D data, due to the use of different device platforms with distinct
perspectives and resolutions, generate difficulties in locating specific features of scenes in
the registration process.

This study aims to examine, through quantitative and qualitative metrics, the per-
formance of different approaches and techniques used in various stages of 3D static data
fusion. This process combines information from three LiDAR devices and a ToF camera,
through a box grid filter, in a system that faces certain assembly limitations, as well as differ-
ences in density and coverage of the points captured by the sensors used. The researchers
conducted this study as part of a mining industry project with the aim of improving rock
crushing operations. The system, which will be integrated into standard rock breakers,
allows for the identification, tracking, and selective impact of rocks, optimizing mining
grinding processes. This study represents an initial stage necessary to achieve this goal and
harness the potential of multi-sensor technology in this important industrial sector.

2. Materials and Methods

This study explores the fusion of high-dimensional static data (3D) through unorga-
nized point clouds, employing multiple LiDAR sensors and a ToF camera. The proposed
data fusion system encompasses various stages, as outlined based on the works of Poux [14]
and Xiao et al. [15]: (1) data source, (2) fusion model, (3) fusion method, and (4) application.
In the following subsections, each of the stages will be described (Figure 1).

Figure 1. Stages of the proposed data fusion system.

2.1. Data Source

The alignment of the research with the objectives of the project IDeA I + D ID21I10087
has enabled the effective utilization of the LiDAR sensors and ToF cameras available in the



Processes 2024, 12, 248 3 of 16

project. These devices were specifically chosen for their capability to generate 3D data, their
high precision, and their robustness under industrial environmental conditions, which has
been fundamental in achieving the research objectives. This collaboration has optimized
resources and reinforced the coherence and relevance of the work, effectively integrating it
within the broader framework of the project IDeA I + D ID21I10087.

Three devices with LiDAR technology and a Time of Flight (ToF) camera were em-
ployed. ToF represents the operating principle of both ToF cameras and LiDAR. ToF relies
on measuring the time it takes for a signal, such as light emitted by an illumination unit,
to travel to an object and return to a detection system [16,17]. Equation (1) illustrates the
process for calculating the distance (d) of each point of interest on the object using the
measured time ( t

2 ) and the speed (u) of electromagnetic radiation [18]. However, a ToF
camera and a LiDAR differ in their methods of light emission and detection, as well as in
their spatial resolutions and typical applications.

d =
t
2
× u (1)

Table 1 provides a description of the key characteristics of the sensors, based on the
information provided by the manufacturers.

Table 1. Sensor features.

Sensors Features

OS0

A LiDAR sensor with the following characteristics: (a) 90◦ × 360◦ field of view,
(b) 35 m measurement range, (c) 0.3 m minimum measurement range,
(d) 32 channels of vertical resolution, and (e) 512, 1024, or 2048 horizontal
resolution. The sensor also has a typical precision of ±0.8 cm and a maximum of
±4 cm at 1024 at 10 Hz mode, within one standard deviation [19]

BLAZE 101

A sensor that allows image capture and 3D scanning. Here, are some features of
this device: (a) 67◦ × 51◦ field of view, (b) working range from 0.3 m to 10 m, and
(c) resolution of 640 × 480 pixels. Additionally, the sensor exhibits an accuracy of
±5 mm within a range of 0.5–5.5 m [20]

MRS6000
A LiDAR sensor that features: (a) 120◦ horizontal field of view, (b) 15◦ vertical field
of view, (c) measurement range from 0.5 m to 200 m, and (d) angular resolution of
0.13◦ in the horizontal direction and 0.625◦ in the vertical direction [21]

MRS1000
A LiDAR sensor that offers: (a) 275◦ horizontal field of view, (b) 7.5◦ vertical field
of view (with over four layers of scanning), (c) measurement limits from 0.2 m to
64 m, and (d) angular resolution of 0.25◦, 0.125◦, or 0.0625◦ [22]

The LiDAR sensors and the ToF camera used in this study exhibit notable differences
in point density and spatial coverage. These variations have a significant impact on the
performance and accuracy of the data fusion system. Therefore, it is crucial to conduct a
thorough analysis and carefully consider these disparities during the proposed stages of
the process. By appropriately addressing these differences, we ensure the attainment of
more precise and reliable results in the integration of data from the various sensors.

Figure 2a illustrates a proposed controlled scenario aimed at gathering information
from a rock (object of interest) located at a height of 122 cm. The sensors are positioned at
an identical height of 122 cm, maintaining a horizontal distance of 100 cm from the rock.
Figure 2b depicts the current physical implementation, which is based on the previously
proposed scheme.
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Figure 2. (a) Proposed test setup for a controlled scenario. (b) Actual assembly.

2.2. Fusion Model

The Luo and Kai architecture, depicted in Figure 3a, is utilized as the data architecture.
This model operates on multiple abstraction levels (signal, feature, and decision) for multi-
sensor fusion. At the signal level, raw data from sensors is directly used as input, suitable
for real-time scenarios or additional preprocessing. On the feature level, relevant extracted
features are fused to create enhanced features for various purposes. The decision level
manages processed sensor data, producing a unified result by integrating the individual
model outputs from different modalities [4,8,23].

Sensor data from X(1), X(2), X(3), and X(4) was fused as X(1,2,3,4) at the signal level.
Fusion occurred left to right, as shown in Figure 3a. This approach is suitable due to the
data’s shared structures, particularly static 3D data. Moreover, the information from each
sensor is preserved, resulting in higher accuracy in the data compared to sensors operating
independently [24].

Figure 3. (a) Luo and Kai model. (b) Network topology.

The information acquired through LiDAR sensors and the ToF camera is in the form
of point clouds or 3D data. A detailed definition of what constitutes a point cloud can be
found in the work of Ghamisi et al. in [12]. The term “cloud” indicates the spatial coherence
and disorganized nature of the set of points (with fuzzy boundaries). A point cloud is a
collection of points Pi, i = 1, . . . , n in three-dimensional Cartesian space. Each point in the
set Pi has three positional coordinates (xi, yi, zi)

T ∈ IR3. Additionally, each point may
have attributes ai, j, where j = 1, . . . , mi (where the subscript j is the number of features of
point i. These features can include, for example, the color of a spectral band, a component
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of the local surface normal vector, or a classification or segmentation identifier). These
attributes can arise from direct measurements, as well as post-processing of the data.

Point clouds fall into two categories: organized and unorganized. These categoriza-
tions depend on how point data are stored: structured or arbitrary. Unorganized point
clouds consist of a single stream of three-dimensional coordinates, with each set represent-
ing an individual point in M × 3 matrices (M is the total points). In contrast, organized
point clouds divide data based on spatial relationships, facilitating memory–spatial cor-
respondence (M × N × 3 matrices, M and N for height and width, respectively; the third
dimension encodes features like RGB values) [25]. Given the inherent flexibility of disorga-
nized point clouds, characterized by their versatility, simplicity, and ability to preserve the
original information, this category was chosen for the execution of this study [26].

2.2.1. Data Acquisition

A network topology, as depicted in Figure 3b, was configured with four sensors and a
monitoring computer interconnected through a layer-two switch, specifically the Cisco SF-
100-1618. Given that the devices were linked through a switch, the resulting configuration
aligns with a star network topology. The communication protocol utilized was IPv4 (RFC
791). Regarding DF, the network is considered centralized, as each sensor in use transmits
its detected information to a central fusion node [27].

The sensors and the monitoring computer communicate via IP in the 192.168.0.0/24
network segment. Static addressing was used. For data capture, the Python 3.9.15 pro-
gramming language was used along with the Visual Studio Code 1.74.3 text editor. The
following libraries were required to obtain data from the different sensors: ouster-sdk 0.7.1,
harvesters 1.4.2, and sick_scan_api 2.8.15.

For all four sensors, five consecutive captures were carried out. The average number
of points captured for each sensor was as follows: 202,790 for the ToF BLAZE 101 camera,
32,768 for the OS0 LiDAR, 22,128 for the MRS6000 LiDAR, and 4,404 for the MRS1000
LiDAR. Corresponding characters in Figure 4 are: (a) for the ToF BLAZE 101 camera, (b) for
the OS0 LiDAR, (c) for the MRS6000 LiDAR, and (d) for the MRS1000 LiDAR.

Figure 4. Capture of the 4 sensors: (a) ToF BLAZE 101 camera (BASLER), (b) OS0 LiDAR (OUSTER),
(c) MRS6000LiDAR (SICK), and (d) MRS1000 LiDAR (SICK).
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2.2.2. Fusion Method

This section outlines the pivotal aspects of the DF process, comprising preprocessing,
registration, and applying fusion techniques. MATLAB R2023a facilitated efficient data
handling and processing [4]:

• Preprocessing readies data for ensuing steps, spotlighting pertinent information. This
includes processes like data cleaning, normalization, and resolution reduction.

• Data registration aligns data within a common reference frame before fusion, ensuring
meaningful integration from diverse sources.

• Data fusion techniques, the core of any fusion system, involve algorithms for effective
data integration, harmonizing information from various sources.

Data preprocessing: Key aspects were considered in preprocessing, notably downsam-
pling and denoising. The approach included:

• Five captures of the scenario for each sensor (time series samples).
• Removing points at coordinates (0, 0, 0) within a one-centimeter radius and discarding

invalid values (Inf or NaN coordinate values).
• Implementing denoising and downsampling in each capture.
• Subsequently, registering and combining information from the five captures of each sensor.

Table 2 offers an overview of the utilized downsampling techniques.

Table 2. Downsampling techniques.

Techniques Description

Random The “random” technique allows generating a randomly subsampled
point cloud.

Grid Average

The “grid average” technique utilizes a box grid filter to generate a
condensed point cloud. This process involves defining a bounding
cube that encapsulates the complete point cloud and partitioning it
into grid cells of predetermined dimensions. Points within each grid
cell are aggregated by calculating the average of their coordinates,
normal properties, and colors.

Nonuniform Grid Sample

The “nonuniform grid sample” technique achieves point cloud
reduction by utilizing a nonuniform box grid filter. This approach
involves randomly selecting a single output point from each box
when a maximum number of points is set for each nonuniform grid.

Lastly, Table 3 outlines the approaches used for outlier removal during the analysis.

Table 3. Denoising techniques.

Techniques Description

First approach

An implemented filter calculates the average distance to nearest neighboring
points within a predefined neighborhood for each point. Evaluation follows
to classify points as outliers. Points with an average distance to their nearest
neighbors exceeding a set threshold, defined as a standard deviation from the
mean of all points’ average distances, are identified as outliers.

Second approach

A median filter is separately applied to the “x”, “y”, and “z” coordinates of
each point, resulting in a filtered point cloud. The filtered value of each point
is determined as the median of its neighborhood’s values, with no
zero-padding at the cloud edges. This approach operates solely with
available points and information within each point’s neighborhood.

Data registration: The proposed system involved two sets of point cloud registrations
conducted at different stages. Initially, during preprocessing, registration, and fusion of
five files from each sensor were performed to accumulate a more informative scenario
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perspective. Subsequently, another registration of the point clouds from the four sensors
was executed to capture complementary views from these devices (this corresponds to the
second registration phase).

Point cloud registration studies commonly utilize a coarse-to-fine registration strategy.
Coarse registration defines initial parameters for transformation between two point clouds
through feature-based methods (points, lines, surfaces, or combinations). In contrast, fine
registration aims for maximal overlap using iterative approximation techniques [13,28,29].

For the first registration, coarse registration was not needed as captures from the same
sensor share similar coordinate systems. In the second registration, considering system
knowledge, coarse registration was performed by transforming BLAZE101, MRS6000, and
MRS1000 sensor coordinates relative to the OS0 sensor. This transformation employed a
pre-defined transformation matrix (Equation (2)).

R11 R12 R13 Tx
R21 R22 R23 Ty
R31 R32 R33 Tz
0 0 0 1

 (2)

If a point P is selected from any point cloud in the database, the transformed point,
denoted as P′, can be derived using Equation (3). Here, T represents the translation vector,
and R stands for the rotation matrix of international residents.

P′ = RP + T (3)

Table 4 outlines the techniques employed for fine registration in both proposed regis-
trations [13].

Table 4. Register techniques.

Techniques Description

ICP

The ICP Algorithm uses quaternion methodology, employing a 4D vector
to encode rotation and angle parameters. This approach directly addresses
rigid body transformation through a robust mathematical process. By
selecting points from the data set and finding their corresponding points in
the reference set, the algorithm minimizes the distance between these pairs
to achieve transformation. The procedure iterates, recalculating the closest
points until the objective function stabilizes, resulting in the registered data.

CPD

The CPD Algorithm aims to minimize the discrepancy between input point
clouds by finding the optimal rigid transformation. Based on probability
theory, CPD assumes coherent point distribution according to an underly-
ing probability distribution. Using iterative methods, the algorithm esti-
mates transformation and adjusts the probability distribution for precise
alignment. This approach is valuable for handling incomplete, noisy, or
differently dense data.

NDT

The NDT Algorithm transforms point cloud data into a differentiable 3D
grid using a continuous probability distribution. This function models the
probability of each point’s position within the grid cell using a normal dis-
tribution. The Hessian matrix optimizes the normal distribution probability,
enabling point cloud registration.

DF technique: The box grid filter was utilized for data fusion, allowing the fusion of
point clouds within a specified 3D frame. This filter divides the three-dimensional space into
uniform cells, associating each point from the clouds with its respective cell. Subsequently,
an analysis is conducted within each cell to create a unified representation of its contained
points, often achieved through averaging techniques [30–32]. Throughout this study, two data
fusion instances were executed during the point cloud registration stages. The initial fusion
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transpired after registering the five captures of each sensor in the preprocessing phase. At this
point, the individual sensor point clouds were integrated to establish a unified environmental
representation. Subsequently, the second fusion capitalized on the complementary perspectives
of the four sensors, further refining the representation of the scenario through the combination
of the previously fused point clouds (Figure 5).

Figure 5. Data fusion performed with a box grid Filter. The image illustrates the behavior of the filter,
with individual cells represented in green.

2.2.3. Application

The IDeA I + D ID21I10087 project focuses on the mining industry with the aim
of improving rock crushing operations. The proposed system, intended for integration
in standard breaker hammers, is designed to facilitate the identification, tracking, and
precise selection of rock impacts. This innovation is expected to optimize processes at
mining plants, contributing to increased efficiency and reduced costs. Moreover, the
implementation of a standardized kit will allow easy integration into various types of
machinery, capitalizing on multi-sensor technology to enhance productivity and quality in
this vital sector. The results presented in this document, in line with the specific objectives
of IDeA I + D ID21I10087, represent an essential initial phase for future analyses. These
will focus on selecting suitable 3D dimensionality modalities for environments with dust,
light variations, and fog. Later, 2D and 1D dimensionality modalities will be integrated to
enrich the MMDF system. Upon the complete development of the MMDF system, various
methods to determine the most effective impact points based on the specific shapes of rocks
will be explored.

Parallel research has delved into similar domains. Lampinen et al. introduced an
autonomous rock-breaking system validated in a large-scale mining environment. This
setup involves a commercial rock breaker equipped with high-precision joint angle en-
coders and a 3D visual perception system based on YOLOv3. This autonomous approach
minimizes human intervention, advancing automation in mining. However, their research
indicated that the sensorization system might not be suitable for the challenging environ-
mental conditions expected in the target application [33]. Another pertinent investigation
by Correa et al. proposed a strategy to address issues associated with impact hammer oper-
ations in underground mining. These challenges include ore passage blockages, leading
to fragmentation delays and hindering the mining production chain. Traditional hammer
operation also faces operator perception limitations, as visual camera-based sensors offer
only a 2D representation of the environment. Notably, their experiments were conducted
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under laboratory conditions with two LiDARs, limiting the assessment of adverse condition
impact on result accuracy [34].

3. Results

This section presents the results obtained in the various stages of the MMDF system,
which include downsampling, denoising, registration, and fusion. Throughout the study,
various techniques and approaches were tested and evaluated for each of these stages,
with the goal of determining the most effective ones for the proposed system. For data
analysis, a combination of the open-source software CloudCompare version 2.13.alpha and
the Matlab platform was used, tools that facilitated the generation of the metrics presented
in this section.

It is important to highlight that the results presented in this document represent
a key initial phase of our research, which is aligned with the objectives of the project
IDeA I + D ID21I10087. The current focus is on selecting modalities for sensors that
provide 3D information, such as LiDAR and ToF cameras, in environments where visibility
may be affected by dust, fog, or extreme light variations. The fusion of point clouds
within this approach will allow for precise data analysis in complex mining environments.
Additionally, as part of later stages, it is planned to integrate 1D and 2D dimensionality
modalities to develop an advanced data fusion architecture. This will facilitate the precise
identification of impact points in rocks for mining comminution tasks, thereby contributing
to improved operations and efficiency in the mining sector.

Before employing downsampling and denoising, initial filtering was conducted on
the point clouds to remove invalid data points and those located at coordinates (0, 0, 0).
The point cloud from LiDAR MRS1000 witnessed a reduction of 25.84%, while LiDAR OS0
experienced a decrease of 16.66%. In contrast, LiDAR MRS6000 saw a reduction of 1.65%,
and the ToF camera remained unaltered at 0%.

3.1. Downsampling

Experimental individual tests were conducted on several captures to ascertain the
parameters of each utilized downsampling technique (Table 5):

• Random technique: A parameter was defined to govern the proportion of input data
to be retained by the function. Visual inspection guided the determination of the
reduction value for the point cloud that balanced the data’s representativeness with
the object of interest’s clarity, specific to the used sensors.

• Grid Average technique: A parameter was set to dictate the size of each cell within the
three-dimensional grid. An empirical value of 1 cm (0.01) was adopted based on the
dimensions of the point clouds derived from the four sensors.

• Nonuniform Grid Sample technique: A parameter of 6 was chosen, reflecting the
maximum number of points permissible within each grid cell during the resolution
reduction process. This value was selected as it meets the minimum requirement for
applying this technique.

Table 5. Downsampling technique parameters and grid average results for four sensors.

Sensors Random Grid
Average (m)

Nonuniform
Grid Sample

Average
Points

Points
Removed

OS0 0.8 0.01 6 27.309 3.493
BLAZE 101 0.4 0.01 6 202.785 176.033
MRS6000 0.8 0.01 6 21.763 9.162
MRS1000 0.8 0.01 6 3.266 1.165

The choice of the downsampling technique was based on two essential criteria: the
data distribution histogram and the correlation between visual inspection and the reduction
in the number of points. For the histogram, the number of neighbors that a point has within
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a radius of 1 cm (0.01) was considered. Figure 6 presents four histograms of a capture from
the ToF camera, to which the three previously mentioned preprocessing techniques were
applied. With the Grid Average method, a favorable balance was achieved between the
representation of points on the object of interest and their reduction.

Figure 6. Block diagram of the system components. The figure shows the histogram and the amount
of data obtained from a capture of the ToF camera (a), to which three downsampling techniques were
applied: (b) Random, (c) Grid Average, and (d) Nonuniform GridSample. In (e), the original point cloud
is visualized, and in (f), the subsampled point cloud using the Grid Average method is displayed.

Table 5 shows the results obtained from the sensor captures when applying the Grid
Average technique during downsampling. A reduction of 86.81% was achieved for the ToF
camera, 42.10% for the LiDAR MRS6000, 35.67% for the LiDAR MRS1000, and 12.79% for
the LiDAR OS0.

3.2. Denoising

Concerning the two adopted denoising methods, the criteria underlying the parameter
selection for each of them are outlined below (Table 6):

• First approach: A neighborhood parameter was assigned to compute the average
distance to the nearest neighbors of all points. To avoid excessive data reduction—an
objective incongruent with this preprocessing phase, where the focus is solely on
outlier elimination—a neighborhood value of 1 was chosen.

• Second approach: Given the point cloud’s unorganized nature, a radial neighborhood
method was employed, forming a sphere around each point. For the radius value, a
percentage of the smallest dimension dispersion of the point cloud was selected to
maintain accuracy while reducing noise.

The first approach was favored due to its visual alignment with the goal of retaining
object-of-interest points while eliminating outliers (Figure 7). Table 6 displays the outcomes
of employing the first denoising approach on sensor captures. Reduction percentages were
as follows: 4.21% for LiDAR MRS6000, 1.43% for LiDAR MRS1000, 0.99% for LiDAR OS0,
and 0.43% for the ToF camera.
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Table 6. Denoising approach parameters and average filtered points for four sensors.

Sensors
First, Approach

Second, Approach (m) Average Points Average Filtered Points
First, Parameter Second, Parameter

OS0 1 1 0.0481 23.817 235
BLAZE 101 1 1 0.0433 26.752 114
MRS6000 1 1 0.0520 12.600 530
MRS1000 1 1 0.0512 2.101 30

Figure 7. Point cloud from the OS0 sensor, filtered through two denoising approaches. (b) First
approach and (a) second approach.

3.3. Registration

As previously established, it was not necessary to perform a coarse registration for the
first type of registration due to the similarity of the coordinates obtained from the same
sensor. However, about the second type of registration, a transformation matrix based
on prior empirical knowledge of the assembly was used. The transformation matrices for
the BLAZE101, MRS6000, and MRS1000 sensors about the OS0 sensor can be consulted in
Equation (4), Equation (5), and Equation (6), respectively. It is important to note that due to
the specific capture characteristics of the LiDAR OS0 sensor, it was necessary to raise this
sensor approximately 20 cm above compared to the other sensors. Before performing the
empirical registration, a translation was performed on the “z” axis for the point clouds of
the OS0 sensor, which can be observed in Equation (7).

0.9972 −0.0663 −0.0348 0.0140
0.0662 0.9978 −0.0023 0
0.0349 0 0.9994 0.0260

0 0 0 1

 (4)


0.9972 −0.0663 −0.0348 0.0140
0.0662 0.9978 −0.0023 0
0.0349 0.9994 0 0.0260

0 0 0 1

 (5)


0.9972 −0.0663 −0.0348 0.0140
0.0662 0.9978 −0.0023 0
0.0349 0 0.9994 0.0260

0 0 0 1

 (6)
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1 0 0 0
0 1 0 0
0 0 1 0.1850
0 0 0 1

 (7)

The results of the first fine registration, which involved the registration of five captures
from the same sensor, are shown in Table 7. The chosen parameters for these tests are
outlined below:

• ICP: All parameters were retained at their default values.
• CPD: All parameters were maintained at their default settings. However, the regis-

tration aimed to achieve a rigid transformation to prevent any deformation in the
analyzed objects.

• NDT: All parameters were kept at their default values. For this technique, it was
necessary to specify the dimension of the three-dimensional cube that voxelized the
reference point cloud (captures from the OS0 sensor) as a positive scalar number. The
following values were assigned: 0.5 for the OS0 sensor, and 0.1 for the BLAZE 101,
MRS6000, and MRS1000 sensors.

Table 7. First registration. RMSE error of the three techniques used for fine registration performed for
the four sensors.

Sensors ICP (m) CPD (m) NDT (m)

OS0 0.0187 0.0174 0.0178
BLAZE 101 0.0029 0.0033 0.0037
MRS6000 0.0092 0.0090 0.0093
MRS1000 4.4457 × 10−16 3.2150 × 10−16 7.8324 × 10−5

According to the RMSE values obtained, the CPD technique was selected for the
registration process of the point clouds of the three LiDARs. For the ToF camera, the ICP
technique was chosen for registration.

In the second point cloud registration phase, a fine registration test labeled as “A” was
conducted, retaining the conditions outlined earlier. However, for the NDT technique, the
default cube size of 0.5 was employed (Table 8). Despite achieving minimal RMSE error through
the ICP registration method to align Blaze-101 sensor data with respect to the OS0 sensor,
the outcomes did not align with anticipated expectations. Consequently, an additional test,
labeled “B”, was undertaken. In test “B”, the transformation matrix from coarse registration
was employed as an initial matrix for fine registration. This approach was exclusive to ICP
and NDT techniques due to their compatibility with this calculation approach. The goal was to
enhance registration accuracy and achieve more satisfactory results.

Table 8. Second registration. RMSE error of the three techniques used for fine registration performed
on the sensors with respect to the LiDAR OS0.

Sensors
ICP (m) CPD (m) NDT (m)

A B A A B

OS0—BLAZE 101 0.1894 0.1237 0.2802 0.2367 0.2713
OS0—MRS6000 0.1583 0.1027 0.2867 0.2382 0.1401
OS0—MRS1000 0.1637 0.0600 0.2382 0.1858 0.0665

Despite test “B” achieving a significant reduction in RMSE and improving data align-
ment during fine registration, it was determined that the results did not fully meet the
expectations set for this stage of the process. Consequently, it is acknowledged that test
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“B” represents a promising methodology for the automation of registration, but further
research is needed to tailor it to the specific requirements of this study.

3.4. Fusion

For the first fusion, a three-dimensional frame dimension was chosen in the filter that
did not increase the average number of points of the captures of each sensor. As for the
second fusion, a default value of 1 cm was used, considered appropriate based on the
spatial distribution of the point clouds used (Table 9).

Table 9. Three-dimensional frame dimension adjusted for the four sensors during the two point
cloud fusions performed.

Sensors First Fusion (m) Second Fusion (m)

OS0 0.026 0.010
BLAZE 101 0.010 0.010
MRS6000 0.015 0.010
MRS1000 0.010 0.010

Figure 8a presents a detailed isometric view, highlighting the data fusion process
from the four sensors. This view emphasizes the comprehensive integration of sensor data.
Figure 8b offers a frontal view of the object of interest within the controlled environment,
serving as a basis for comparison. Finally, Figure 8c shows the frontal view of the result
achieved after the fusion of data from the four sensors.

Figure 8. (a) Isometric view of the fusion of the four sensors used. (b) Front view of the object of
interest in the controlled scenario. (c) Front view of the fusion of the four sensors used.

4. Discussions

In this section, we analyze the outcomes of the point cloud fusion process in the
multimodal system. This analysis encompasses quantitative and qualitative results, along
with discussions about limitations and avenues for future enhancements:

• Unorganized point clouds have attributes such as generality, simplicity, and the
capacity to preserve original data. However, they possess limitations like irregular
and dispersed distribution, hampering efficient processing and analysis due to the lack
of order. This can undermine computational efficiency and hinder the utilization of
inherent geometric properties, limiting advanced analysis and technique application
based on data structure.
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• Preprocessing, involving the removal of invalid values and origin-based points, is
crucial. This step showcased point cloud reduction without distorting the object’s
general shape in the scene.

• In the downsampling phase of the MMDF system, various techniques were evaluated
to identify the most suitable one. Three main methods were considered: Random,
Grid Average, and Nonuniform Grid Sample. The Random Technique proved efficient
in reducing the density of the point cloud. Meanwhile, the Grid Average Method was
particularly effective in preserving the shape of the point cloud. The Nonuniform
Grid Sample Technique, in turn, maintained the accuracy of normals through the
original data, crucial for applications dependent on this information. The selection
of the downsampling technique was based on an analysis of the data distribution
histogram and the correlation between visual inspection and point reduction. Among
these, the Grid Average method was found to be the most effective for the system,
achieving an ideal balance between maintaining the clarity of the object of interest and
the representativeness of the data.

• With regard to the adopted denoising methods, two main approaches were used. The
first approach employed a neighborhood parameter to calculate the average distance
to the nearest neighbors of each point, choosing a neighborhood value of 1 to avoid
excessive data reduction and focusing solely on outlier elimination. This method was
preferred due to its visual alignment with the goal of retaining object-of-interest points
while eliminating outliers. The reduction percentages with this approach were 4.21%
for LiDAR MRS6000, 1.43% for LiDAR MRS1000, 0.99% for LiDAR OS0, and 0.43%
for the ToF camera. The second approach, particularly effective when point density
is high, retained the point count but smoothed the data to remove outliers, using a
radial neighborhood method that formed a sphere around each point. Despite its
effectiveness, this method struggled with dispersed or distant outliers.

• In the first registration, no algorithms were needed for coarse registration due to
similar coordinate systems among same-sensor samples. While the CPD technique
demonstrated a slightly lower RMSE error in the first fine registration, no significant
distinction was apparent when compared to the ICP and NDT techniques. Further-
more, it is important to highlight that the CPD technique resulted in higher compu-
tational costs. For the second coarse registration, manual adjustment of BLAZE-101,
MRS6000, and MRS1000 sensor point clouds relative to the LiDAR was performed
based on system knowledge. The study employed the LiDAR OS0 as a reference
due to its suitable point density and coverage. In the second fine registration tests
(A and B), expectations were not fully met, but test B showed promise in addressing
discrepancies in the first (test A) and achieving better alignment of Blaze-101, MRS100,
and MRS6000 sensors with OS0. Additionally, MRS1000 and OS0 alignment was
observed, mainly due to similar data capture in certain areas, aiding registration.

• This study is part of the IDeA I + D ID21I10087 project, which focuses on improving
rock crushing operations in the mining industry. Our work significantly contributes to
this objective by implementing multiple sensor technology for precise rock identifi-
cation and selection, even under challenging visibility conditions such as high and
low light, fog, and dust. The results obtained are a crucial initial phase, laying the
foundation for future analyses focused on selecting appropriate 3D dimensionality
modalities for these challenging environments. Additionally, the integration of 2D
and 1D dimensionality modalities will be explored, with the aim of fully developing
the MMDF system and determining the most effective impact points based on the
specific shapes of the rocks.

5. Conclusions

The article has successfully presented a multimodal point cloud fusion system that
efficiently integrates LiDAR sensors and a ToF camera. This system has demonstrated its
ability to effectively identify objects in a controlled environment, even with significant
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differences in point density and coverage. The techniques used for resolution reduction
and noise removal have been key to improving data quality before fusion, which in turn
has increased the system’s accuracy. Furthermore, the registration techniques have ensured
precise alignment of sensor data in a common coordinate system, which is essential for a
coherent and detailed representation of objects.

The system’s ability to effectively merge data opens new possibilities for compre-
hensive views and detailed analysis. This includes identifying suitable impact areas in
the crushing of mining rocks and the possibility of conducting analysis for the selection
of modalities in adverse conditions, as well as evaluating the integration of 1D and 2D
dimensionality modalities.

This system holds great potential for industrial applications, especially in improving
milling processes, aiming for higher efficiency and cost reduction. Looking forward, there
is an expectation to expand the system’s use to more diverse and complex environments,
significantly broadening its applicability. Future research will focus on exploring more
sensors and developing advanced techniques to further improve precision and potential in
object identification.
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