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Abstract: Aroma partitioning in food is a challenging area of research due to the contribution of
several physical and chemical factors that affect the binding and release of aroma in food matrices.
The partition coefficient measured by the Kmg value refers to the partition coefficient that describes
how aroma compounds distribute themselves between matrices and a gas phase, such as between
different components of a food matrix and air. This study introduces a regression approach to predict
the Kmg value of aroma compounds of a wide range of physicochemical properties in dairy matrices
representing products of different compositions and/or processing. The approach consists of data
cleaning, grouping based on the temperature of Kmg analysis, pre-processing (log transformation and
normalization), and, finally, the development and evaluation of prediction models with regression
methods. We compared regression analysis with linear regression (LR) to five machine-learning-
based regression algorithms: Random Forest Regressor (RFR), Gradient Boosting Regression (GBR),
Extreme Gradient Boosting (XGBoost, XGB), Support Vector Regression (SVR), and Artificial Neural
Network Regression (NNR). Explainable AI (XAI) was used to calculate feature importance and
therefore identify the features that mainly contribute to the prediction. The top three features that
were identified are log P, specific gravity, and molecular weight. For the prediction of the Kmg in dairy
matrices, R2 scores of up to 0.99 were reached. For 37.0 ◦C, which resembles the temperature of the
mouth, RFR delivered the best results, and, at lower temperatures of 7.0 ◦C, typical for a household
fridge, XGB performed best. The results from the models work as a proof of concept and show the
applicability of a data-driven approach with machine learning to predict the Kmg value of aroma
compounds in different dairy matrices.

Keywords: aroma release; machine learning; regression; explainable artificial intelligence; food
reformulation

1. Introduction

Two significant issues facing contemporary societies are diet-related health conditions
and global climate change. These issues are prompting shifts in food composition. First,
to mitigate health risks and expenses linked to cardiovascular diseases, obesity, and dia-
betes, it is necessary to reduce the levels of fat, salt, and sugar in our diets. Second, there is a
trend toward replacing animal-based proteins with plant-based proteins due to animal wel-
fare and environmental concerns. However, lasting changes in dietary habits are contingent
on alternative products replicating the sensory qualities of their traditional counterparts.
Therefore, comprehending how changes in composition affect aroma perception is crucial
for addressing today’s global challenges.
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Extensive research has been conducted on the topic of aroma release to explain the
perception formed in the brain. Aroma perception is a complex phenomenon as it de-
pends on physiological parameters showing large inter-individual differences (e.g., saliva,
breathing) [1], and it shows cross-modalities with our other sensory inputs, i.e., texture and
taste. However, from the food perspective, the release mainly depends on the interactions
between aroma compounds and ingredients of the food (fat, carbohydrates, proteins, etc.)
and the food environment (pH, temperature). The strength of these interactions can be
quantified by the Kmg partition coefficient, defined as the quotient between the aroma
concentration in the food and the concentration in the headspace above the food [1]. The
Kmg value is determined in equilibrium; thus, it describes the thermodynamic end state.
However, it also determines the kinetics of aroma release as the release rate is higher for
aroma compounds showing weak interactions with the matrix [2].

Altering a food’s composition, such as reducing its fat content, significantly impacts
its aroma profile due to the varying interactions each aroma compound has with the fat
phase [3]. Understanding the Kmg value of these compounds in the altered composition is
essential. This knowledge, combined with the concentration of the aroma compound in
the food, allows for the estimation of the aroma concentration that may be released during
consumption [4]. Predicting how aroma partition changes with composition alterations is
key to the acceptance of these reformulated food products [5–8].

In the realm of food technology, while basic physical principles are often understood,
the complexity of food matrices necessitates a largely empirical approach to research [9–14].
Machine learning offers a solution to bridge this gap as it can integrate foundational
knowledge with extensive empirical datasets to create predictive models. Comprehending
these models is vital for applying insights to the development of foods that are both healthy
and sustainable. Machine learning has shown a good result in similar applications of food
processing [15–17]; however, it has not yet been applied in aroma perception.

In our previous publication, we described a concept for aroma prediction using
machine learning and explainable artificial intelligence (XAI) [18]. This article provides the
first exploratory analysis of this concept. It extends the previous publication by showing
how to apply the concept using machine-learning-based regression (This paper integrates
parts of the previous publication [18] in Sections 2 and 3. Sections 4–6 contain solely
completely new content), if you insist to keep this information, please kindly move this
part to Section 1 of this manuscript). Hence, we present an approach for establishing a
regression model that uses machine learning to predict the Kmg value of aroma compounds
in dairy matrices. Additionally, we conduct extensive literature research on the current
state of aroma binding modeling. We further utilize explainable artificial intelligence (XAI)
to explain the results of the machine learning analysis. The insights from this study will be
the basis to further develop a universal aroma interaction prediction model that allows for
fast and easy reformulation of food products.

The remainder of this paper is structured as follows. After this introduction, we
describe relevant concepts in Section 2: aroma–matrix interaction, prediction of aroma–
matrix interactions, and machine learning. We give an overview of the current research in
the fields of aroma binding and XAI in Section 3. Then, Section 4 describes the proceedings
to create the regression models. Section 5 presents the evaluation of the models and critically
analyzes the results, exploring their implications for the broader field. Furthermore, we
consider any limitations of the study and suggest avenues for future research. Finally,
Section 6 concludes with deriving future work.

2. Background

In this section, we present several important concepts for understanding the remainder
of the paper. The topics include overviews on aroma–matrix interaction, approaches to
predict the aroma–matrix interaction, and the basics of machine learning.
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2.1. Aroma–Matrix Interaction

Aroma compounds can interact with food ingredients in different ways; interactions
such as hydrogen bonds, electrostatic interactions, van der Waals, or hydrophobic interac-
tions, being the most common ones, will be the focus of this project, as they determine the
aroma perception of food [3]. Figure 1 illustrates the following different processes involved
during the aroma release from a food:

1. Static Aroma Release: The aroma partition coefficient describes the state in closed
packaging; therefore, the first orthonasal impression of the food is determined by the
aroma concentration in the headspace cg;

2. Dynamic Aroma Release: During oral processing, the food is cooled down or warmed
up to a physiological temperature, mixed with saliva, and mechanically processed [4].

Figure 1. Physical processes influencing aroma perception of food.

These processes lead to a fast release of the reversibly bound aroma compounds in the
food (cm), leading to retronasal aroma perception. This is why knowing real concentrations
in the matrix and headspace, calculated from the Kmg value, is the basis for the development
of reformulated foods with a similar aroma perception to the original.

2.2. Prediction of Aroma–Matrix Interactions

Aroma–matrix interactions depend on the chemical properties of the aroma compound
on the one hand and the composition and processing of the food on the other. In a nutshell,
all prediction models are built up similarly. First, the dominating mechanism of interaction
with the studied food compound is determined, e.g., hydrogen binding or hydrophobic
interactions. Second, a coefficient needs to be found that quantifies the ability of the aroma
compound for these interactions. In the case of hydrophobic interactions, this is often
the log P value [19], which describes the logarithmic partition ratio between octanol (co)
and water (cw) (see Equation (1)). The log P is a dimensionless measure for the ratio of
a compound’s concentrations in two immiscible phases. It is crucial for understanding
the lipophilicity of a molecule. The concentration of octanol and water for the relation
is measured in mg/kg. Moreover, the carbon chain length of the organic molecules is a
relevant parameter for hydrophobicity [10].

logP = log(co/cw) (1)

Third, the method of partial least square regression (PLSR) is used to find the correla-
tion function to link the coefficients with the correct weights to the output, the Kmg value.
This method is called the quantitative structure property or activity relationship (QSPR or
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QSAR) [20,21] as it uses the information of the chemical structure to predict a coefficient of
functionality, in this case, the aroma–matrix interaction.

The influence of food ingredients on the Kmg value has also been extensively stud-
ied [3]; however, most studies were conducted focusing on one ingredient, for example,
β-lactoglobulin [19,22]. However, this knowledge is only a basis for understanding aroma–
matrix interactions of complex food. Reformulating foods needs a model able to describe
and compare aroma partition in real foods containing lipids, proteins, carbohydrates, salts,
and water. Fat, for example, can bind many more aroma compounds than proteins [23,24].
Additionally, the inclusion of a gas phase also significantly changes aroma binding in
foods [2]. This is why the number of parameters influencing aroma–matrix interactions in
real foods is larger than that in the simplified models described in the scientific literature.

In addition to the compositional complexity, food processing also influences aroma–
matrix interactions. Heating steps influence protein conformation, thus influencing possi-
ble binding sites of aroma compounds [5,6]. Microbiological fermentation steps are also
relevant as they often decrease the pH value. If electrostatic interactions bind aroma com-
pounds, they will be affected by changes in pH [7]. Additionally, the protein conformation
depends on pH if denaturation takes place. This process can also be caused by changes in
salt content [8].

2.3. Machine Learning Basics

Machine learning methods are used to find and describe relationships between dif-
ferent attributes in a large dataset to predict, classify, or forecast one or more output
parameters. In this paper, we focus on supervised machine learning techniques. Hence, we
apply an existing dataset with various variables, called features, and define one dataset as
the class. In the case of regression, which is the focus of this work, the class is a numerical
value. The machine learning algorithm then follows a specific defined approach to deter-
mine patterns between the values of the features and the corresponding value of the class.
Using those patterns, the learner defines a machine learning model, which can be later used
by feeding in new data and predicting the value for the class. In this paper, the features of
the machine learning models are measurements of chemical analyses and compounds. As
a class, we set the measured Kmg value.

A typical machine learning pipeline includes the following process steps. First, the rel-
evant data must be gathered. Second, the data must be inspected and potentially cleaned,
i.e., by handling missing values, removing duplicates, and correcting errors. Further, pre-
processing the data, e.g., through normalization or transformation of variables, improves
the data quality. Third, feature selection and engineering support the selection of the
most relevant features and potentially create new features to improve model performance.
Fourth, the data are divided into datasets for training and testing to ensure the model
can be evaluated on unseen data. Then, the training of the models starts by choosing
appropriate machine learning algorithms and training the models on the training dataset,
adjusting parameters as necessary. Finally, the models’ performance is evaluated on the
testing set using appropriate metrics (like accuracy, precision, recall, and F1 score for classi-
fication problems or Coefficient of Determination (R2), Mean Absolute Error (MAE), and
Root-Mean-Squared Error (RMSE) for regression). We will describe the implementation of
these steps for our study in detail in Section 4.

3. Related Work

In the following, we discuss related work. The section is separated into two subsections.
First, we explore research in the field of aroma partitioning that is relevant to this study.
Second, we discuss machine learning applications for food processing that exhibit an
additional value.
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3.1. Modeling Aroma Partitioning

First, we introduce studies that show the current research within the intersection of
olfactometry and machine learning. Lötsch et al. [25] showed applications of olfactomet-
ric data with a set of unsupervised and supervised algorithms for pattern-based odor
detection and recognition, odor prediction from physicochemical properties of volatile
molecules, and knowledge discovery in publicly available big databases. Two different ap-
proaches to predict the structure–odor relationship with machine learning were conducted
by Schicker et al. [26]—who developed a classification algorithm that quantitatively assigns
structural patterns to odors—and Bo et al. [27], who used deep learning on the structural
features for a binary two-class prediction of the odors. It was possible for Lee et al. [28]
to generate a principal odor map by constructing a message passing an artificial neural
network (NN) to map chemical structures to odor percepts that enable odor quality pre-
diction with human-level odor description performance and outperform chemoinformatic
models. The principal odor map represents perceptual hierarchies and distances and can
detect previously undetected odorants.

The approach using several machine learning regression methods as powerful tools
that can significantly reduce the time and resources needed to simulate complex systems is
established in many scientific fields, as shown by Jain et al. [29], who used an array of ML
regressors to forecast the performance of microwave absorption. In contrast, the amount
of research on aroma partitioning using machine learning regression methods is limited.
In the following, we give an overview of the field of matrix–flavor interactions. The hill
models [9] are the basis for describing a flavor compound with proteins under equilibrium
conditions. These have been advanced by constructing models that use PLSR as a function
of the molecular descriptors [10]. Further, a mathematical model for flavor partitioning
in protein solutions has been developed and employed for a practical dairy system by
Viry et al. [11]. Weterings et al. [12] classified the different behavior of aroma release
based on models of interfacial mass transfer. The mechanistic knowledge from mass
transfer and aroma release kinetics is used to explain the impact of viscosity on aroma
release. Zhang et al. [13] elaborated on the effects of protein properties and environmental
conditions on flavor–protein interactions. The binding behavior of flavors to all major food
ingredients and their influences on flavor retention, release, and perception were collected
by Chen et al. [14]. In terms of improving the quality of food reformulation, they showed
practical approaches to manipulating interactions.

Many individual studies have determined the partition coefficient for different com-
binations of plant proteins and aroma compounds [30–33]. Although many studies have
explored these interactions, modeling the aroma partitioning of plant-based proteins has
only recently been attempted [34,35]. The aroma partitioning models were based on math-
ematical models contained in [13] and were fitted to experimental data for four plant
proteins with a variety of esters, ketones, and aldehydes.

This emphasizes that current research focuses on the exploration of aroma–protein
interaction mechanisms but not on the use of underlying data to predict these interactions.
To define our research in contrast to that of others, we take one of the few examples that
used machine learning to develop aroma prediction models. Wang et al. [36] developed
models that can predict the flavor of a specific compound in beer and its retention index
value, which is used in gas chromatography to compare and identify compounds. They
aimed to determine the relationship between beer flavor and molecular structure with a
classification algorithm and use regression models on the relative measure of the retention
index for the identification of volatile compounds. Our approach uses a database with
physicochemical properties and experimental parameters to predict matrix–aroma interac-
tions on the absolute measure of the Kmg to provide insight into the retention mechanism
and to achieve an efficient and robust reformulation prediction model. The main difference
is that Wang et al. [36] created prediction models to describe and categorize flavors to build
a database. In contrast to this, we aim to extract and transfer knowledge from a database to
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be able to dynamically describe the physicochemical relationships between food matrices
and aroma compounds.

3.2. Machine Learning for Food Processing

In the food domain, big data methods are already being applied in several fields, such
as agricultural production, product innovation, food quality, and food safety [37]. For ex-
ample, Internet of Things (IoT) and big data analysis in agriculture can decrease the usage
of herbicides by crop and weed imaging [38]. Food safety can be increased by traceability
through blockchain technology, which modernizes the supply chain [39], and food waste
can be reduced by using intelligent packaging indicating the degree of freshness [40]. Often,
these techniques integrate machine learning techniques for data analysis.

Machine learning can hold the key to determining the most influential factors and
their dependencies for a complex process such as aroma release, which is influenced by
various parameters from the aroma and food side. The physical models predicting aroma
release presented so far focus on specific protein–aroma interactions, but real food systems
are far more complex. Predictions using more parameters were tried with multiple linear
modeling [41]. However, not all aroma compounds could be described successfully due to
their non-linear behavior. It was demonstrated that combining PLS and NNs improved
the prediction accuracy when predicting whether the consumer would like green tea
beverages [42].

To gain insights into the physicochemical relationships that govern aroma release,
XAI can be a valuable tool if it is evaluated correctly [43]. In [18], we describe such a
concept, integrating XAI for predicting flavor compounds. Until now, XAI has not been
implemented to explain models that predict aroma compounds and their interactions, but it
has been successfully integrated for approaches in the food sector, such as the detection of
food fraud [15] or the quality assessment of coffee beans [16]. In terms of possibilities to
predict the aroma release during chewing, a machine learning methodology to anticipate
the food structure with classification models was introduced [17]. With this paper, we not
only present a machine-learning-based regression analysis of the Kmg value, but also discuss
the feature importance as a first step towards an XAI approach. This has not been attempted
for aroma partitioning. While other studies use modeling to investigate flavor–protein
interactions or classify flavor compounds with an ML approach, we use a data-driven
approach that aims to explain physicochemical relationships in aroma partitioning. In the
following, we describe our approach.

4. Materials and Method

In this section, we describe our approach to aroma prediction based on Food Infor-
matics [44] using artificial intelligence. First, we describe the whole procedure embedded
in an approach for food reformulation, as presented in [18]. This approach relies on the
prediction of the Kmg value as the relevant variable to describe the aroma. Second, we
describe the regression approach for determining the Kmg value using machine learning as
the key contribution of this paper. In Section 5, we present the result of evaluating different
regression algorithms.

4.1. Prediction of Aroma Partitioning Using Machine Learning

The approach begins with selecting input parameters based on the physical laws
of aroma release, emphasizing the importance of data quality. The accuracy of machine
learning models depends heavily on the quality of raw data; therefore, datasets need to
be verified by reproducing selected experiments. For instance, variations in results for the
Kmg value, determined using the phase ratio variation (PRV) method, are expected due to
differences in analytical settings like detector sensitivity or sampling method. Since Kmg is
calculated from the slope of a linear fit and is prone to deviations, this step is crucial.

The next phase involves selecting and optimizing a suitable machine learning algo-
rithm to predict Kmg values for various aroma compounds. Given the “No Free Lunch
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Theorem”, which states that no single machine learning method is universally superior,
various algorithms should be compared. The first exploratory analysis of such algorithms
for the prediction of the Kmg value is the center of this paper, and we will present the
implementation detail in the following subsection.

Key goals of the model are not just accurate prediction of Kmg values, but also trans-
parency and understanding of the model’s predictions. This is particularly challenging
with “black box” models like deep learning algorithms. However, the use of explainable
artificial intelligence (XAI) can help infer physicochemical relationships from data-driven
models and increase understanding of the model’s results. In this paper, we analyze the
interpretability of the results by an analysis of the feature importance of the best-performing
machine learning algorithms.

Finally, computational time is a significant consideration in the machine learning
process, with continuous validation of the method as it is selected, optimized, and applied.
The focus is on learning a generalizable model applicable to various products, provided
relevant Kmg values and recipes are available, enhancing the model’s utility across different
food products.

4.2. Regression Approach

As the Kmg value provides an impression of the sensory profile with a single value, we
are interested in the composition of the Kmg value in dairy matrices for food reformulation.
Hence, we followed a machine-learning-based approach for regression of different mea-
surement values to the Kmg value. Therefore, we applied a standardized pipeline for the
analysis which was composed of the following steps: (i) data collection, (ii) data cleaning,
(iii) temperature-based grouping, (iv) pre-processing, and (v) evaluation of regression
algorithms. Figure 2 visualizes the workflow of the approach.

Figure 2. Workflow of the machine-learning-based approach.
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In the following, we describe the details of the steps of the pipeline. This includes the
data collection (see Section 4.2.1) and data cleaning (see Section 4.2.2), the grouping of data
into different clusters according to the temperature (see Section 4.2.3), the pre-processing in
the form of log-based data transformation and normalization (see Section 4.2.4), and the
applied and evaluated regression algorithms (see Section 4.2.5), as well as details for the
implementation of the pipeline using the Python programming language (see Section 4.2.6).

4.2.1. Data Collection

The pipeline begins with acquiring data. We used the data from the publication of
Heilig et al. [41]. This dataset focuses on dairy matrices and contains various features,
i.e., variables that have been measured in specific studies or experiments as well as the
corresponding value for the target variable Kmg that we were trying to predict. The dataset
provided 22 variables which we integrate as features. In the following, we describe these
features and clarify their role in flavor partitioning.

The log P is the logarithm of the partition coefficient, representing the ratio of a
compound’s concentrations in two immiscible phases. It is crucial for understanding the
lipophilicity of a molecule, which can influence its distribution between hydrophobic and
hydrophilic environments. The specific gravity of the aroma compound is the ratio of the
density of the substance to the density of a reference substance and provides information
about the relative density of a substance, which is relevant to its behavior in different
environments. The molecular weight can influence the aroma compound’s physical and
chemical properties, including its partitioning behavior and interaction with other sub-
stances. Water solubility is the ability of the aroma compound to dissolve in water, impacting
its distribution in aqueous solutions. The boiling point can affect the volatility of a substance,
which is relevant as it influences how easily an aroma compound may be released. The
concentration of an aroma compound is a fundamental factor in flavor perception, and it can
influence its partitioning behavior. Water content can affect the solubility and partitioning of
flavor compounds. The general protein content can influence the aroma release by exhibiting
a binding capacity for aroma compounds, especially whey protein as the fraction of dairy
proteins that are not coagulating after rennet addition during cheese production. Whey
proteins are water soluble in their native state but sensitive to heat denaturation. This
behavior influences their ability to interact with aroma compounds as the conformation
change exposes different functional groups of the molecule. Caseins make up the major
protein fraction in milk and give all cheese products their texture as their coagulation forms
the gel which is transformed into cheese in the further process. Depending on the dairy
matrix that is measured, the pH can vary and influence the aroma release depending on
how the aroma compounds react to acidic environments. A whole group of features can
be summarized as thickening agents; these are agar, carrageen, starch, pectin, and the sum
of hydrocolloids. Thickening agents increase the viscosity, which leads to greater retention
of volatile compounds within the food matrix. Two additional features are the sugars
lactose and sucrose, which influence the solubility and stability of aroma compounds in the
food matrix. Mineral interactions with aroma compounds can emerge from the ash content.
The effect of the fat content can vary depending on the solubility of the aroma compounds
in a fat phase. Similarly, the skim milk and whole milk amounts influence the aroma release
depending on their fat contents.

Additionally, the dataset contained the two variables temperature—which we used to
separate the dataset into different groups with homogenous temperature—and Kmg value,
which represents the target variable for the regression.

4.2.2. Data Cleaning

The next step involved cleaning the data, especially removing items with missing
data. In the context of machine learning, a “data item” typically refers to a single unit of
data that is used as input for machine learning algorithms. In line with many machine
learning applications, especially those dealing with structured data (like data in tables or
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databases), an individual record, i.e., a row in the dataset, is seen as a “data item” in this
paper. Hence, we removed rows with missing data. This step is crucial as missing data can
lead to inaccurate models and skewed analysis. However, it is important to consider the
impact of this removal; if too many data are missing, or if the missing data are not random,
this step could introduce bias. We removed only a small fraction of the data and reduced
the size of the dataset from 499 to 474 items.

4.2.3. Temperature-Based Grouping

In the publication of Heilig et al. [41], from which we used the dataset, the authors
applied a multiple linear regression. However, the performance was not that good. As
temperature influences aroma release by affecting the volatility of aroma compounds, in-
creasing their kinetic energy, promoting diffusion, and facilitating the release of compounds
from the food matrix, we assumed that temperature is a key variable in the analysis and
that its effects were best studied separately. Hence, we decided to divide the dataset into
five separate datasets based on temperature values: 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and
40.0 ◦C. This kind of stratification can help in understanding how different temperature
conditions affect the outcomes or the target variable. We decided to focus on the tempera-
tures 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C as (i) for these values, we had the highest
number of data, and (ii) these are common temperatures for food cooled in the fridge or
consumed by humans (close to the human temperature). Table 1 shows the number of data
for each temperature.

Table 1. The used temperature (in ◦C) with the number of data for each temperature.

Temperature (in ◦C) Measurement Points

4.0 20
7.0 27

30.0 101
37.0 64
40.0 199

4.2.4. Data Pre-Processing

To improve the results of the regression, we applied two pre-processing techniques to
the data: logarithmical transformation and normalization. We applied both techniques to
the data for all regression algorithms.

Log transformation is a powerful method of transforming highly skewed data into a
more normalized dataset. Applying the natural logarithm or any logarithmic base to each
data point can stabilize the variance, making the data more suitable for analysis and for
various statistical and machine learning models. This transformation is particularly useful
when dealing with data that span several orders of magnitude and can help in reducing
the effect of outliers. As the Kmg value and some other variables follow a log-based scale,
we decided to apply the log transformation to it.

Normalization is a scaling technique in which values are shifted and re-scaled so
that they end up ranging between 0 and 1. It is also known as Min–Max scaling. Here,
the minimum value of a feature becomes 0, the maximum value becomes 1, and all other
values are transformed to fall within this range. This technique is useful when the data
have varying scales and the algorithm you are using does not make assumptions about the
distribution of your data, such as k-nearest neighbors and NNs.

4.2.5. Evaluation of Different Regression Algorithms

Finally, the pipeline involved evaluating the six different regression algorithms on
the pre-processed data. For the regression analysis, we applied “traditional” linear re-
gression (LR) and compared it against five machine-learning-based regression algorithms:
Random Forest Regressor (RFR), Gradient Boosting Regression (GBR), Extreme Gradient
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Boosting (XGBoost, XGB), Support Vector Regression (SVR), and Artificial Neural Network
Regression (NNR). These different machine learning algorithms are a set of typical algo-
rithms for machine-learning-based regression analysis and reflect different approaches.
The algorithms for LR [45], RFR [46], and GBR [47] were implemented using the machine
learning library scikit-learn with default hyperparameters. The hyperparameter settings for
the XGB, SVR, and NNR are reported in Appendix A (see Table A1). Each algorithm was
trained on the datasets, and their performance was evaluated using the appropriate metrics:
RMSE, MAE, and R2 score. This comparative analysis helped in identifying the most
suitable model(s) for the given data and problem context. In the following, we describe
these six algorithms.

Linear regression (LR): In the publication of Heilig et al. [41], from which we used
the dataset, the authors applied a linear regression with multiple factors. Linear regression
is a statistical method used for predictive analysis. It models the relationship between a
dependent variable and one or more independent variables by fitting a linear equation
to observed data. The key goal is to find the linear relationship or trend between the
variables. For the sake of comparison with Heilig et al. [41], we also applied linear regres-
sion as one algorithm. However, the results were not directly comparable as we applied
pre-processing to the features and used a temperature-related approach to model each
temperature separately.

Random Forest Regressor (RFR): RFR is an ensemble learning method that operates
by constructing multiple decision trees during training and outputting the mean prediction
of the individual trees. It is effective for regression tasks and is known for its robustness
and ability to handle large datasets with higher dimensionality.

Gradient Boosting Regression (GBR): GBR is a machine learning technique for
regression problems which builds a model in a stage-wise fashion like other boosting
methods but generalizes them by allowing optimization of an arbitrary differentiable loss
function. It sequentially builds the model, correcting the errors made by previous models,
and is often more powerful than Random Forest.

Extreme Gradient Boosting (XGBoost, XGB): XGBoost is an efficient and scalable
implementation of the gradient-boosting framework. It has gained popularity due to its
speed and performance. XGBoost provides parallel tree boosting that solves many data
science problems in a fast and accurate way.

Support Vector Regression (SVR): SVR applies the principles of Support Vector
Machines (SVM) for regression problems. It involves finding the hyperplane in a mul-
tidimensional space that best fits the data points. SVR is known for its effectiveness in
high-dimensional spaces and its ability to model complex non-linear relationships.

Artificial Neural Network Regression (NNR): NNR is based on NNs, which are
inspired by the structure and functions of the human brain. NNR can model complex
non-linear relationships between inputs and outputs and is particularly useful in scenarios
where the relationship between variables is difficult to model with traditional statistical
methods. It is highly flexible and can be adapted to a wide range of regression tasks. The
used version of NNR represents a deep learning approach. Such deep learning approaches
are very powerful; however, they have limitations regarding their interpretability. Usually,
these approaches require a large number of data—still, we wanted to add such an algorithm
for comparison due to its computational power.

4.2.6. Implementation

We used the Python programming language for the implementation of the described
pipeline, including the pre-processing steps and the algorithms. Ref. [48] provides
all scripts.

The dataset originally included 499 data items. After removing the items with missing
data, the dataset was reduced to 474 items. We decided to group the data according to
their temperature for two reasons. First, the Kmg is highly dependent on the temperature.
Second, this was confirmed by the first tests on the whole dataset. Accordingly, the datasets
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were split into various datasets for the different temperatures during the measurements
of the Kmg value. We chose to concentrate on the temperatures of 4.0 ◦C, 7.0 ◦C, 30.0 ◦C,
37.0 ◦C, and 40.0 ◦C because these temperatures not only had the most data available but
also are typical for foods that are refrigerated or consumed by humans, aligning closely
with human body temperature. Data filtering and grouping were performed with the
relevant functions provided by the Pandas library.

For log transformation, we used the log1p function provided by the NumPy library.
Normalization was performed using the MinMaxScaler from scikit-learn.

Especially, we relied on the scikit-learn library for most of the algorithms; this includes
the following modules: LinearRegression, RandomForestRegressor, SVR, and Gradient-
BoostingRegressor. For XGBoost, we used the implementation provided by the xgboost
module. The NNR followed the implementation provided by the keras.Sequential module
from the Tensorflow library.

For the evaluation of the algorithms’ performance, we applied the metrics provided
by the metrics module of the scikit-learn library. We followed a train–test split-based
approach with a test size of 20%, i.e., we used 80% of the data for training the models
and 20% for testing, hence, evaluating the model’s performance. For the analysis of the
feature importance for RFR, GBR, XGB, and SVR, we applied the corresponding integrated
functions for calculating the importance scores as well as the matplotlib and seaborn modules
for plotting the results.

5. Results

In this section, we describe the results of evaluating the algorithm’s performance
in predicting the Kmg value by applying regression. First, we describe the setting of the
evaluation and the applied metrics. Second, we present the results of the algorithms for the
three metrics RMSE, MAE, and R2 score. Third, we analyze the importance of the different
features for the prediction of the Kmg value. In the previous section, we explained the
results of the regression models for predicting the Kmg value that our tested algorithms
generated. Last, we describe potential threats to validity.

5.1. Evaluation Setting and Metrics

We analyzed the performance of the six mentioned algorithms (cf. Section 4.2.5) in
predicting the Kmg value through regression using a regular working laptop—with an
Intel(R) Core(TM) i7-12700H CPU at 2300 MHz, 32 GB RAM, and Microsoft Windows 10
Education as the operating system—for both model training (learning) and model testing
(evaluation). This showed lightweight implementation and low resource consumption,
even for the more sophisticated machine learning algorithms.

As described in the pipeline of analysis steps (cf. Section 4.2), we focused on five
different temperature values: 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C. For each of these
temperatures, we generated a dedicated dataset composed of measurement data for solely
the specified temperature. For each temperature, we compared the data in the original
form with the data resulting from the pre-processing steps (i.e., log-based transformation
and normalization). Additionally, we applied all six algorithms to the combination of
temperature and data variants. Consequently, this resulted in 60 different scenarios for the
evaluation. We applied three metrics commonly used for regression problems to evaluate
the algorithms’ performance: RMSE, MAE, and R2 score.

MSE is a common metric used for measuring the accuracy of a regression model. It
calculates the average of the squares of the errors or deviations, i.e., the difference between
the estimator and what is estimated. MSE gives a relatively high weight to large errors
(since it squares the errors), which means it can be particularly useful in situations where
large errors are undesirable. The Root-Mean-Squared Error (RMSE) is the square root of
MSE. It converts the metric back to the same scale as the original data. Like MSE, RMSE
gives more weight to larger errors, but its scale is the same as the data, making it more
interpretable and easier to relate to the magnitude of the errors. RMSE is often preferred
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when the goal is to understand the error in terms of the original units of measurement. As
we had partly log-based data, we applied RMSE instead of MSE as it gives a performance
more interpretable in terms of the original units of the data.

A lower MSE or RMSE value indicates a better fit of the model to the data.
As an additional metric, we used the MAE as it does not penalize large errors dispro-

portionately, making it less sensitive to the influence of outliers. Consequently, the MAE is
a metric that gives equal weight to all errors, regardless of their direction or magnitude
and allows comparison of the RMSE.

The R2 metric, also known as the coefficient of determination, is a statistical measure
that represents the proportion of the variance for the dependent variable that is explained
by the independent variables in a regression model. It indicates the goodness of fit of a set
of predictions to the actual values. An R2 score of 1 indicates that the regression predictions
perfectly fit the data. Values of R2 outside the range of 0 to 1 can occur when the model
does not follow the trend of the data, leading to negative values or values greater than 1.

5.2. Machine Learning Regression

The following two tables describe the results of the performance measurements for
the six algorithms—LR, RFR, GBR, XGB, SVR, and NNR—for the different temperatures,
i.e., 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C. Further, we compared the performance of
the algorithms using two variants of the datasets, the original data and the data that are
pre-processed by applying log-based transformation and normalization (indicated by the
appendix “_Proc”).

Next, Table 2 presents the measured R2 scores. As can be seen, we have a wide range
of scores from negative values to positive ones close to +1. This indicates that sometimes the
algorithms provide very low performance, especially those configurations with a negative
R2 score. However, over all scenarios and configurations, we can see that all temperature
configurations, except 30.0 ◦C, have an R2 score of at least 0.880, achieving up to almost
perfect prediction with R2 = 0.990.

This indicates that our principal approach works for the prediction of the Kmg value.

Table 2. The R2 values for the original and pre-processed (“_Proc”) versions of the algorithms for
the grouped temperatures at 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C. The best R2 value for each
temperature has been marked with gray shading.

Algorithm
R2

4.0 (◦C) 7.0 (◦C) 30.0 (◦C) 37.0 (◦C) 40.0 (◦C)

LR −12.771 0.667 0.087 0.865 0.469
LR_Proc −4.039 0.394 −0.037 0.362 0.270

RFR −1.152 0.781 0.419 0.990 0.867
RFR_Proc 0.197 0.175 0.201 0.982 0.940

GBR 0.390 0.689 0.101 0.868 0.922
GBR_Proc 0.924 −0.110 0.279 0.954 0.958

XGB 0.257 0.880 −0.075 0.796 0.932
XGB_Proc 0.654 −0.177 −0.013 0.799 0.899

SVR −0.473 −0.013 −0.111 0.003 −0.110
SVR_Proc −0.139 0.860 −0.069 0.943 0.354

NNR −5.092 −0.583 0.027 0.224 0.516
NNR_Proc −1.688 −0.211 −0.070 0.924 0.747

Additionally to the R2 scores, we analyzed the RMSE as a description of the size of
the error terms. Table 3 shows the measured RMSE scores. As can be seen, the RMSE
scores lie in general between 13 and 2856. However, one can see that the ranges are highly
different depending on the temperature. For example, the temperature of 7.0 ◦C has the
most extreme range, with RMSE scores between 792 and 2856; especially, the minimum
RMSE value of 792 exceeds the maximum RMSE for all other temperatures. Additionally,
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the differences between the minimum and maximum RMSE scores for the temperatures
30.0 ◦C and 37.0 ◦C are both around 100. However, the numbers completely differ, with
ranges of 13–132 (for 37.0 ◦C) and 301–416 (for 30.0 ◦C). The ranges for 4.0 ◦C and 40.0 ◦C
integrate both acceptable values with minimum RMSE scores of 22 (for 4.0 ◦C) and 65 (for
40.0 ◦C) but high maximum RMSE scores of 297 (for 4.0 ◦C) and 335 (for 40.0 ◦C).

Table 3. The RMSE values for the original and pre-processed (“_Proc”) versions of the algorithms for
the grouped temperatures at 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C. The best RMSE value for
each temperature has been marked with gray shading.

Algorithm
RMSE

4.0 (◦C) 7.0 (◦C) 30.0 (◦C) 37.0 (◦C) 40.0 (◦C)

LR 296.729 1317.542 376.774 48.638 231.454
LR_Proc 179.492 1777.341 401.583 105.860 271.402

RFR 117.291 1068.066 300.568 13.084 115.663
RFR_Proc 71.661 2073.038 352.356 17.800 77.949

GBR 62.471 1272.522 373.890 48.201 88.762
GBR_Proc 21.985 2405.427 334.762 28.375 64.796

XGB 68.910 792.230 408.865 59.913 83.146
XGB_Proc 47.001 2476.683 396.782 59.504 101.080

SVR 97.051 2298.128 415.598 132.385 334.707
SVR_Proc 85.338 852.871 407.622 31.574 255.440

NNR 140.523 2855.671 389.667 110.398 233.322
NNR_Proc 132.902 2610.932 406.706 37.212 153.854

Additionally, we also report the measured values for the MAE. While MAE measures
the average magnitude of errors in a set of predictions without considering their direction,
RMSE penalizes larger errors more severely by squaring the residuals before averaging,
thus often highlighting larger discrepancies more prominently. As can be seen in Table 4,
the results are pretty similar, epsecially when focusing on the best configurations for each
temperature. Except for the temperature of 37.0 ◦C, the same configuration is superior
for RMSE and MAE. In the case of 37.0 ◦C, for MAE, the RFR algorithm in the processed
variant is superior than the RFR in the non-processed variant—this is vice versa for the
RMSE score.

Table 4. The MAE values for the original and pre-processed (“_Proc”) versions of the algorithms for
the grouped temperatures at 4.0 ◦C, 7.0 ◦C, 30.0 ◦C, 37.0 ◦C, and 40.0 ◦C. The best MAE value for
each temperature has been marked with gray shading.

Algorithm
MAE

4.0 (◦C) 7.0 (◦C) 30.0 (◦C) 37.0 (◦C) 40.0 (◦C)

LR 277.735 953.291 189.655 33.423 176.764
LR_Proc 137.108 1104.214 180.327 35.921 145.723

RFR 113.173 854.699 116.521 9.514 56.741
RFR_Proc 47.001 1184.775 123.231 9.411 39.310

GBR 36.325 827.896 136.185 27.704 49.179
GBR_Proc 13.923 1341.442 119.257 15.717 33.610

XGB 38.016 508.527 131.802 22.990 41.598
XGB_Proc 26.963 1356.021 122.784 22.084 49.908

SVR 92.295 1935.956 192.590 58.338 175.074
SVR_Proc 71.297 518.833 180.832 20.745 140.654

NNR 167.850 1807.552 193.371 89.512 169.926
NNR_Proc 112.511 1444.300 182.407 21.431 69.768

RMSE is preferred over MAE in many scenarios because it is more sensitive to large
errors, as it squares the errors before averaging, thus giving greater weight to larger
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discrepancies. Additionally, RMSE aligns well with many machine learning algorithms that
minimize quadratic loss functions, making it more compatible with common optimization
techniques used in predictive modeling. As it can further be seen that the results are
pretty similar for MAE and RMSE, we decide to focus on RMSE in the following. For
interpretation of the RMSE, it makes sense to have an understanding of the range of the
values for the Kmg value as the target variable for the prediction. Accordingly, we report the
minimum and maximum values for the Kmg for each temperature as well as the standard
deviation in Table 5. Especially, we compare the RMSE values with the standard deviation
of the analyzed variable as the standard deviation is a measure of the amount of variation
or dispersion in a set of values, and a high standard deviation means the values are spread
out over a wider range. Comparing the RMSE to the standard deviation can give an idea
of how much of the variability in the data can be explained by the model. As can be seen,
the standard deviation and the range between the minimal and maximal RMSE scores for a
temperature are often pretty close. However, we can see small differences. If the RMSE of
the model is significantly lower than the standard deviation of the data, it suggests that
the model has good predictive accuracy. This is achieved for the temperatures 37.0 ◦C
and 40.0 ◦C; especially for the temperature of 37.0 ◦C, this indicates a very good fit of the
model to the data as the standard deviation is low. In contrast, if the RMSE is close to or
greater than the standard deviation, it indicates that your model may not be performing
well and is not adding much value over a simple mean-based prediction. This is the case
for the temperature of 30.0 ◦C, where the standard deviation is smaller than the RMSE.
Further, for the temperature of 4.0 ◦C, the standard deviation (284) is smaller than the
largest RMSE score (297); however, the range is wide, with values between 22 and 297. For
the temperature of 7.0 ◦C, the standard deviation lies in the range for the RMSE.

It is important to note that this comparison, while useful, has limitations. RMSE is
influenced by outliers and can be disproportionately large if the prediction errors have a
skewed distribution. Still, it is a first indicator that, especially for the temperature of 37 ◦C,
the model delivers good predictions of the Kmg value.

Table 5. The minimum, maximum, and standard deviation (SD) of the Kmg values, as well as the
range of the RMSE and MAE of the algorithms for each analyzed temperature.

Temperature (◦C) Minimum Kmg (-) Maximum Kmg (-) SD Kmg (-) Range RMSE Range MAE

4.0 38.91 980.39 284.96 22–297 14–278
7.0 253.81 6666.67 1958.95 792–2856 509–1936

30.0 3.98 1865.67 279.95 301–416 117–193
37.0 7.42 833.33 177.49 13–132 9–90
40.0 2.67 6337.0 560.69 65–335 34–177

In the following, we will analyze in detail two scenarios. First, we compare the
performance of the algorithms when the food items have the temperature of a common
household fridge, i.e., 7.0 ◦C. Second, we detail how the algorithms perform when the food
is heated up to the temperature of the human mouth, i.e., 37.0 ◦C. We decided to focus on
these scenarios as (i) both are relevant from a practical point of view for food consumption,
and (ii) if the quality of the algorithms varies, it allows us to draw interesting insights to
further improve the prediction.

5.2.1. Analyzing the Performance for Chilled Food (at 7.0 ◦C)

Figure 3 shows the measured R2 score for the six algorithms given the temperature of
7.0 ◦C. The detailed results show interesting insights, which we elaborate on in the following.

First, the approach with NNs does not work at all, as can be seen by the negative R2

scores, which indicate that the model does not follow the trend of the data. However, it can
be observed that the data pre-processing improves the results. Second, the best results are
returned for XGBoost (XGB) with R2 = 0.880 and the Support Vector (SVR) algorithm with
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R2 = 0.860. Interestingly, the XGB performs very well on the non-processed dataset and
worse on the pre-processed one; for the SVR, the situation is reversed. In general, it can be
seen that, apart from the NN approach, all approaches perform well with an R2 > 0.667
for at least one of the two tested variants of the data. However, the pre-processing of the
data does not improve the results for most of the algorithms. Here, we need to test and
identify further techniques which might improve the results. Still, the two best-performing
configurations—SVR on the pre-processed data and XGB on the original data—deliver a
very good performance based on the R2 scores.

Figure 3. Grouped histograms of the R2 value combining the original and pre-processed version of
each algorithm at 7 ◦C.

Another perspective provides the RMSE, which is visible in Table 3. RMSE calculates
the root of the average of the squares of the errors or deviations. The minimal values are in
line with the R2 scores present for the XGB (non-processed data) and the SVR (pre-processed
data). As can be seen, these values seem large, with 792 and 853 as the minimum values of
all configurations for the XGB on the non-processed data and the SVR on the processed
data, respectively. One explanation for those relatively large errors lies in the data. Some of
the variables follow a log distribution and scale. Hence, taking this into account, the large
measured error is relieved. Still, for a practical application of the prediction, we need to
find approaches to reduce this error, e.g., with additional pre-processing techniques.

5.2.2. Analyzing the Performance for Mouth Temperature (at 37.0 ◦C)

As a second detailed analysis, we focus on the temperature of 37.0 ◦C. Figure 4
compares the measured R2 scores.

As a first observation, it can be stated that all the algorithms work—this time, we
have no negative R2 scores. Further, we can observe that, for each algorithm, at least one
configuration has a score of R2 > 0.79. This means that all algorithms are capable of finding
a model that explains almost 80% of the variations in the datasets. This is a very impressive
result and underlines the fact that the prediction of the Kmg value works at a temperature
of 37 ◦C, i.e., the temperature of the human mouth, and, hence, predicts the consumers’
impression of the food’s taste.

In detail, we observe very high R2 scores between 0.92 and 0.99 for five configurations.
The Random Forest approach performs best with R2 = 0.990 for the non-processed data
and R2 = 0.982 for the pre-processed data. Also, the GBR (pre-processed) with R2 = 0.954,
the SVR (pre-processed) with R2 = 0.943, and the neural network (pre-processed) with
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R2 = 0.924 deliver a very good performance. The trained/learned models for all of the
mentioned configurations explain the variance in the data by at least 92%, especially the
performance of the models derived by the RFR algorithms, explaining the variance by 99%
and 98%, almost completely.

Figure 4. Grouped histograms of the R2 value combining the original and pre-processed version of
each algorithm at 37 ◦C.

It is interesting to note that, except for in the case of the RFR, for the mentioned top
results, the pre-processed dataset works much better. This is contrary to the observations
for the temperature of 7 ◦C, for which the pre-processing mostly does not significantly
improve the results. Further, it can be seen that the neural network and SVR approaches
benefit from the pre-processing; however, this is not surprising, as neural networks require
normalization to work well, and, also, for the SVR, it is known that normalization improves
the calculation procedures.

The RMSE for the temperature of 37 ◦C is, in general, relatively low, with values
between 13 and 132. Specifically, the error values for the mentioned top-performing
algorithms—RFR and RFR (pre-processed), GBR (pre-processed), SVR (pre-processed),
and the neural networks (pre-processed)—are very low, with RMSE values of 13, 18,
28, 31, and 37, respectively, which are very good results and support the observation
of high prediction quality, which is already indicated by the corresponding R2 scores of
these algorithms.

5.2.3. Performance Analysis of the Machine Learning Regression

The described machine learning pipeline (cf. Section 4) represents a comprehensive
approach to handling and analyzing data with a focus on addressing specific characteristics
of the dataset (like missing values and temperature variations) and evaluating multiple
models to find the best fit for the data. The use of pre-processing techniques like log
transformation and normalization is particularly important for ensuring that the data are
well suited for the modeling process.

We analyze the applied algorithms from different perspectives, resulting in different
metrics (cf. Section 5.1). Each of these applied metrics offers a different perspective on
the performance of a regression model, and the choice of which to use can depend on
the specific context and objectives of the modeling effort. For instance, if large errors
are particularly undesirable in a given application, MSE or RMSE might be the preferred
metric. If the goal is to simply measure the average error magnitude, MAE might be more
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appropriate. R2 is useful for understanding the proportion of variance explained by the
model in the context of the data. Hence, it is important to understand the use case for
the regression and, depending on that, to choose the fitting algorithm and corresponding
model. This corresponds to the idea of adaptive software systems, which can integrate
adaptive and learning behavior in software to adjust to dynamics [49].

The results (cf. Section 5.2) indicate three important insights. First, the results perform
with R2 scores of up to 0.99, which means an explanation of the variance in the data of up
to 99%. This is an outstanding result and definitely proves the applicability of our approach
for predicting the Kmg value.

Second, no algorithm performs best for all settings (e.g., temperatures). This is in line
with the “No Free Lunch Theorem” [50], which states that no single algorithm performs best
for all problems. For this application domain, this means that the best algorithm/model
depends on the temperature of the food. In practice, this insight might be a real challenge,
as the food temperature changes, e.g., chilled food will be warmed up in the mouth or,
vice versa, hot food will be cooled in the mouth. Hence, food designers who want to
use our approach have to take those possible changes into account and need to define
the temperature range of interest to identify the fitting regression algorithm. Potentially,
a digital food twin might take those changes into account [51]. However, in a current
analysis of the digital food twin research, we can see that there are still many research
challenges for achieving this [52]. Additionally, the range of tested temperature covers the
most important ones—human/mouth temperature and cooling temperature—however,
this is limited due to data sparsity. This must be improved for future work.

Third, we applied variants for each algorithm, without optimization and with opti-
mization of the data in the form of pre-processing. However, we have seen that, depending
on the configuration and temperature, the pre-processing does not improve the results. For
example, for 7.0 ◦C, the best variant is the XGB with the non-processed data. However,
there are other settings in which both dataset configurations perform equally well (e.g.,
temperatures of 37.0 ◦C and 40.0 ◦C) or the pre-processed ones are superior. Especially
for the neural network, the pre-processing improves the performance significantly. In
contrast, for example, the RFR does not improve much. Consequently, we need further
experiments to identify working pre-processing techniques that find the data but also the
algorithm’s characteristics.

5.3. Explainable Artificial Intelligence

The objective of the analysis for the Kmg value is not only the identification of a
prediction of this value, but also the understanding of the influence of the measured factors
for describing the Kmg value. This understanding is necessary as the results of the Kmg
prediction will help to reformulate food recipes. Hence, we describe in the following the
application of an analysis of the importance of the different factors. We focused in this
analysis on the following algorithms: RF, GBR, XGB, and SVR. We excluded the linear
regression as those models do not perform best in any of the settings. Further, we excluded
the neural networks because they are more difficult to analyze concerning the importance
of the variables. We excluded the scenario with a temperature of 30.0 ◦C, as none of the
algorithms returns satisfying results.

The method of calculating feature importance can vary. Some common methods
include (i) impurity-based feature importance—which measures the decrease in node
impurity when a feature is used for splitting—or (ii) permutation feature importance,
which involves randomly shuffling each feature and measuring the change in the model’s
performance. For the RFR and GBR algorithms, we applied the functions integrated in scikit-
learn, which implement an impurity-based feature importance. For XGB, we applied the
get_score() method with the parameter gain for the setting importance_type to obtain
feature importance scores from an XGBoost model. This method calculates the feature
importance scores based on the gain metric. Gain refers to the average improvement in
accuracy brought by a feature to the branches it is on. This metric considers both the
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number of times a feature is used and how much it contributes to making more accurate
predictions when it is used. For the SVR algorithm, we applied a weight-based scoring
approach. Hence, we manually extracted the scores for each feature from the corresponding
model and sorted them from large (more important) to small (less important) values.

Using the described integrated functions for calculating the feature importance of
the four mentioned algorithms, we analyzed the ten most important features. First, we
present the appearance of specific features in all 16 settings. Hence, Table 6 presents the
frequency of the different features appearing in all analyzed settings. The analyzed settings
include the four different temperatures of 4.0 ◦C, 7.0 ◦C, 37.0 ◦C, and 40.0 ◦C (excluding
30.0 ◦C). For each temperature, we looked at the applied four algorithms—as mentioned,
we excluded the linear regression and the neural network approaches in this analysis.
For the temperatures of 4.0 ◦C, 37.0 ◦C, and 40.0 ◦C, we looked at the algorithms using
the pre-processed data; for the temperature of 7.0 ◦C, we analyzed the data without pre-
processing as, at this temperature, the R2 scores of the data without pre-processing are
superior. Consequently, a feature might be named 16 times at maximum in the feature
frequency table.

It can be seen that the features log P (100%), specific gravity (93.75%), molecular weight
(93.75%), water solubility (87.50%), boiling point (75%), concentration (68.75%), water
(68.75%), whey protein (50%), and casein (50%) are the most common features. Their share
is determined by how often they are counted as one of the top ten features for the different
algorithm and temperature settings. Each feature identified for at least 50% of the setting is
marked as being one of the top 10 features for the total 22 analyzed features.

Table 6. List of the features that are identified as one of the ten most important features and their
frequency for all tested configurations. Please note: It might be possible that for a configuration less
than ten features have been identified as important.

Feature Number of Repetitions

log P 16
Specific gravity 15

Molecular weight 15
Water solubility 14

Boiling point 12
Concentration 11

Water 11
Whey protein 8

Casein 8
Ash 6

Lactose 5
pH 4

Protein 4
Fat 4

Sucrose 3
Pectin 3

Sum hydrocolloids 3

Please note that the frequency shown in Table 6 does not necessarily relate to the
features’ importance as it might be possible that features are often named but have low
importance. Hence, in the following, we perform a detailed analysis of the importance of
the specific features of the algorithms that performed best for each temperature based on
the R2 score. We use the seaborn library to plot the results. Feature importance plots are a
valuable tool in machine learning for understanding the contribution of each feature (input
variable) to the predictive power of a model. These plots help in interpreting the model by
quantifying the extent to which each feature contributes to the model’s predictions. The
most important features are those that have the greatest impact on the model’s predictions.
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Please note that, for the different algorithms, the feature importance values are in different
scales. Hence, it is not possible to directly compare the absolute values across algorithms.

5.3.1. Explainability in the Best Configurations

First, we analyze the best-performing configurations (according to their R2 score).
These are the RFR algorithms with and without pre-processing for the temperature of 37 ◦C.
As can be seen from the plots in Figure 5, the most important feature is the specific gravity
for both configurations. Interestingly, the feature achieves a score of 0.72 for the setting
with the original data, i.e., it contributes 72% to the prediction of the Kmg value; all others
contribute less than 5% each. For the pre-processed data, the importance of the specific
gravity is reduced to 0.53; however, the importance of the feature concentration is 0.27. For
both settings, all ten features are identical; however, the importance scores slightly differ.

Figure 5. This figure compares two plots for settings using the Random Forest (RFR) at 37 ◦C.
(Left): without further data processing; (Right): with pre-processing.

Other interesting insights are made for the GBR algorithm. For the temperatures of
37.0 ◦C and 40.0 ◦C, the achieved R2 scores are almost the same, both around 0.95; however,
different feature sets contribute to the prediction (see Figure 6). In the configuration for the
temperature of 37.0 ◦C, the top five most important features are: specific gravity (0.4283),
concentration (0.3973), water solubility (0.0550), log P (0.3456), and boiling point (0.0327). In
the configuration for the temperature of 40.0 ◦C, the top five most important features are:
molecular weight (importance score of 0.3687), log P (0.2461), fat (0.2241), water (0.0502),
and specific gravity (0.0320). The top three features are completely different for both settings.
Looking at the top five features with the highest importance, both settings share only one
common feature; however, the importance of feature log P differs between 0.2461 for the
temperature of 40.0 ◦C and 0.3456 for 37.0 ◦C.

For both configurations, we use the pre-processed data; still, there are such differences
visible in the feature importance while very good prediction performance is achieved. This
underlines the importance of a thorough analysis and interpretation of the models. Further,
it indicates the importance of the temperature and the suitability of the temperature-based
analysis as we performed it.
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Figure 6. This figure compares two plots for settings using the Gradient Boosting (GBR) with
pre-processed data. (Left): temperature = 37.0 ◦C; (Right): temperature = 40.0 ◦C.

5.3.2. Explainability Comparing Pre-Processing Techniques

When focusing on different algorithms for predicting the Kmg value for the same
temperature, we can see interesting effects. We do not include plots for all of the following
settings; however, the results can be found in the online appendix: [48].

For the temperature of 40.0 ◦C, the algorithms RFR, XGB, and GBR all have the two
features fat and log P within the top three features; RFR and GBR even have the same
top three features. The same effects can be seen for the temperature of 37.0 ◦C, where
SVR, RFR, and GBR all have the same top feature, specific gravity, and all three have
concentration as the second or third important feature. GBR and RFR have the same top
three features in the same relevance order. In contrast to the more homogenous results for
the temperatures of 37.0 ◦C and 40.0 ◦C, the picture changes for the temperature of 7.0 ◦C.
Figure 7 shows the result. Please note that, due to the difference in the calculation of the
feature importance scores, these scores cannot be compared to the ones in Figures 5 and 6.
When focusing on the two best-performing algorithms, XGB and SVR, the first difference
that can be observed is the fact that, for XGB, only five features contribute to the result.
When comparing both algorithms in detail, it is interesting to note that the most important
features completely differ; only the feature log P shows similar importance. Again, this
underlines the importance and need for a detailed analysis and interpretation of the models.

Figure 7. This figure compares two plots for settings at 7 ◦C. Both settings used the non-processed
dataset. (Left): XGBoost (XBG); (Right): Support Vector Regression (SVR).
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5.3.3. Performance Analysis of the Explainable Artificial Intelligence

Explainable artificial intelligence (XAI) refers to methods and techniques in the field of
artificial intelligence that make the results and operations of AI systems more understand-
able to humans. The goal of XAI is to create AI models that are transparent and interpretable,
allowing users to comprehend and trust the results and outputs they produce. This is
particularly important in this application domain because the main objective is not solely
the prediction of the Kmg value, but also the understanding of the underlying prediction
model so that the model characteristics can help to improve the food reformulation.

In our analysis of the XAI of the tested algorithms (cf. Section 5.3), we had to focus on
specific settings for several reasons. First, we omitted the temperature of 30.0 ◦C degrees
as the regression results are too low. However, we might still apply XAI to find out why
the algorithms do not perform as expected in future work. For this study, this was out of
scope as we wanted to learn about the feature that can help to explain the regression of
the Kmg value. Second, we omitted the linear regression due to its performance. This was
also observed by Heilig [41] as they evaluated the model performance for linear regression.
Additionally, we plan for the future to transfer the learned model to other food categories
in addition to dairy matrices; this does not seem promising with linear regression. Third,
artificial neural networks pose significant challenges to XAI due to their inherent complexity
and opacity. These challenges primarily stem from the way these neural networks are
structured and how they learn to make decisions. Hence, the analysis of the features’
importance is complicated, and, as the NN algorithms also do not outperform the other
algorithms, we ignored them for the XAI analysis.

It can be seen that the features log P (100%), specific gravity (93.75%), molecular weight
(93.75%), water solubility (87.50%), boiling point (75%), concentration (68.75%), water
(68.75%), whey protein (50%), and casein (50%) are the features mostly present, each being
identified for at least 50% of the setting as one of the top ten features of the total 22 analyzed
features. Further, in the following detailed analysis, we see that the frequently mentioned
features often have high feature importance scores; hence, these have relevant effects on
the composition of the Kmg value.

When comparing the best performers as judged by their R2 scores for the 37 ◦C
temperature setting, namely, the RFR both with and without pre-processing, it can be seen
that, while the top ten features remain the same in both settings, their respective importance
scores vary. This might be an important insight when reformulating food matrices and
adjusting recipes.

We can further see that, for the same algorithm, even if the regression performance
is very similar in terms of the R2 scores, the temperature plays an important role. The
GBR algorithm achieves R2 scores around 0.95 at 37.0 ◦C and 40.0 ◦C yet relies on different
feature sets for predictions. While the top three features differ for each temperature, only
one feature, log P, is common in the top five, with varying importance between 0.2461 at
40.0 ◦C and 0.3456 at 37.0 ◦C, which confirms our model selection of the important features
from the literature. Despite using pre-processed data for both scenarios, the distinct
differences in feature importance, coupled with high prediction accuracy, highlight the
need for in-depth model analysis and underscore the relevance of temperature in such
analyses and also for practical usage.

When analyzing different algorithms for predicting the Kmg value at the same temper-
ature, interesting patterns emerge. At 40.0 ◦C, RFR, XGB, and GBR algorithms rank fat and
log P among their top three features, with RFR and GBR sharing the same top three. Similar
trends are observed at 37.0 ◦C, where SVR, RFR, and GBR all prioritize specific gravity as
the top feature and concentration as the second or third. However, at 7.0 ◦C, the results
diverge, with XGB and SVR showing distinct differences in feature importance, except for
in the case of log P. This emphasizes the need for detailed model analysis and interpreta-
tion. Consequently, it is essential to enhance the machine learning process with an XAI
component, which can either derive explanations from transparent models or decipher the
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decision-making process of more complex, opaque models. We describe such an approach
in [18]. Its implementation is part of our future work.

Furthermore, the XAI-based analysis shows one obstacle to the data-driven approach.
When following a purely data-driven approach, the machine learning algorithm does not
take into account specific constraints, for example, from scientific models. In our results, we
identify that the feature concentration for the Random Forest with pre-processing at 37 ◦C
has a higher importance, as can be explained with scientific knowledge about the chemical
interrelationships. Hence, it is important to use the explanations and interpretations from
XAI and combine them with domain knowledge for validation. Furthermore, it might
be feasible to avoid such wrong conclusions from the machine learning algorithm by
integrating the relevant scientific models in advance to set the relevant constraints for
the learning process. This could be made possible by integrating surrogate models [53].
Surrogate models are simplified models that are used to approximate more complex and
computationally expensive models. They are often employed in various fields such as
engineering, simulation, optimization, and machine learning. The primary purpose of
a surrogate model is to reduce the computational cost associated with the evaluation of
complex models while still providing a reasonably accurate approximation. However,
the validation of the XAI or the integration of scientific models into the machine learning
process is part of future work.

5.4. Threats to Validity

In evaluating the validity of our scientific study, it is important to acknowledge several
limitations and potential threats to the robustness of our findings. We will describe those
limitations in the following.

Pre-processing: The use of only basic pre-processing techniques may not adequately
address complex data characteristics such as non-linearity, high dimensionality, or hidden
patterns, potentially leading to suboptimal model performance and biased results. The
inclusion of additional pre-processing techniques is part of our future work. However,
the results indicate that the applied techniques work well with the dataset.

Limited number of data: The scarcity of data points, particularly at higher temperature
ranges above 40 ◦C, could lead to a lack of representativeness in the dataset, resulting
in models that are not well generalized and potentially less accurate in their predictions
for these specific conditions. We currently plan further measurements with additional
temperature ranges.

Limited set of algorithms: Employing a restricted set of machine learning algorithms
may limit the exploration of diverse modeling approaches, potentially overlooking algo-
rithms that could be more effective or suitable for the specific characteristics of the dataset.
In this first exploratory study, we focused on only six algorithms. Even though the applied
set of algorithms shows good performance, the application of further algorithms is part of
future work.

No hyperparameter tuning: The scope of this exploratory study was to identify the
applicability of different ML algorithms for prediction of the Kmg value using regression;
hence, we used the default configurations for these algorithms. Additional hyperparameter
tuning can result in models that are better configured for the given data, potentially leading
to better performance as compared to models where hyperparameters are not adjusted to
enhance their predictive capabilities. It is common practice to rely on the default parameters
in a first exploratory study. Further, hyperparameter tuning might also lead to overfitting
and reduce the transferability of the machine learning models. However, we plan to
integrate hyperparameter tuning in future work for comparison.

6. Conclusions

This study explores the use of machine learning regression to predict the Kmg value,
a partition coefficient for aroma compounds in dairy matrices, addressing the complex
challenge of aroma partitioning in food influenced by various physical and chemical factors.



Processes 2024, 12, 266 23 of 26

The research aims to demonstrate the feasibility and effectiveness of a data-driven approach
in accurately determining the Kmg value for aroma compounds using machine-learning-
based regression. The results show that, with R2 scores of up to 0.99, the approach is
suitable for predicting the Kmg value for dairy matrices.

Still, we have open challenges in three facets. First, we were not able to achieve such
high results for every single setting. Hence, we might improve the current approach further
for better prediction of the Kmg value in dairy matrices. This includes more advanced
pre-processing techniques, a wider range of machine learning algorithms, implementing
feature selection techniques, or hyperparameter tuning. Second, the number of data was
limited, especially for larger temperatures. Hence, efforts should be made to collect more
data, especially in underrepresented temperature ranges. Additionally, we relied here on
a given dataset, for which we were not able to control the creation. Third, we want to
transfer the models from dairy products to vegan alternatives based on, e.g., pea, soy, or oak.
By establishing the approach, we envision including aroma binding domain knowledge
into the models to enable transferability. The idea is that these models will support the
development of new products with a fast analysis of an approximation of the sensory
profile based on the Kmg when adjusting an existing recipe through the substitution of
the protein source (milk/animal to plant based). Therefore, we also have to complement
the machine learning process with an XAI component, which either extracts explanations
directly from transparent models or learns how opaque models arrive at their predictions.
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Appendix A

The default parameters for the XGB [54], SVR [55], and NNR [56] algorithms can be
found in the referenced documentation. All non-default hyperparameter settings for the
algorithms are listed in the following table.

Table A1. List of the algorithms with non-default hyperparameters and their respective hyperparam-
eter settings.

Algorithm Function Hyperparameter Setting

XGB xgb.XGBRegressor random_state = 42

SVR sklearn.svm.SVR kernel = ‘linear’

NNR tf.keras.Sequential

Initial Layer: Dense (128)
Hidden Layer 1: Dense (64)
Hidden Layer 2: Dense (32)

Output Layer: Dense (1)
activation = ‘relu’

(Rectified Linear Unit)
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