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Abstract: The relentlessly depleting fossil‑fuel‑based energy resourcesworldwide have forbidden an
imminent energy crisis that could severely impact the general population. This dire situation calls
for the immediate exploitation of renewable energy resources to redress the balance between power
consumption and generation. Thismanuscript confers about energymanagement tactics to optimize
the methods of power production and consumption. Furthermore, this paper also discusses the
solutions to enhance the reliability of the electrical power system. In order to elucidate the enhanced
reliability of the electrical system, microgrids consisting of different energy resources, load types,
and optimization techniques are comprehensively analyzed to explore the significance of energy
management systems (EMSs) and demand response strategies. Subsequently, this paper discusses
the role of EMS for the proper consumption of electrical power considering the advent of electric
vehicles (EVs) in the energy market. The main reason to integrate EVs is the growing hazards of
climate change due to carbon emissions. Moreover, this paper sheds light on the growing importance
of artificial intelligence (AI) in the technological realm and its incorporation into electrical systems
with the notion of strengthening existing smart grid technologies and to handle the uncertainties in
load management. This paper also delineates the different methodologies to effectively mitigate the
probability of facing cyber‑attacks and to make the smart grids invulnerable.

Keywords: energy storage system; demand‑side management; renewable energy resources; microgrid;
smart grid; optimization algorithms; electric vehicles; artificial intelligence

1. Introduction
Energy systems are receiving widespread attention due to their significance in our

daily lives. Most of our energy generation systems are based on fossil fuels, which are non‑
renewable and come with an inevitable concomitant—hazardous carbon emissions. The
growing nuisance of carbon emissions is pivotal in intensifying global warming. There is
an instant need to curtail this menacing phenomenon to forestall potential large‑scale en‑
vironmental catastrophes. These fossil fuels, including oil, coal, and gas, are continuously
depleting at a baffling rate, raising a red flag for concerned scientists to copewith this issue
instantly [1]. Moreover, the global shortage of fossil fuels consequently results in an exces‑
sive spike in its prices [2]. According to experts, the extensive dependence on fossil fuels
can significantly impede the development process of countries and, sometimes, become
the cause of an outright economic downturn that drags countries to the brink of an utter

Processes 2024, 12, 270. https://doi.org/10.3390/pr12020270 https://www.mdpi.com/journal/processes

https://doi.org/10.3390/pr12020270
https://doi.org/10.3390/pr12020270
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/processes
https://www.mdpi.com
https://orcid.org/0000-0003-0753-0883
https://orcid.org/0000-0003-3025-6739
https://orcid.org/0000-0002-8585-7286
https://orcid.org/0000-0003-2504-9364
https://orcid.org/0000-0001-5176-3129
https://doi.org/10.3390/pr12020270
https://www.mdpi.com/journal/processes
https://www.mdpi.com/article/10.3390/pr12020270?type=check_update&version=2


Processes 2024, 12, 270 2 of 42

fiasco. In modern times, fossil‑fuel‑operated vehicles are being supplanted by high‑tech
electric vehicles that are environmentally friendly with zero tailpipe emissions. This rapid
adaption of electric vehicles augurs well for the environment and the automobile industry.
It has been made adequately practical by engineers to charge these electric vehicles using
less expensive and more efficient electrical supply sources.

Furthermore, scientists are undertaking extensive research to fathom alternate energy
resources to uproot the evil of carbon emissions and to satiate the incessantly amplifying
energy demands across the globe. Some issues related to the energy system include fos‑
sil fuel depletion, relentlessly rising greenhouse gas (GHG) emissions, and a huge energy
shortage [3]. It is a common belief amongst the experts that the significant utilization of
renewable energy resources, to meet the growing energy demand, is the most suitable al‑
ternative available at the moment. In this regard, optimized energy management is imper‑
ative in order to yield maximum results from renewable resources, which can be achieved
throughmicrogrids. Amicrogrid is a decentralized, resilient energy system that facilitates
the transition from fossil fuels to renewable energy. It integrates renewable sources, like
solar and wind, reducing dependence on centralized infrastructure. Microgrids enhance
grid resilience, promoting energy independence and optimizing management. The acute
decline in energy reserves calls for the immediate formulation of requisite energy man‑
agement strategies to rectify such widespread concerns. The panacea for all these thorny
issues lies in effectively implementing a microgrid energy management system [4]. Con‑
temporary study aims to showcase the effectiveness of microgrid energy management sys‑
tems, and for this purpose, it incorporates different decisive determinants, such as phasor
measurement units and sensor nodes [5]. Furthermore, in this regard, a unique decentral‑
ized controlling structure is also included to regulate the voltage and frequency variations
in an AC microgrid (MG). In any microgrid management system, a sturdy energy man‑
agement system underlies the smooth availability of electrical supply to consumers. For a
better energy management system, a higher bandwidth control structure is more suitable
than the conventional one, without any need for communication hardware. The approach
mentioned above was employed by the set model of finite control that predicts the volt‑
age converter’s control at the primary level. On the other hand, a droop control can also
be used to keep the frequency and voltage steady and maintain them at the secondary
level of hierarchical control. The simulation results also verified the accurate voltage and
frequency of restoration, as well as the swift and uninterrupted sharing of power during
transient and steady‑state behaviors [6]. In addition to the aforementioned facets of this
study, Gaziantep Metropolitan Municipality Central Wastewater Treatment Plant is also
employed to investigate urbanwastewater using the new concept of the bio‑gas plants, and
simultaneously, different calculations were performed to analyze the output power ratio
compared to the injected fuel [7]. Figure 1 depicts the smart grid (SG) system architecture.

Additionally, demand response energy management is a strategic approach to opti‑
mizing energy consumption by adjusting usage based on changing grid conditions, pricing
signals, or environmental factors. It involves real‑time monitoring and adaptive decision
making using advanced technologies like smart meters, promoting a more resilient and
sustainable energy infrastructure. A new energy management strategy through a fuzzy
adaptive particle swarm optimization algorithm (PSO) was proposed to increase the effi‑
ciency and performance of microgrid systems by analyzing the losses. PSO optimized the
demand response by identifying optimal energy consumption patterns through collective
intelligence and dynamic particle adaption, consequently enhancing gird efficiency [8].
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Furthermore, the optimal dispatch of integrated energy systems in smart homes by
combining heat, power, and batteries was also presented. The prime motive was to effec‑
tively mitigate the operation costs by implementing adequate energy routing and optimal
energy scheduling during different time intervals. A considerable number of countries
are promoting combined heat and power (CHP) and operations that are studied using an
evolutionary algorithm. In this regard, a robust integrated energy system is preferred for
optimized energy management. A typical integrated energy system consists of fuel cells,
a thermal power plant, batteries, electricity loads, and natural gas resources connected to
the electrical grid. The Harmony Search Algorithm (HSA) was used for proper energy
routing and scheduling. The obtained results decreased the system operation cost [9]. The
advanced energy management System (AEMS) facilitates the microgrid’s energy flow. It
also provides new techniques, algorithms, and new approaches to energy management
like the block chain, artificial intelligence, or machine learning [10]. Table 1 shows the
detailed study of ‘Microgrids’ energy management systems (EMSs).

Table 1. Details of Microgrid Energy Management System.

Ref. Building Type Integrated Components Optimization
Techniques Load Types Results

[9] Large‑sized building Fuel cells, batteries,
natural gas resources

Harmony Search
Method Algorithm

(HAS)

Thermal and
electrical
loads

System operational
cost reduces as

demand curves do
not change



Processes 2024, 12, 270 4 of 42

Table 1. Cont.

Ref. Building Type Integrated Components Optimization
Techniques Load Types Results

[11]

Campus Load of
University of

Engineering and
Technology,

Taxila, Pakistan

Photovoltaic panels,
distributed generations

(DGs), energy
storage systems

Mathematical
problem of optimal
scheduling of DG

and DR

Electrical
Loads

System operations
become cost‑effective

[12]
A micro market
design for the
university

Controllable and
uncontrollable loads,

distributed
generation (DG)

Self‑Crossover
Genetic Algorithm

Electrical
Loads

Power system cost
control, power

system operation
control

[13] Smart house
Hybrid energy resources,
battery energy storage

system, Boiler

Real Coded Genetic
Algorithm

Electrical
loads, electrical

vehicles

Optimal
operational cost

[14] Smart home

Photovoltaic (PV)
generation, energy

storage, grid
energy exchange

Genetic Algorithm Electrical
appliances

Optimal energy
scheduling and
management

[15] University
smart grid

Photovoltaic panels,
energy storage system,

electric vehicles

Linear optimization
problem solved by

MATLAB

Electrical
loads

Reduction in energy
cost by 45.58% and
reduction in load

by 19.33%

[16] Grid connected
to microgrid

Solar cells and wind
energy generation,

Main Grid

Quantum Particle
Swarm

Optimization

Electrical
loads

Reduction in energy
cost 43.81% and
reduction in load

by 20%

[17] Off‑grid microgrid
Renewable energy

generation and battery
storage system

Convex
optimization
methods

Electrical
loads

Microgrid
operational cost

reduction

[18]
Grid connect
commercial
microgrid

Solar cells and battery
energy storage systems

Multi‑Objective
Particle Swarm
Optimization

Electrical
loads

Reduction in
operational cost of

system and resilience
of System

[19] Microgrid

Hybrid renewal system,
battery energy storage

system, electrical
vehicle aggregator

Non‑dominated
sorting genetic
algorithm‑II

Electrical
loads

Extension in battery
life, optimal energy
generation, and
recharge cost
of vehicles

[20] Smart grid Solar and battery
storage system

Glow‑Warm Swarm
Optimization Small‑scale loads

Reduction in
electricity tariff by
11.2% and reduction
from 2.3 to 2.27 with
load of 8.2 kWh/day

[21] Commercial grid
Renewable energy
resources and

gridable Vehicles

Dynamic Stochastic
Optimization

Commercial
loads

Energy cost and CO2
emission reduction
and reliability system

[22] Microgrid Electric vehicle,
main Grid

Elephant Herding
Optimization

Commercial
loads

Reduction in energy
cost and stability

enhancement of grid

[23] Plug‑in electric
vehicles

Main grid with renewable
energy systems and
battery storage

Pontryagin’s
minimum principle
and particle swarm

optimization

Commercial
loads

Cost minimization
and extended
battery life
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Table 1. Cont.

Ref. Building Type Integrated Components Optimization
Techniques Load Types Results

[24] Hybrid power plant
Renewable energy
generation and
Battery Storage

Risk‑constrained
optimization
algorithms

Commercial
electrical
Loads

Low operating costs
and reliable power

generation

[25] Multi‑carrier
energy hub

Dispersed generating
system, combined heat
and power units, battery

storage system

Mixed‑integer
non‑linear
optimization

Electrical and
thermal loads

Enhancement of
economic operation

of the system

[26]
Battery‑flywheel
compound energy
storage system

Battery storage system
Optimization

Method for Genetic
Algorithms

Motor load

Recovered energy
increased 1.17 times
and decrease of

42.27% in
charging current

According to the statistical study conducted by E.Wood onmicrogrids, the autonomous
operational capability and sustainability of microgrids are predicted to grow significantly
in the upcoming years on a global scale, especially in North America and the Asia–Pacific.
From 2018 to 2027, grid capacity and spendings are predicted to rise by around five times [27].
The growth in microgrid capacity and spending over time is depicted in Figure 2.
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This study is a comprehensive survey of the microgrid energy management system
and can be classified in the following areas:
• Microgrid demand‑side management (DSM)
• Demand response strategies
• Microgrid energy storage system
• Role of AI in smart grids
• Optimization techniques used for energy management systems
• Uncertainty handling in microgrid system
• Future scope and challenges in microgrid systems
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This paper consists of various sections. Section 2 focuses on microgrid demand‑side
management, while Section 3 discusses demand response strategies. Section 4 highlights
the microgrid energy storage system, and Section 5 explains the role of AI in smart grids.
Sections 6–9 are dedicated to discussing uncertainty handling inmicrogrid systems’ future
scope and challenges, respectively.

2. Microgrid Demand‑Side Management
Microgrid demand‑side management optimizes electricity consumption within a mi‑

crogrid to improve efficiency, reduce costs, and improve grid performance. It uses ad‑
vanced technologies like smart meters, sensors, and automation to monitor usage patterns,
implement demand response strategies, and promote sustainable energy practices.

There are two key factors that are taken into considerationwhen accessing amicrogrid
system: the cost and quality of service. Besides that, load‑side or demand‑side manage‑
ment is also an important factor that holds the ability to considerably enhance the quality
of the power system network. Demand‑side management (DSM) mitigates the effect of
contingencies and the utilization of peak load management, considering the demand re‑
sponse (DR) techniques. Some existing studies are also presented here to explore the new
paradigm in this domain, anatomizing the provision of electricity to remote areas with less
cost and more reliability. In that context, objective functions were established as the cost
of electricity (COE) and the probability of power supply loss (LPSP) [28]. Figure 3 shows a
detailed picture of the energy management system covering utility‑side, generation‑side,
and demand‑side management.
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Furthermore, the customer‑oriented incentive charging scheme for electric vehicles
(EVs) were established for communication between multiple microgrid regions. Initially,
the respective implementation frameworkwas incorporated into the systembased onmulti‑
regional charging coordination, and subsequently, the charging information was shared
with the customers. Afterwards, by taking into the consideration the potential impacts of
charging price, charging demand and customer charging demandmodelswere formulated
to amplify the interests of system operators. The algorithms used to solve the models in‑
cluded particle swarm optimization (PSO), which conspicuously improved the multi‑grid
system’s operating revenue [29]. Table 2 shows the study of demand‑side management of
different types of loads considering the components installed.

Table 2. Demand‑side management analysis of different types of loads.

Refs. Load Type

Components Load Type

PV
(BESS)

(Battery Energy
Storage System)

Wind Biomass DG 1 MT 2 EV 3 SC 4 FC 5 CHP 6 Residential/Comm
ercial/Industrial

[9] Commercial
building 4 2� 4 4 4 4 4 4 4 2� Commercial

[11] Campus building 2� 2� 4 4 2� 4 4 4 4 4 Commercial
microgrid

[30] University
building 2� 4 4 4 2� 4 4 4 4 4 Commercial

microgrid

[12] University
building 4 4 4 4 2� 4 4 4 4 4 Commercial Load

[14] Smart house 2� 2� 4 4 4 4 4 4 4 4 Residential Load

[15] University
building 2� 2� 4 4 4 4 2� 4 4 4 Commercial

microgrid

[16] Grid connected to
microgrid 2� 4 2� 4 2� 4 4 4 4 4 Commercial

microgrid

[24] Hybrid power
plant 2� 2� 2� 4 4 4 4 4 4 4 Commercial

[25] Multi‑carrier
energy hub 4 2� 4 4 2� 4 4 4 4 2� Commercial Load

1 DG denotes distributed generation. 2 MT denotes the microturbine. 3 EV denotes the electric vehicle. 4 SC de‑
notes supercapacitor. 5 FC denotes fuel cells. 6 CHP denotes combined heat and power.

Microgrid energy management is a broadly deliberated technological strategy in the
realm of electrical power management topic from the last few years because of the ampli‑
fying demand for electricity, climate change, and increasing electricity costs. To overcome
these issues, densely populated countries are inching towards the utilization of renewable
energy resources—by discarding the hitherto predominant utilization of fossil fuels. The
installation of solar/PV panels is a widely preferred phenomenon that is a rich source of
electrical energy in multiple highly luminous areas, offices, and institutes, and notably,
almost 1–20% of renewable energy is being used to meet the electrical energy demand
of the institutions [30]. In this day and age, existing energy systems primarily bank on
fossils, but resultant emissions and unprecedented price hikes are the glaring undersides
attached to such energy production phenomena. On the other hand, the systems operated
by renewable energy resources are primarily cost‑effective and environmentally friendly
with virtually zero carbon emissions. To achieve the optimized flow of energy, energy
management is mostly performed through renewable energy resources, DG generators,
and energy storage systems, On the other hand, due to high load demand, electric power
systems are becoming excessively intricate considering their stability and reliability [31].

Tomeet the energy demand and improve the efficiency, researchers are painstakingly
working on multiple techniques of smart microgrid; one of them is the emergency en‑
ergy demand response technique considering the decentralized approach for distribution‑
feeder load management based on decision‑making techniques. The same approach not
only relieved the system of undue burden, but also mitigated the demand rebound ef‑
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fect and provided efficient and clean energy without any hazardous impact on the cli‑
mate [32]. Moreover, in terms of demand‑side management, two factors are under consid‑
eration: one is power cost control, and the other is power system operation. The microgrid
demand‑side management optimization model is designed to acquire optimized system
cost, load control, and micro‑market operations. For the purpose of consequent analysis,
self‑crossover genetic algorithms were implemented to deduce the desired results. The
primary aim of the study is to investigate and implement effective methods for managing
unpredictable loads [12].

A microgrid is a feasible choice for a sustainable and reliable electrical energy supply
system. The microgrid planning model developed through the MDS tool is divided into
two sub‑models: performance and economic models. Performance models are utilized to
analyze energy and help appraise technical feasibility, and on the other hand, economic
models are used to calculate the cash flow. Microgrid planning is a difficult task and some‑
times requires government incentives to complete these tasks [33]. The power system faces
challenges, such as inaccurate power sharing and the inability to extract maximum power
from renewable energy resources. An optimal 3D droop method is proposed to address
this issue [34]. Figure 4 represents various smart grid components.
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In a comprehensive study regarding the interactive framework for improving resilience
of power–water distribution systems with multiple microgrids, emergencies and micro‑
grids provide the Distribution System Operator (DSO) with an energy block list. Subse‑
quently, the DSO chooses a plan to reconnect the disconnected loads by assessing the inac‑
cessibility values pertinent to the power and water distribution network damage. In this
regard, the modified IEEE‑30 bus system, including the microgrids, is used as a test, and
the usefulness of the proposed strategy is confirmed [35]. Microgrids can significantly help
in providing a clean and seamless energy supply to remote and far‑flung areas with poten‑
tially no energy losses. Research conducted in the remote areas of Tanzia corroborates the
aforementioned assertion. The microgrid included in the study generated 1000 kWh/day
via HOMER Pro software and AHP‑based multi‑criteria decision making. Energy sources
include PV, wind, micro‑hydro, bio‑gas generation, and battery storage. All sources were
cost‑effective and included in the design. Microgrid’s levelized cost is 0.0694 USD/kWh
via HOMER Pro. The results clearly showcased the effectiveness of microgrids in term
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of supplying energy to remote areas [36]. Moreover, in recent times, a highly productive
model was introduced by researchers for interconnectedmicrogrids to obtain 100% utiliza‑
tion of renewable energy resources named the Hybrid Information Gap Decision Theory
(IGDT)/Stochastic approach. The model involved using trans‑active technology to trade
energy in a local market to maintain a dynamic energy balance. The system addressed
the intermittency of RERs using information‑gap decision and stochastic programming,
incorporating risk‑averse and risk‑seeker schemes. The model was tested using the IEEE
14‑bus model, which verified its effectiveness in achieving an 18.34% cost reduction com‑
pared to the base model [37]. Energy management (EM) is of paramount importance in
microgrids (MGs) as it guarantees the secure and effective utilization of renewable energy
resources (RERs). A smart microgrid, which consists of communication devices, electri‑
cal loads, electrical vehicle loads, and distributed energy resources (DERs), necessitates
the implementation of all‑encompassing approaches to tackle technical, environmental,
and economic obstacles. A critical and comparative analysis of EM strategies in this con‑
text classifies EMS according to supervisory control, operating time platform, decision‑
making approach, and optimal decision making and demand response strategies. Diverse
uncertainty quantification strategies for managing the intermittent character of renewable‑
based DERs are also emphasized. Considerations such as the objective function, practica‑
bility, suitability, and tractability influence the choice of decision‑making approach. For
quantifying uncertainty, scenario generation and reduction has become a widely adopted
method. In the realm of demand response strategies, incentive‑based DSM is the prevail‑
ing approach; however, price‑based DSM distinguishes itself through its straightforward
modeling and implementation. Furthermore, meta‑heuristic algorithms and multi‑agent‑
based approaches are superior in decentralized energy management, supporting precise
scheduling and forecasting algorithms. Despite limitations in demand management and
forecasting, they facilitate collaborative energy sharing in community microgrids, offering
end‑to‑end energy [38].

Recognizing the pivotal role of energy management systems (EMSs), societies are in‑
creasingly prioritizing their development to achieve sustainable energy goals. Microgrids
(MGs), owing to the stochastic nature of electrical loads and renewable sources, necessitate
EMSs for optimized operations, planning, control, monitoring, and energy conservation.
Over the period from 2009 to 2022, the focus on EMS strategies for MGs has encompassed
diverse aspects. This includes database preparation, classification of EMS methods based
on technique, control strategies, and structure, as well as discussions about potential direc‑
tions for future studies. Industries and academia alike are directing their attention towards
energy management research to enhance the efficiency, manageability, and sustainability
of the energy sector [39].

Renewable energy systems have become increasingly significant due to the increasing
global energy demand, which is primarily propelled by population growth and technolog‑
ical advancements. However, their intermittent nature complicates their design and oper‑
ation. To address this, a sophisticated energy management strategy (EMS) is developed
in [40] by the authors, with a real‑time monitoring interface to optimize the functioning
of a hybrid microgrid. It ensured stable voltage, balanced power supply, and frequency
stability. Moreover, the system includes backup electrical infrastructure, AC/DC loads,
hybrid sources, and a Li‑ion battery storage system. The Python platform and GUI soft‑
ware facilitated efficient data analysis, demonstrating the effectiveness of the proposed
EMS andmonitoring interface. Few optimization techniques are also implemented within
microgrids to tackle the challenges, such as mixed‑integer programming, which is a fre‑
quently employed technique owing to its straightforwardness and power management so‑
lution [41].

3. Demand Response Strategies
Demand response (DR) strategies are dynamic methods used in energy management

to optimize electricity consumption and improve grid reliability. They address challenges
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pertinent to peak demand, grid instability, and renewable energy integration. In DRmech‑
anism, time‑of‑use pricing is a valuable factor that regulates consumers’ energy consump‑
tion by shifting energy‑intensive activities to off‑peak hours, reducing grid strain. Critical
peak pricing introduces higher rates during critical peak events, encouraging non‑essential
use. In order to automatically optimize energy consumption, automated demand response
(ADR) is widely preferred, and it uses advanced automation systems to respond to grid
signals, allowing real‑time adjustments without human intervention. Load shifting in‑
volves transferring energy‑intensive activities to off‑peak hours, while incentive programs
reward consumers for reducing consumption. Moreover, Vehicle‑to‑Grid technology al‑
lows electric vehicles to discharge stored energy back to the grid during peak demand.
These strategies contribute to a more flexible and responsive energy system. In order to
optimize electricity usage in response to grid conditions, pricing signals, and other con‑
siderations, demand response (DR) methods are essential parts of contemporary energy
management systems. Improving grid resilience, controlling peak demand, and encour‑
aging a more economical and ecological use of energy resources are all made possible by
these tactics. Figure 5 shows the different types of demand response schemes. Demand
response is becoming popular as it has been proven very useful in recent implementations,
and its usefulness is now unquestionable. There is a need for more adequate approaches
and models to address the small need of consumers and producers.
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By using hourly pricing and peak‑power‑limiting techniques, a residential energy
management system framework was created to optimize day‑ahead appliance scheduling.
All assets that can be controlled were modelled, such as distributed generation, electric
cars, energy storage systems, thermostatically and non‑thermostatically controlled appli‑
ances, and electric automobiles. In this regard, bidirectional energy flow was taken into
consideration through improved choices for EV and ESS operation. A practical test case
was showcased to examine the efficacy of the model, utilizing information, and much bet‑
ter results were found compared to previous energy utilization trends [42]. Dynamic pric‑
ing is real‑time pricing (RTP) and mainly depends on two factors: one is efficient energy
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management, and the other is generic DR. There was an observation upon the RTP‑based
DR program that it decreased both the uncertainty in price and the electricity consump‑
tion [43].

Furthermore, collaboration of private microgrids (PMGs) with a robust decentralized
model for a distribution company (DISCO) can also help handle uncertainty and opera‑
tional cost. A test system of modified IEEE 33‑buses, including the distribution network
and three PMGs, is utilized to prove the usefulness of the proposed strategy [44]. More‑
over, a flexible system of compressed air energy storage (CAES) can be a better choice
due to its high ramp rate and reduced impact on the cost of the power system. Demand
response programs are also deemed suitable solutions as part of practical approaches to
deal with peak‑demand challenges.

In conventional power system demand response, customers adjust their initial power
consumption pattern in reaction to energy price or incentives in order to obtain additional
advantages. The research on the effectiveness of multi‑energy systems clearly delineated
that their emergence enabled the integration of various sources of energy, such as electric‑
ity, heat, and natural gas. This integration allowed all energy consumers to actively engage
in demand response, giving rise to the idea of integrated demand response (IDR). Within
the IDR framework, energy users had the ability to respond by not just decreasing their en‑
ergy usage or selecting to consume energy during non‑peak hours, but also by altering the
type of energy they consume. The research under discussion also provided an overview
of the classic demand response in power systems [45].

Electrical heating devices solve the problem in the renewable energy system by mod‑
ulating heat pumps. Furthermore, they can change their output according to the demand
curves. Heuristic control techniques to modulate heat pumps can minimize heating costs
and surplus energy. Compared to the other techniques, this strategy reduced heating costs
by 4.1% and 13.3%, and the improvements in surplus energy were between 38.3% and
52.6%. A 40‑building system was used for the test using a control and communication
architecture to maintain inhabitants’ privacy, and the results verified the strategy’s impor‑
tance [46].

The consumption of fossil fuels poses some environmental threats, such as global
warming and CO2 emissions. The prime purpose of using demand response programs
(DRPs) is to reduce real‑time pricing, peak‑time pricing, incremental block rate, day‑ahead
pricing, etc. Furthermore, some challenges in implementing DRPsmainly include the will‑
ingness of customers to participate as they lose their comfort zone [47]. Artificial intelli‑
gence (AI) algorithms and battery banks can deal with peak‑hour demand curves. The
authors assessed the performance of different schemes in implementing the demand re‑
sponse algorithms in residential buildings. Two algorithms were implemented: one rule‑
based approach and another predictive‑based approach to control a systemwith a thermal
storage system and heat pumps. These algorithms assessed the demand response price
scheme and observed the reduction in electricity end‑user expenditure, such as 20.5% us‑
ing a rule‑based technique and about 41.8% using the predictive algorithm. Similarly, the
utility generation‑based cost was 18.8% using the rule‑based technique and 39% using the
predictive algorithm. An algorithm‑based system was recommended due to its reliability
and desired outcomes [48]. There is a gradual increase in demand for energy in the world,
which forces us to opt for renewable energy resources. However, sometimes, in the case
of renewables, variability and unpredictability in power generation unduly amplify. To
solve these problems, customers approve the demand response (DR) mechanism world‑
wide. Besides that, due to the similarity of the gas system with the electricity network,
the DR actions are applied to it. The proposed scheme involves management actions like
balancing, pipeline congestion or shortage of underground storage, and the use of all DR
products developed for power system and communication, and metering also needs to
achieve optimum reliability in the gas sector [49].
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3.1. Demand Response Strategies
In the DR program, incentive‑based demand response (IBDR) is widely utilized in

light of technological requisites. Some types of IBDR are direct load control, interruptible
and manageable services, and demand bidding strategies [50], as well as optimal power
flow (OPF) for IBDR, which reserves resources during normal and unusual conditions
based on customer appliances. MG aims to improve security and reliability and maximize
overall profit under normal and emergency operating conditions. There was a 4% and
2.7% increment in the profit of the operator, and the improvement in reliability indicator
is recorded as 60% and 56%, respectively, by applying the IBDR model [51].

3.2. Price‑Based Demand Response
The price‑based demand response scheme (PBDR) has numerous types, such as time

of use (ToU), critical peak pricing (CPP), and real‑time pricing (RTP). These are all based
on the tariff variation throughout the day. The tariffs vary during peak and off‑peak hours.
After extensively reviewing the workingmechanisms of PBDR, shortcomings such as poor
quality turn out to be the main problem in the distribution network. To overcome the
abovementioned problem, rooftop and on‑load changing procedures are adopted for en‑
ergy management. The on‑load tap changer (OLTC) method minimizes the compensation
cost of voltage management.

The modified particle swarm optimization algorithm (MPSO) switches combinations
between household appliances and OLTC tap position DR integrated with OLTC. Addi‑
tionally, effective improvements in network voltage and PV hosting capacity are also ob‑
served by using independent phase tap control. This scenario is applied on a low‑voltage
network. In the future, it can be applied tomedium‑voltage networks aswell [52]. Avirtual
power player was introduced that efficiently reduces operational costs by considering the
trend in consumption shifting. This methodology was tested on three different scenarios
including 214 customers and four types of distributed generation systems for 96 periods.
The results authenticated the usefulness of this novel approach [53]. The challenges were
faced by electrical networks due to an increase in electricity demand and intermittent re‑
newable energy resources like photovoltaic (PV) systems. The study proposed a method‑
ology to encourage residential prosumers to use price‑based demand‑side management
(DSM) techniques. The methodology was tested on a pilot network of 300 residential pro‑
sumers with PV systems on their roofs. The results showed a reduction in seasonal peak
consumption ranging from 1.03% to 3.19% and a 2% reduction in total consumption. The
analysis showed a net benefit of EUR 4.09 million for 15 years. This methodology can be
universally applied to manage demand and address reliability and congestion issues in
electrical networks [54].

4. Microgrid Energy Storage System
The role of battery storage systems in microgrids is to improve their reliability and

operational cost. Proper location and size are also significant for achieving the desired
outcome through BESS. Besides many other benefits, ESS is used for ancillary services,
voltage regulation, frequency regulation, etc.

Lead acid and lithium‑ion batteries are used by applying GA algorithms for optimal
power flow. The results of the simulation showed that lithium‑ion BESS was more re‑
liable, and the results were tested with 1.2 MW and the expected case of 2.3 MW solar
installation system expected if a reduction in the cost of lithium‑ion BESS is expected in
future [55]. Historical data of the real grid and generation capacity from renewable energy
resources should be known to handle uncertainties. Proper planning and operation of the
distribution network are also necessary. Total investment and operational costs are taken
as the objective function, and different schemes are implemented into the distributed test
system, and results prove that the joint utilization of EESs and RESs are useful for cost
reduction and fluctuation handling [56]. Optimal energy management of electrical energy
storage systems (ESSs) through a bi‑level framework depends upon two factors, i.e., min‑
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imizing the cost and maximizing the profit and the charge/discharge scheduling of ESSs.
The model provides the optimal operation strategies for both the ESS and the power sys‑
tem [57].

The battery is an essential part of microgrids that run independently off the grid be‑
cause renewable energy sources have significantly shorter operational hours. To reduce
the running expenses of MGs, the optimal battery energy system size must be determined.
Convex optimization techniques are used to determine the BESS size in a two‑step cost‑
based approach. In the first step, a unit commitment (UC) issue is determined. The second
phase was determining the BESS size while keeping operational and physical constraints
using convex optimization and relaxation techniques. The aforementioned issue was re‑
solved using MATLAB’s CVX toolbox, and the outcome was better than the PSO and GA
methods [17]. A rise in the popularity of photovoltaic (PV) systems, wind turbines, and
battery energy storage systems (BESS) can be attributed to the increasing need for electric‑
ity, the rapid depletion of fossil fuels, and their harmful environmental effects. Due to its
rapid responsiveness, controllability, adaptability, eco‑friendliness, and geographical in‑
dependence, the BESS is more attractive. The authors investigated the BESS in addition to
the need for optimal BESS sizing approaches.

Future research should be conducted to build productive, efficient, long‑lasting, and
effective battery energy storage for a sustainable environment [58]. To manage renewable
energy sources in microgrids, researchers suggest using battery energy storage systems
(BESSs) due to their efficiency and adaptability. However, the BESS is grid‑connected and
requires a local voltage source (VS) as a reference to function. The study proposes a so‑
lution to operate the BESS at the local VS reference when the grid and renewable sources
are unavailable by using the Simulink/MATLAB platform. Simulation results show that
a seamless power supply (UPS) with 30–45% BESS capacity can be used for VS during
150–200% overload scenarios [59].

State of charge (SoC) is necessary because sometimes it becomes very difficult to con‑
trol renewable energy sources in microgrids. To resolve this issue, a battery as an energy
storage device is offered as a solution because of its versatility, efficiency, and high energy
density. In contrast, BESS is a grid‑connected system that cannot function without the
local voltage source (VS), which functions as a reference. Using the Simulink/MATLAB
platform, a method for operating the BESS at local VS in the absence of the grid and renew‑
able energy sources is described. Simulation results indicate that a backup power supply
(UPS) with 30‑45% capacity of the BESS can be selected for VS under 150‑200% overload
scenarios. There was a need for a constant state of charge for all battery energy storage
systems (BESSs) to prevent excessive use of some BESS units and extend BESSs’ life. SoC‑
based droop control was analyzed on a multi‑agent system, a proportional integral (PI)
with the average SoC employed in P‑f droop for the regulation of charging and discharg‑
ing BESS units. Consequently, regardless of the size of the BESS units, the SoC progresses
toward equalization. The effectiveness of the proposed technique was evaluated based
on a variety of case scenarios, and the outcomes met with approval [60]. To ensure busi‑
ness continuity during a grid outage, a grid‑connected Microgrid (GCMG) with a photo‑
voltaic (PV) system and a battery energy storage system (BESS) was designed. The system
employed a novel multi‑objective strategy for optimal GCMG operation considering oper‑
ational cost and system robustness. Optimization was achieved through multi‑objective
particle swarm optimization (MOPSO), which considered electricity cost and power out‑
age during a grid outage as resilience indices. Numerical simulation and Pareto solutions
were used to locate the optimal cost‑to‑resilience ratio. This approach proved effective in
ensuring optimal GCMG performance [18].

The smooth operation of an isolated microgrid system requires a plan for generation
scheduling and demand‑side control. Electric car aggregators, hybrid renewable energy
sources, solar panels, wind turbines, battery banks, and conventional generatorswere stud‑
ied as system components. A multi‑objective optimization model was suggested for such
a system, with battery life extension on one side, energy generation cost of sources and
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recharge cost of a vehicle on the other, and demand‑side management (DSM) introduced
via plug‑in electric vehicles (PEVS). Using a non‑dominated Sorting Genetic Algorithm‑II
(NSGA‑II), optimal operating circumstances and results validated the validity of this tech‑
nique [19]. Nowadays, theworld is focusing on economic power generation and renewable
energy resources that play a key role in it. Due to the limitations of transmission lines, the
cost and scarcity of fossil fuels force us to look for uninterrupted power sources by us‑
ing battery banks and renewable energy systems in smart grids. In Ref. [61], the authors
concentrate on the technology, size, efficiency, cost, and recycling of batteries utilized as
prime energy storage devices. Optimization and probabilistic methods in battery sizing
are observed, considering elements such as deterioration rate, battery placement, and reli‑
ability, which produce a cost‑effective solution for the smart grid system. In addition, the
researchers explain the batteries’ potential to be recycled and their environmental impact.
Energy storage (ES) has emerged as a crucial component of energy systems and is crucial
in advanced smart grids. Smart grids share ES to strengthen the resilience and dependabil‑
ity of the energy system. Improved utilization of ES requires energy storage design and
control mechanisms instead of standard sharing approaches.

A detailed survey encompassed all the researchmethodologies proposed in the previ‑
ous decade for ES sharing and described their potential and adoption challenges [62]. The
authors focused on battery storage device technology, size, efficiency, cost, and recycling
in their research. Optimization and probabilistic methods in battery sizing, considering
factors such as deterioration rate, battery placement, and dependability, resulted in a cost‑
effective solution for the smart grid system. Energy storage (ES) has been developed as an
integral part of energy systems and is critical in advanced smart grids. Smart grids share
ES to increase the energy system’s resilience and dependability. Enhanced utilization of ES
necessitates design and control methods for energy storage instead of typical sharing ap‑
proaches. A comprehensive survey of all research approaches developed in the preceding
decade for ES sharing and describing their potential and adoption problemswas given [63].
Additionally, a distributed cooperative control technique for freestanding DC microgrids
(DCMGs) is necessary when coupled with several photovoltaic (PV) energy systems at‑
tached to the DCMGs. This technology mitigates intermittent power swings by providing
steady power generation from PV systems. It also contributes to cost reduction by moni‑
toring and evaluating energy sources to reduce the quadratic cost function. Byminimizing
charging stress, the effectiveness of the suggested solution increases the lifespan of battery
energy storage systems (BESSs) [64].

The resilient power supply supplies electricity during natural disasters and grid fail‑
ures by utilizing a redundant structure and predictive control strategy, attracting the atten‑
tion of the power system. As power outages can result in provider losses, incorporating
renewable energy sources, natural gas networks, and electrical grid supply and control
techniques into a microgrid can make a system more resilient. This study describes a con‑
troller based on artificial intelligence and simulates the information and communication
technology (ICT) system as an uninterruptible power supply in emergencies. Its potential
is evaluated by improving its resilience in terms of survival time under defective condi‑
tions [65]. An optimal battery energy storage system (BESS) design and virtual energy
storage system (VESS) can significantly achieve microgrid stability and cost savings. The
appropriate energy size of a two‑layer BESS in a smart microgrid with a high penetration
of solar systems is examined. The initial BESS size is determined based on the VESS role in
the first layer. In the second layer, the optimal dispatch of energy resources is computed
based on the optimal BESS size and system limitations. Markowitz’s mean‑variance the‑
orywas utilized to evaluate the risk of system cost variability with load fluctuation ranging
from 70% to 130% and PV generation from 40% to 100%; resultantly, it was established that
the BESS was less impacted by PV generation [66].

Due to the scarcity of fossil fuels and the attendant environmental concerns, the gener‑
ation has shifted towards renewable energy technologies. Microgrids with scattered gener‑
ation and interconnected loads will be helpful in locations where grid functionality cannot
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be expanded. The ideal scheduling of an interconnected 82 kW load with microgrid and
distributed generation is shown to reduce fuel expenditures. The literature describes nu‑
merous optimization procedures, such as particle swarm optimization (PSO), Whale Op‑
timization Algorithms (WOA), Grey Wolf Optimization (GWO), and Modified Grey Wolf
Optimization (MGWO). MGWO resulted in superior cost optimization compared to all
other algorithms and conventional methods [67]. In general, there is always an approx‑
imate match between power generation and consumption, and with the development of
battery storage technologies, the power system needs BES. The analysis of technical and
economic benefits renders deep insights into the effects of BES on the load factor, volt‑
age index, and network losses in power systems. The optimal power flow (OPF) model
is also suggested for sizing and placing a battery bank in a power system. The model’s
efficacy and availability are evaluated through its application in a model [68]. For optimal
energy management, various simulation tools were used and some of them are mentioned
in Table 3.

Table 3. Simulation tools used in the energy management system of microgrids.

References Tools Objectives and Applications

[11,15,17,59,69–77] MATLAB/Simulink

MATLAB is a powerful mathematical computing platform with a wide range
of toolboxes for scientific and engineering applications, including BESS. It can
be used for modeling battery behavior, analyzing system performance, and

developing control algorithms.

[24] HOMER Pro
Simulation software, optimizing microgrids, evaluating renewable energy

sources, selecting energy storage systems, and analyzing microgrid
performance and economics.

[76] MAGNET—Infolytica

MAGNET—Infolytica is a comprehensive software suite for designing and
analyzing electromagnetic devices, including batteries. Understanding the

strengths and limitations of each tool can help make an informed decision and
leverage their capabilities to design and optimize effective BESS solutions.

[78] GAMS

GAMS is a high‑level optimization modeling language used for solving
complex problems in various domains, including BESS design. It has
powerful optimization capabilities, flexible model formulation, and

integration with other software tools.

[79] PSCAD

PSCAD is a power system simulation software designed for analyzing the
dynamics and stability of electrical grids. It has highly accurate simulations

and detailed modeling capabilities, but it may not be suitable for the economic
or design aspects of BESS.

The sturdy correlation between the Micro Gas Turbine Generation System (MTGS)
and the battery energy storage is crucial to the system’s stability in an isolated system. In
another study, a control approach based on the rapid reaction of the battery is proposed.
A seamless switching control strategy is presented for MTGS and battery storage power
sources to prevent voltage quality issues during the load changeover between supplies.
A PSCAD simulation validated the proposed technique, and the result matched the de‑
scription [79]. The economic advantages of solar and wind energy are gaining traction,
but operational issues in grid‑connected systems require coordination between solar and
battery storage. To address this, a maximum power point tracking (MPPT) controller is
used to regulate solar generation. This model is simulated in MATLAB‑Simulink for two
scenarios: constant load with variable irradiation and changeable load with variable irra‑
diance. The results demonstrate the model’s effectiveness in maintaining voltage, power
balance, and frequency in the system [72]. The power quality (PQ) of a microgrid combin‑
ing a photovoltaic (PV) system and a battery storage system (BSS) is improved by using
the shunt hybrid active filter in a three‑phase system with a PV system and a BSS shunt
hybrid active filter (SHAF). The proposed technique was used to eliminate harmonics, reg‑
ulate reactive power in the system, and maximize the PV array’s power output. SHAF
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uses the maximized M. Kalman filter for reference current control and hysteresis of the
current control (HCC) while generating switching signals [73]. Moreover, for multi‑carrier
energy hubs, three sources are included in the optimal scheduling: distributed generating
systems (DGs), considered to be micro‑combined heat and power (MCHP) units; battery
electrical storage systems (ESSs) and electrical heaters; absorption chillers; and heat pumps.
A mixed‑integer non‑linear optimization problem was used to describe the optimal man‑
agement and scheduling of energy resources in exchange with distribution networks. The
optimum operating points of DG units and ESSs were determined using a cost‑effective
scheme. In addition, the cost reduction in ESSs was studied for short‑term scheduling.
The simulation findings demonstrate that utilizing optimal scheduling with energy stor‑
age options improves the economic operation of the system bymeeting all of its needs [25].
Microgrids (MGs) are increasingly popular due to their ability to deliver reliable and ro‑
bust power when combined with battery energy storage systems and renewable energy
sources. Current reliability measures, like expected energy not supplied (EENS) and loss
of load expectation (LOLE), may not provide a comprehensive assessment of MGs’ de‑
pendability and robustness. Additionally, three new indices for MGs were introduced:
(1) Microgrid Resiliency Index (MRI); (2) Microgrid Renewable Energy Availability Index
(MREAI); and (3) Microgrid Renewable Expected Energy Index (MREEI). These indices
provide additional data beyond EENS and EENS, highlighting the impact of renewable
energy sources on energy losses and availability in MGs [80]. The growing use of intermit‑
tent renewable energy resources presents challenges for traditional bulk power systems
and microgrids. To address this, flexible components like demand response and battery
energy storage systems are integrated using amixed‑integer programming strategy in [81].
Moreover, an incentive‑based demand response model and comprehensive model is pre‑
sented to enhance the vanadium redox battery’s efficacy and dependability. Simulation
outcomes are compared with a genetic algorithm approach to confirm the reliability. In
microgrids, the battery energy storage system (BESS) is an indispensable energy storage
technology; however, frequent replacements are financially burdensome due to its short
lifecycle and substantial cost. To overcome this issue, a method for optimizing capacity
and cost analysis is taken into account in [82] to increase the lifespan of the BESS. To esti‑
mate the lifetime of the BESS, the weighted throughput method is utilized to optimize the
battery capacity, and the particle swarm optimization algorithm is also implemented. The
optimal adjusting factor of 1.761 produces the lowest total net present value of 200,653USD,
thereby reducing overall operation expenses for the duration of the project. A newmethod‑
ology is tested in [83] for using battery storage units (BSUs) inmicrogrids (MGs) to perform
energy arbitrage and supply/demand matching. The goal to reduce power discrepancies
between demand and renewable energy systems (RESs) and gas emissions is addressed by
the authors. The study considered uncertainties in wind speed, solar irradiance, and tem‑
perature from RESs’ stochastic output. Two metaheuristic optimization algorithms, Moth‑
Flame Optimization (MFO) and Hybrid Firefly and particle swarm optimization, are used
to resolve the issue.

4.1. Flywheel Energy Storage System
For energy storage types, the flywheel energy storage system is based on rotational en‑

ergy. The rotational stored energy converts into electrical energy. In the microgrid energy
system, flywheel attracts many users due to its prominent characteristics. Different types
of technologies utilized in flywheel energy storage systems (FESSs) are discussed. The
materials used in producing FESSs and an overview of the uses of FESSs in grid leveling
are also discussed. Using the above discussion, the implementations for cost reduction
in permanent magnet synchronous machines and the operational temperature for these
machines can also be analyzed. Similarly, using renewable energy resources like wind
generation, solar generation, ocean wave energy generation, and geothermal energy has
an environmentally friendly nature and is a cost‑effective solution [84].
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It also posed some problems to the grid, such as generation fluctuations in weather,
environmental conditions, destabilization of the grid, grid error, and grid collapse. Fly‑
wheel energy storage systems are used in microgrids as a regulation element. The results
confirmed the role of the FESS, its governing principles in the microgrid, and its indispens‑
able role in science and technology [85]. The authors introduced energy‑saving methods
for a particular duty cycle and effective estimation‑related issueswith flywheel energy stor‑
age systems in pillar rolling mills. By calculating loss components in electric motors and
knowing the dependency ofmotor losses on themoment of inertia, the analysis of flywheel
usefulness is made, and the results declare that the implementation of a flywheel system
will reduce the losses of energy in heavy load charts. The analysis used the function of
dependency on the losses in electric motors, both electrical and mechanical, considering
the moment of inertia as a function [86].

The development of a digitalized vector control system for FESSs employing perma‑
nent magnet‑assisted synchronous reluctance machines (PMA‑SynRM) has been accom‑
plished. A proposed filter was implemented to remove offset and dead zone effects from
current sensor signals whilemaintaining their amplitude. The efficacy of the adapted FESS
drive control system was confirmed through simulations and experimental outcomes [87].
Similarly, optimization and analysis of a flywheel energy storage system that acts as a dy‑
namic voltage regulator (DVR) were also carried out. The primary objectives were to de‑
sign an FESS with a natural resonance frequency within the operational frequency range
and to demonstrate a matrix converter structure for bidirectional power conversion. To
achieve this, a specificmotor or generator design is required, with a permanentmagnet syn‑
chronous motor (PMSM) being the preferred choice. Frequency analysis was performed
using SolidWorks, and a PMSMwas constructed usingMATLAB‑Simulink andMAGNET‑
Infolytica to match the matrix voltage level [80]. Some energy storage systems are shown
in Figure 6.
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The battery flywheel compound energy systemmodelswere developed by taking into
account the battery’s state of charge (SOC) and open‑circuit voltage (OCV), along with the
flywheel’s rotational speed and motor speed, as well as heat loss. Energy optimization
in GA is used to determine the appropriate electric braking torque for recovered braking
energy under varied scenarios. A double neural‑network‑based adaptive PI vector control
approachwas implemented to govern the flywheel’s rotational speed. The acquired results
demonstrated a 1.17‑fold increase in recovered energy, a 42.27 percent decrease in themax‑
imum charging current, and an improvement in the flywheel’s stability, which gave refer‑
ences for designing energy management systems for electric vehicles [88]. In peak shaving
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services, the authors proposed a concept of FESS deployed at the transformer substation.
The power set points of the flywheel were determined via a lexicographic optimization
approach that minimized power losses and transformer power restriction violations. In
addition, the maximum power was determined and integrated using the convex functions
of the flywheel’s power losses. In this regard, two‑level hierarchical control architecture
was devised for the transformer flywheel system to address model flaws and predictive
mistakes. At a higher level, linear programming was used to solve the lexicographic opti‑
mization technique, while at a lower level, real‑timemeasurementswere used to correct the
power set points. The proposed controllers are integrated into the experimental test setup
using a software platform to demonstrate their efficacy. Simulation and experimental find‑
ings substantiated the flywheel system’s modeling, control, identification, and operation
for peak shaving services [89]. Table 4 shows the comparison of energy storage system
used for the optimization of smart microgrids.

Table 4. Comparison of energy storage system.

References
Energy
Storage
System

Pros Cons Reliability Cost Challenges Applications

[90,91] Lithium‑ion
Batteries

High
density of
energy

Shortened
lifecycle High Medium

to high

Fire risks,
resource

availability,
scalability

Energy storage
system in grids,

portable electronics,
electric vehicles,

telecommunications,
backup power

[91] Lead‑acid
batteries Low price Low density

of energy Moderate Low to
medium

Maintenance
and limited
lifecycle

Emergency
lightening,

automotive starting
batteries,

uninterruptible
power supplies

(UPS), solar energy
storage

[92] Flow batteries

Long
lifecycle
and

scalability

Lower
density of
energy

compared to
Li‑ion

Moderate Medium
to high

Efficiency
and complex

system
design

Microgrid support,
renewable

integration, electric‑
vehicle‑charging
infrastructure,
islanded power

systems

[93] Pumped hydro
storage

High effec‑
tiveness

Site‑specific
(needs

variations in
elevation)

Moderate Medium
to high

Environmental
impact,

limited use
in terms of
geography

Emergency power
backup, load

balancing, peak load
shifting

[94–97]
Compressed
air energy

storage (CAES)

High
efficiency

and
Scalability

Site‑specific
(needs

appropriate
underground
formations)

Moderate Medium
to high

Energy
losses,

geographical
restrictions

Grid energy storage,
peak shaving, grid
balancing and
frequency
regulation,

transmission and
distribution Support
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Table 4. Cont.

References
Energy
Storage
System

Pros Cons Reliability Cost Challenges Applications

[95,97] Flywheel
energy storage

High
density of
power

Limited time
for energy
storage

High High
Cost, high
rotational
speeds

Grid stabilization,
microgrid Support,

frequency
regulation, power

quality
improvement

[95,98–100] Thermal
energy storage

Potential
for inex‑
pensive
materials
and long‑
duration
storage

Reduced
round‑trip
efficiency in
relation to
alternative
technologies

High Medium
to high

Thermal
losses,
material
selection

Solar thermal power
plants, industrial
processes, district

heating

[95,101,102] Supercapacitors

Quick
charging
and dis‑
charging

Less energy
density

compared to
batteries

Moderate High
Limited
density of
energy, cost

High‑power
applications,

regenerative braking
in vehicles, power
tools and portable
electronics, backup

power for
communication

systems

4.2. Role of Electrical Vehicles in Storage Systems
In consideration of the system consisting of the energy storage system (ESS), electric

vehicle (EV), and solar generation to fulfill energy demand, an optimal energy manage‑
ment system (EMS) for effective energy harvesting from available energy resources was
proposed. MATLAB was used for linear optimization problems, and the simulations re‑
sults showed a reduction of 45% in operational costs and a decrease of 45.58% in energy
consumption costs and 19.33% in load [103]. Hybrid electric vehicles (HEVs) and plug‑in
HEVs (PHEVs) are advancements in the intelligent transportation system (ITS) and allow
performance improvement in energymanagement systems (EMSs). The descriptive analy‑
sis of EMSs highlights themain differences betweenHEVs/PHEVs and internal combustion
engine (ICE) vehicles. The structure of EMSs is categorized into three instances: single‑
vehicle, two‑vehicle, and multiple‑vehicle instances. Hence, eco‑driving is a feature used
by vehicles to communicate with Vehicle to Infrastructure (V2I) technologies [104]. The
article also presents a unique hybrid control system that uses the battery’s state of charge
(SOC) and hydrogen level. The interconnection and damping assignment passivity‑based
control (IDA‑PBC) technique was used to develop this strategy for load power sharing be‑
tween sources. The PBC non‑linear powerful technique, artificial neural networks (ANNs),
and system energy informationwere used as references to validate the proposed approach.
The article provides modeling, control, simulation stability proof, and experimental au‑
thentication of the entire solution, with testing results confirming the effectiveness of the
proposedmethod [105]. It can be referred to as the urbanization of smart cities and the shift
toward electric vehicles (EVs) as alternate transportation. It significantly reduces green‑
house gas emissions, so the smart grids with renewable energy resources (RESs) with their
charging structure are eligible for a smart solution. The article discusses EVs and micro‑
grids powered by renewable energy sources. The section on EVs covers the development
of EV‑charging infrastructure and innovative applications, such as Vehicle‑to‑Grid (V2G)
and Vehicle‑to‑Home (V2H) technologies. The authors also introduced an energy man‑
agement system (EMS) that enhances the dependability of the charging infrastructure. A
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real‑time stochastic optimization technique was developed to reduce cost emissions and
maximize the utilization of clean energy resources in a smart power gridwith grid‑capable
vehicles (GVs) and renewable energy resources [106].

Dynamic stochastic optimization (DSO) was found to be effective in assuming the
grid‑capable vehicle as a small portable power plant (SP3) and the smart parking lot as a
virtual power plant (VPP). This approach led to cost and emission reduction, an increase in
the reserve and dependability of the smart grid, and a levelized load demand curve when
millions of GVs were integrated [21].

A technique for optimizing energy management was implemented, which uses plug‑
in electric vehicles and dispersed energy sources as inputs. To avoid overcharging and
over‑discharging, the model uses the engine’s fuel consumption, battery charge and dis‑
charge, and battery state of charge as constraints. The model is solved using a multi‑
objective optimization approach and is compared with other methods, such as particle
swarm optimization and traditional grey wolf techniques. The results of the abovemen‑
tioned study showed that electric vehicles can be more advantageous in an energy‑based
economy under certain circumstances [107]. Electric vehicles (EVs) and renewable energy
(RE) sources can dramatically reduce carbon emissions from the transportation and elec‑
tricity sectors. Additionally, another literature assessment of the power grid is offered,
integrating renewable energy sources and electric vehicles. With economic and environ‑
mental analysis, the presence of EVs can reduce grid effects, the ability of EVs to integrate
the RER, and excessive RE power generated on the grid. In the Vehicle‑to‑Grid (V2G) con‑
cept, the vehicle can be considered a load or a distribution energy source. Utilizing V2G
can improve efficiency, performance, dependability, and stability [108].

Hybrid energy storage systems (HESSs) are related to energymanagement (EM)meth‑
ods, configurations related to HESSs, and numerous tactics utilized for electric vehicles
(EVs). In addition, research was conducted on the performance evaluation of EMmethods
for HESS setup. The HESS EM topologies have been evaluated for EV predicated on their
performance. The performance depended on the lowering of the EVs’ battery peak cur‑
rent, with the regenerative braking power comparison being considered. System design
and voltage variation were offered as a path for EV researchers to follow [109]. A two‑
stage model was designed for managing a microgrid with renewable sources and EVs,
aiming to minimize operation costs and emissions. The model uses an Improved Shuffled
Frog Leaping Algorithm (ISFLA) to optimize the objective function, focusing onmanaging
variations in wind turbine and photovoltaic (PV) management. Subsequently, simulation
results show the algorithm’s superiority over conventional approaches [110]. Moreover,
mixed‑integer linear programming (MILP) should be utilized to optimize the cost of energy
demand. The cost function was solved with real and altered data to explore the bidirec‑
tional PEV effects on the load of a flexible building, and the distribution system’s optimized
DERs were investigated. The purpose was to highlight the importance of a comprehen‑
sive approach for determining the most appropriate PEV strategies. Simulation findings
proved the method’s effectiveness by lowering expenses and voltage variations relative to
slower PEV activities.

EV scheduling requires robust optimization techniques, such asVehicle‑to‑Grid (V2G)
and Grid‑to‑Vehicle (G2V) strategies, for the integration of electric vehicles (EVs) with
smart grids [78]. The study under discussion addressed clean energy resources and re‑
duced air pollution due to internal combustion engines. Similarly, some of the energy stor‑
age devices discussed were required for EVs. The use of plug‑in electric vehicles (PEVs) is
the most effective technique to minimize carbon emissions and is a prerequisite for devel‑
oping green transportation services. The advantages of PEVs are significant because they
can operate as an energy buffer by enhancing the energy network’s stability, affordability,
and dependability through storage.

Vehicle‑to‑Building (V2B) technology is a highly auspicious energy management sys‑
tem, which enables the optimized regulation of energy between vehicles and buildings.
The study under observations extensively discusses the uses and reviewed energy man‑
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agement techniques with respect to V2B integration. In this regard, recent battery storage
capacity findings delineate the result by explaining bidirectional power flow andmore dis‑
charging cycles using V2B [111]. Due to the reported mismanagement by the government
of Pakistan, power plants are erected to combat a power shortfall; nevertheless, there is
nowmore generative capacity than is required, and plants are not operating, but incurring
fixed costs. The transportation of fossil fuels degraded the quality of the air. Since 2020,
three scenarios with 30%, 50%, and 70% EV sales have been thoroughly examined, and on
the account of the previous scenarios, it has been established that in 2024, with 70% EV
sales, EVs added up to 1250 MW, and with peak demand, they would be in a position to
surpass the generating level [112]. In order to amplify the feasibility regarding EV, the anal‑
ysis was proposed for using railway infrastructure for highway charging stations so elec‑
tric vehicles could go great distances. The growing economic, security, and environmental
concerns provide a strong impetus to transform the existing transportation system into an
advanced electrified system. Using the Sim Power system in MATLAB/Simulink to model
and simulate a *25kV supply to feed the railway, a feasible option utilizing the railway line
was shown. The results proved the scheme’s effectiveness in real‑world circumstances [79].
Electric vehicles, which utilize electric fuel cells and hybrid energy resources such as bat‑
teries and ultra‑capacitors, were discussed to satisfy the dynamic requirements of electric
motors and auxiliary systems. New technologies and DC/DC converters were suggested
for further research, alongwith themost recent fuel cell electric car advancements and con‑
cepts. An analysis of the advantages and disadvantages was conducted using rule‑based,
optimization‑based, and learning‑based approaches. Researchers could now work on the
software side to create control techniques utilizing artificial intelligence [113].

The electrification of automobiles necessitates fast‑charging facilities, resulting in an
electric power shortage in conventional networks. Electric vehicle (EV) fast‑charging re‑
search is provided to examine the problems of power design, energy storage, microgrid
control techniques, and energy management optimization. A hierarchical control system
for decoupled control in EV charging with the various microgrid system levels is also de‑
scribed. For the optimal performance of EV‑charging stations, several control mechanisms
and future research topics were discussed [114]. Electric vehicles are the primary solu‑
tion to the economic and environmental problems posed by internal combustion engines.
With the improvement in electric vehicle power drive and battery‑charging technologies,
Vehicle‑to‑Grid (V2G) topology is the primary rationale for EV integration in smart grids,
as it enables the integration of renewable energy systems into the power grid. The topolo‑
gies for charging EVs, the effects of EVs, and the smart grid with the V2G scheme are
discussed. The study identified some major issues in the EV sector and the direction of fu‑
ture research [115]. Microgrids are a solution to decentralize electrical grids and improve
distributed energy resource usage. However, all active players within a microgrid can be
computationally expensive. An optimal scheduler is essential for electric‑vehicle ‑charging
stations (EVCSs) to meet demands without wasting electricity and flatten peak load on the
main power grid. In [116], the authors introduced two novel microgrid models that com‑
bine energy generated by a DER, storage with an energy storage system (ESS), EVCS, and
electricity trading with the MPG. These models effectively shift load from the MPG while
maintaining customer satisfaction and throughput, despite costs incurred by theDER. Real
data are used to ensure robustness, and reinforcement learning is implemented to find the
optimal scheduler. The COVID‑19 pandemic has prompted the energy industry to priori‑
tize renewable energy sources, particularly microgrid systems, to address environmental
concerns and establish a sustainable future. A comprehensive assessment of microgrid
systems, focusing on optimal design, control systems, and energy management, is pro‑
vided by the authors in [117]. Key findings include the importance of effective design
and control strategies; the integration of renewable energy sources and energy storage sys‑
tems; advanced control techniques and optimization algorithms; and the application of
cutting‑edge trends like artificial intelligence, data analysis, and blockchain. A novel MG
sizingmethod is developed in [118] to incorporate metaheuristics into a particle swarm op‑
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timization algorithm. The authors considered optimal demand response capacity fromEV‑
charging loads, ensuring reliable electrical load supply in areas far from the grid. An ad‑
vanced EV‑charging demand response program is also incorporated in the proposed strat‑
egy. Comprehensive statistics‑based performance evaluations indicated that new meta‑
heuristics have the potential to outperform the PSO by up to 6% inMG sizing applications.
It indicates the potentially significant implications of using advanced metaheuristics for
improving the economics and rollout of capital‑intensive grid‑isolated 100% renewable
MGs. It is anticipated that the exponential growth of electric vehicles (EVs) will make a
substantial impact on the transportation sector, given the diminishing efficiency of fossil
fuels and the emission of greenhouse gases. Developed and developing nations are concen‑
trating on intelligent charging solutions to satisfy the demand for EV charging. In order to
enhance the design and implementation of charging station infrastructure, researchers are
additionally analyzing the EV‑charging control, EV variants, global charging standards,
and AC‑DC and DC‑DC converter architectures. Furthermore, examining the impact of
electric vehicle (EV) collectors and EV penetration on the integration of renewable energy
sources into electric energy systems. Increasing demand is being placed on charging tech‑
nology and power converters that offer a versatile, dependable, and cost‑effective charging
environment. The researchers are investigating various facets and frameworks of electric
vehicle (EV) charging, encompassing charging current, charging duration, charging site,
alternating voltage power supply, charging power, battery capacity, industry standards,
and charging methods (onboard and offboard). For widespread EV charging, the use of
noise filters and semiconductor devices will substantially improve the ability to regulate
converter power, and new methods to enhance power quality and grid stability are re‑
quired [119].

5. Role of Artificial Intelligence in Smart Grid
AI technologies applied to smart grids provide a broader view of how to control and

improve smart grids, even if they provide security from hackers, with multiple pricing
methods like (ToU) or real‑time pricing improve efficiency [120]. Further use of artifi‑
cial intelligence (AI) in smart grids is necessary to build a criterion for better control and
monitoring. Due to the interconnection of networks like the internet, false data detection
is important because manipulation and physical change in data can lead one the wrong
way; that is why measuring the accuracy of the IEEE 14 bus system is used to judge differ‑
ent scenarios and to compare with previous historical data based on under‑concept drift
and without‑concept drift. A principal component analysis (PCA) test was carried out to
measure data accuracy. Furthermore, the effectiveness was checked using the KNN algo‑
rithm [121]. Demand response is widely discussed nowadays due to electricity distribu‑
tion. A scheduling strategy for demand response management provides benefits in terms
of cost, reliability, and functionality.

Multiple household scenarios were tested in MATLAB to obtain the confirmation of
solutions and particle swarm optimization (PSO) for load management. A cost saving of
39.1% was achieved through the proposed methodology. A plug‑in hybrid electric vehicle
(PHEV) capable of storing energy and the concept of selling excess energy back to the grid
can be incorporated into the system [122]. Figure 7 shows the various domains where AI
is used.

Optimal home energy management system (HEMS) scheduling is necessary to de‑
crease the load demand. For this purpose, a multi‑objective optimization‑based solution
is used to shift the electricity load from peak demand hours to non‑peak hours by defining
the load pattern. For real‑time rescheduling, the home appliance coordinated with each
other in this study. The scheduler will receive help with the optimal scheduling of the
ON/OFF timing of appliances, and it will avoid the waiting time of appliances. Various
optimization techniques, such as binary multi‑objective bird swarm optimization, a com‑
bination of birds’ swarm and cuckoo search algorithms, can be combined to achieve the
desired outcomes and reduce the cost of electricity bills [123]. Traditional model‑based al‑
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gorithmsmust bemore efficient to address the issues related to renewable energy resources
like analysis, control, and scheduling. As such, artificial intelligence is used to deal with
massive amounts of data and non‑linear problems. There are three different sections into
which the whole discussion is divided: (i) optimization control of the power and energy
system by AI; (ii) fault detection, state estimation, and parameter identification of power
systems by AI; and (iii) forecasting of renewable energy system generation by AI [124].
Different types of AI techniques are represented in Figure 8.
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Another AI‑based framework has been developed for uncertainty forecasting and
management in smart grids with information analysis functions, data processing, and un‑
certainty management. Specifically, uncertainties from electric load, solar, and electric ve‑
hicles (EV) were modeled. Using improvised‑quintile regression neural network (IRNN)
probabilistic load forecasting and for handling the missing data, a novel multivariate solar
data imputationmethodwas proposed. It outperforms the imputationmethodswith up to
28% lower mean‑squared errors. An uncertain EV‑charging management system was dis‑
tributed, and amulti‑agentmethodwas used for uncertaintymanagement in smart grids to
achieve 92% less computational time. By this proposed strategy, uncertain smart grid con‑
trol was achieved by using uncertainty qualification and adequate control strategies [125].
Smart grids rely heavily on artificial intelligence (AI) solutions due to the data‑handling
limitations of conventional modeling and control approaches. A review of artificial intel‑
ligence techniques for load forecasting, power grid stability evaluation, problem identi‑
fication, and smart grid security challenges has been carried out. Furthermore, the chal‑
lenges of integrating AI approaches to completely materialize smart grid systems and the
prospects for AI applications in smart grids were also examined. The study concluded that
smart grid system dependability and resiliency could be improved by employing AI ap‑
proaches [126]. Grid decentralization is a crucial solution to meet global energy demand
by incorporating renewables at the distributed level. Microgrids are driving this decen‑
tralization, and an intelligent and reliable energy management system (EMS) is essential
for optimal resource utilization. Artificial intelligence (AI) can provide resilient, efficient,
reliable, and scalable solutions. In this context, the existing conventional and AI‑based
techniques for energy management systems in microgrids include analyzing methods for
centralized, decentralized, and distributed microgrids. Machine learning techniques, like
ANNs, federated learning, LSTMs, recurrent neural networks (RNNs), and reinforcement
learning, are summarized for EMS objectives like economic dispatch, optimal power flow,
and scheduling. AI can enhance performance efficiency and reliability inmanaging energy
resources, but challenges like data privacy, security, and scalability need to be addressed.
Future research directions should explore AI‑based EMSs’ potential in real‑world appli‑
cations [127]. The integration of energy management systems (EMSs) in microgrids is de‑
veloped in [128] to optimize energy scheduling, control, and operation. The proposed
architecture used the proximal policy optimization (PPO) algorithm for learning stabil‑
ity and complexity. A novel performance metric, namely the burden of load and gener‑
ation (BoLG), is proposed by the authors to evaluate energy management performance.
The BoLG is incorporated into reward settings for optimizing multi‑action controls like
load shifting, energy charging–discharging, and transactions. As a result, the proposed
architecture could improve energy management performance with a proper trade‑off be‑
tween stability and profitability, compared to dynamic programming and double deep
Q‑network‑based operation. The implementation of renewable energy sources (RESs) in
remote and rural regions is becoming increasingly prevalent due to its sustainability and
dependability. The intermittent nature of hybrid RESs, nevertheless, poses obstacles. A
variety of systems, schemes, requirements, microgrid communication challenges, and the
application of artificial intelligence are examined by the authors in [129], and it was found
that they pertain to the integration of RESs. In addition, potential obstacles and control
strategies, optimization methods, and approaches to enhance the performance of the elec‑
trical grid are addressed with the help of the efficacy of artificial intelligence in integrating
RESs. Rechargeable batteries are crucial for energy storage, but traditional methods often
face time and resource constraints. Artificial intelligence (AI), particularly machine learn‑
ing (ML), has rapidly grown in recent years, enabling the classification and regression of
various battery research fields. The authors provided a comprehensive review in [130] of
the various fields in which AI has been utilized in rechargeable battery research, including
the concept of ML, prediction of battery states and parameters, discovery of key materials
for rechargeable batteries, and their use in energy storage charging protocols. The review
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also highlighted the potential for developing AI’s new elements, machine vision, and dig‑
ital twins in battery research.

Problems, trends, and cybersecurity issues in smart grid (SG) critical infrastructure
for big data and artificial intelligence were described, and some combined known and un‑
knowns were proposed. The SG architecture and functionalities are described along with
the electrical network’s reliability, safety, and efficiency. Furthermore, security counter‑
measures are exposed, and the cybersecurity assessment method for supervisory control
and data acquisition of smart grids is presented [131]. Electric vehicle (EV) adoption, along
with the smart grid, has many benefits, like reducing CO2 emissions, and it also poses
some problems that need to be addressed. The concern is to design an algorithm for the
cost reduction in EV‑charging batteries and to avoid users from being stranded. Artificial
intelligence is used to render EVs and systems to avoid the collectives of smarter EVs, and
the comparison of different techniques was also presented [132].

Artificial intelligence techniques have mostly been developed in recent decades, and
it has applications in power electronics, power engineering, and industrial systems. AI
application in smart grid (SG) and renewable energy systems (RESs) is presented [133].
The research explores how AI is used in areas such as health monitoring, wind generation,
smart grid system control, and simulating operating conditions. It specifically focuses on
optimizing automated generation control (AGC) in multi‑area and multi‑machine power
systemsusing variousAImodels, including those for solar irradiance prediction, PVpower
generation, and power system frequencies. The study proposes a distributed and parallel
security‑constrained optimal power flow (SCOPF) algorithm for large power networks and
evaluates it on an experimental platform consisting of a real‑time simulator, weather sta‑
tion, and phasor measuring devices and suggests that these approaches could be applied
to other technological domains [134]. In [135], the authors developed an evolutionary re‑
inforcement learning method to address the problem of energy resource management in
microgrids and to enhance the share of renewable energy resources in the power grid. The
proposed approach employed reinforcement learning and neuro‑evolution techniques to
find the optimal policy. Therefore, it is more efficient in high‑dimensional and continuous
action spaces.

5.1. Role of Machine Learning in Smart Grids
An optimal way can be achieved using machine learning techniques to run the grid

with analysis and proper decision making. Connectivity and communication are the core
parts of any smart grid because massive data are required for decision making. The big
data we obtained from the microgrid needs unique analysis techniques to extract the data
and handling of the data [136]. The smart grid has transformed the electricity industry
with communication technology and sensors, enabling improved generation, monitoring,
distribution, and control. To enhance demand‑side management (DSM) on the Internet of
Things (IoT)‑enabled grid, machine learning can be applied. The success of DSM depends
on priorities, and a robust model has been developed to control smart grid incursions.
Simulation results show that the proposed technique is less effective for incursion butmore
effective for reducing smart grid power consumption [137]. Figure 8 shows the branches
of AI linked with machine learning that is applied in the MG‑based EMS.

Demand response (DR) has proven to be highly effective in enhancing the flexibility
and dependability of the energy system, and it is increasingly utilized in smart grid energy
systems. Artificial intelligence (AI) and machine learning are used to accomplish difficult
tasks in DR machine learning (ML). AI addresses all issues associated with the DR, such
as the optimal selection of consumers, dynamic pricing, scheduling, device control, and
the means to motivate customers fairly and economically. Based on 160 articles, 40 com‑
panies, and 21 large‑scale initiatives, a summary of the AI technique for DR applications
is provided. It outlines the benefits and limits of each technique and provides recommen‑
dations for future research [50]. Figure 9 shows the branches of AI linked with machine
learning, which is applied in the microgrid‑based EMS



Processes 2024, 12, 270 26 of 42Processes 2024, 12, x FOR PEER REVIEW 27 of 44 
 

 

 
Figure 9. Branches of AI techniques. 

The ideal power flow to meet the growing energy demand in the intelligent 
microgrid is provided. Introducing a blockchain-based predictive energy trading platform 
enables real-time energy consumption monitoring and the management and production 
of scattered energy generation resources. Predictive analysis based on historical energy 
use data was also performed to make better selections. To statistically analyze the 
predictive model’s success, machine learning models also evaluate blockchain platforms 
based on consumer–supplier service quality and resource utilization [138]. A technique 
for evaluating cooling load (CL) and heating load (HL) in buildings using multiple forecast 
models is described. The technique uses a hybrid machine learning approach that 
combines group methods of data handling (GMDH) and Support Vector Regression (SVR) 
models with Back-Propagation Neural Networks (BPNNs), Elastic Net Regression (ENR), 
Partial Least-Squares Regression (PLSR), K-Nearest Neighbors (KNN), and general 
regression neural networks (GRNNs). The results show a high correlation coefficient (R) 
of 99.92% for CL forecasting and 99.99% for HL forecasting with minimal statistical error 
[139]. Implementing prediction and optimization models based on machine learning 
yielded impressive results. The algorithm’s implementation of this concept consists of 
four steps. The initial and second stages work on the day’s pricing before the market, 
which is completed by the higher performance of neural network design. The support-
vector-based architecture of the consumer is also offered for orders of 1 MWh. In the final 
stage, reinforcement learning architecture based on Q learning is implemented to 

Figure 9. Branches of AI techniques.

The ideal power flow to meet the growing energy demand in the intelligent micro‑
grid is provided. Introducing a blockchain‑based predictive energy trading platform en‑
ables real‑time energy consumption monitoring and the management and production of
scattered energy generation resources. Predictive analysis based on historical energy use
data was also performed to make better selections. To statistically analyze the predictive
model’s success, machine learning models also evaluate blockchain platforms based on
consumer–supplier service quality and resource utilization [138]. A technique for evaluat‑
ing cooling load (CL) and heating load (HL) in buildings using multiple forecast models is
described. The technique uses a hybrid machine learning approach that combines group
methods of data handling (GMDH) and Support Vector Regression (SVR) models with
Back‑Propagation Neural Networks (BPNNs), Elastic Net Regression (ENR), Partial Least‑
Squares Regression (PLSR), K‑Nearest Neighbors (KNN), and general regression neural
networks (GRNNs). The results show a high correlation coefficient (R) of 99.92% for CL
forecasting and 99.99% for HL forecasting with minimal statistical error [139]. Implement‑
ing prediction and optimization models based on machine learning yielded impressive
results. The algorithm’s implementation of this concept consists of four steps. The initial
and second stages work on the day’s pricing before the market, which is completed by the
higher performance of neural network design. The support‑vector‑based architecture of
the consumer is also offered for orders of 1MWh. In the final stage, reinforcement learning
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architecture based on Q learning is implemented to optimize the economics of electricity
transactions. In the third stage, SAMNREL simulates commercial‑scale PV connected to a
microgrid with a capacity of 600 kW; in the final stage, reinforcement learning architecture
based on Q learning is implemented to optimize the economics of electricity transactions.
The total Python code is provided as a framework that fosters the renewable portfolio by
reducing its reliance on supportive federal and state laws [140]. There is a possibility of
false data incursion on the large data sources in the smart grid (SG), posing a significant
threat and having serious consequences for the system. Various machine learning (ML)
methodologies were developed, and their progress was assessed. The architecture of SG is
examined in light of fake data assaults defined based on security requirements. ML tech‑
niques are then characterized based on detection situations, such as technical loss, load
forecasting, and state estimation. The study suggests future research directions to address
the limitations of the current machine‑learning‑based approach [141].

5.2. Cybersecurity Threats and Their Remedial Measures in Smart Grid
Power gridmonitoring and control rely on communication networks. Still, the scourge

of false data injection (FDI), which insidiously creeps into the network systems at times,
can undermine the seamless working of power grids. Nonetheless, networks can control it
by pre‑empting the origination of errors through state estimationwith SE variables relative
to the actual values. The test system of IEEE 14‑bus is primarily utilized to anatomize dif‑
ferent scenarios in power grids [142]. The most forbidding impediment in establishing an
innovative smart grid is to formulate its robust and unbreachable security mechanism, as
cybercriminals, hackers, and terrorists usually exploit the vulnerability of open networks.
The cardinal notions behind directing this analysis are to examine and adopt tried‑and‑
testedmethodologies for successfully averting cyber‑attacks and uproot them to gain utter
control over networks. The aforementioned notion of purging smart grids of the recurring
cyber‑attacks can only be materialized by smartening up the security mechanisms [143].
Figure 10 shows the vital role of cybersecurity in a smart grid.

Smart metering inventory (SMI) or advanced metering infrastructure (AMI) provides
a secure connection between users and suppliers through two‑way communication. It
sharplymonitors data at the consumer end, e.g., time of use (ToU), real‑time pricing (RTP),
critical peak pricing (CPP), and transmits feedback to database management systems (DBMs)
through SMS or signal. This paper extensively sheds light on the hazards that originate
from lax cybersecurity surveillance, often leading to dire ramifications. Nonetheless, the
paper also analyzes the remedialmeasures to forestall such threats [144]. The primemotive
of this paper is to provide a well‑conceived protective mechanism and to build an impreg‑
nable safety wall against all types of hackers and attackers. Cybersecurity is a confronting
issue today because the smart grid’s considerable data are shared through communica‑
tion networks and can be secretly accessed by hackers. Smart grids should be capable of
identifying and classifying threats and protecting the confidentiality, integrity, and avail‑
ability of information resources against hackers to uproot the menace concerning cyber‑
attacks [145].
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6. Greenhouse Gas Emission Reduction
The rampant amplification of pollution worldwide raises a red flag for scientists and

is seemingly dragging scientific society toward the brink of an utter fiasco. Carbon emis‑
sions are an inevitable concomitant of the fossil‑fuel‑based energy generation system. So,
integrating renewable energy resources is an optimal solution to resolve this issue effec‑
tively. In order to significantly subside the proliferation of carbon emissions, the optimal
allocation of renewable energy resources and their capability to inject active and reactive
powers into distribution networks are indispensable. The fundamental ambition was to re‑
duce the power loss current between the reference buses and the buses where distributed
generation systems (DGSs) are meant to be installed. This method was prudently tested
on numerous buses of radial distribution networks to findways to reduce energy loss. The
developed modus operandi was applied on the bus network (IEEE69 and 39 Buses), and
subsequently, definitive results were generated [146]. The proposed model in another re‑
search comprised resources being used, such as combined cooling, heating, power, gas,
and water‑based MG, where water would be extracted from a well during different inter‑
vals. In the previously mentioned scenario, power demand increased, and a stochastic
optimization model seemed perfectly adequate to minimize the uncertainty concerning
electric load and operating and emission costs [147]. The microgrid is an effective resource
for introducing distributed energy resources (DERs) into the existing grid supply. Micro‑
grids with DERs, electrical vehicles (EVs), and electrical storage systems (ESSs) are com‑
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pared with the conventional power network and, subsequently, are analyzed to ascertain
the results. The mechanism of a microgrid is elaboratively delineated with this control
strategy. Some issues concerning power quality (PQ) and energy management strategies
by the DER‑based microgrid are also addressed. The simulation was performed to gauge
the effectiveness of solar, wind, ESS, and EVs on microgrid frequency response. Addition‑
ally, the reliability of the microgrid was also estimated with the help of connected DER
systems, ESSs, and EVs [148].

There is an unprecedented increment in the popularity and usage of renewable energy
sources (RESs) in microgrids owing to their power generation capacity and environmen‑
tally friendly power generation capability. Unfortunately, the reliability and security of
the system are compromised due to the integration of RESs. There is a requirement for an
optimized control strategy to ensure efficient and secure power transfer. The discussion
of optimized control strategies for the microgrids consisting of RESs based on structure,
characteristics, operation, function, and pros and cons was emphasized. A rigorous re‑
view concluded that the optimized control schemes could increase the efficiency of the
operation of RESs into microgrids. Some of the strategies are constricted to simulation
only, so there is a genuine need to undertake extensive research in this field [149]. Global
energy awareness was instrumental in shifting the focus towards the smart grid with solar
systems and battery storage. Demand‑side management (DSM) plays an essential role in
smart grid operation, so in this study, a combination of Glow‑Worm Swarm Optimization
(GSO) and Support VectorMachine (SVM) is proposed to subside the electricity tariff. GSO
is utilized to discover the optimum solution for power scheduling to reduce the cost sig‑
nificantly and to find the optimized range of battery storage energy. SVM uses that data
set to find the in/out power from the battery for price minimization. The electricity tariff
owing to this strategy plummeted by 11.2% as the reduction transpired from 2.3 to 2.27 at
a load of 8.2 kWh/day, and consequently, it resulted in a shift in policies toward demand‑
side actions for system stability [20]. Furthermore, the mixed‑integer linear programming
methodwas used to transform a bi‑objective optimization into a single‑objective approach.
The model was tested on a microgrid comprising 1000 smart homes with various DSM lev‑
els. Simulation results indicated that this model was cost‑effective and an optimal way to
plan and operate the system while considering economic and environmental factors [150].

Economic, environmental, and cost‑effective energy supply and storage systems pro‑
vided in the ship are proposed using a fuzzy self‑adaptive meta‑heuristic algorithm. Opti‑
mal solutions and better convergence characteristics were used using traditional methods
like fuzzy‑based particle swarm optimization (FPSO) algorithms. The fundamental pur‑
pose was to provide an integrated electric propulsion system, energy storage system, and
shore power supply facility to ships [151].

7. Uncertainty Handling in Microgrid System
The high cost of energy and greenhouse gas emissions are ongoing challenges that re‑

newable energy sources can help. In [152], a stochastic framework is proposed to optimize
microgrid scheduling and prevent load shedding due to unpredictability while maximiz‑
ing profit. The stochastic multi‑objective model is also suggested to reduce planning costs
and increase resilience during natural disasters [153,154].

The reliance of solar cells on irradiance level and partial shade condition (PSC) neces‑
sitates the utilization of the maximum power point tracking (MPPT), which delivers the
maximum power point under PSC. A method for determining the MPP under uniform
irradiance conditions (UICs) and PSC was investigated using the mathematical formulas
of PV system behavior. In terms of tracking speed, low sampling time, and stable steady‑
state conditions, simulation and experiments improved the performance of the proposed
method [155,156]. To optimize energy market profit, it is proposed to schedule Hybrid
Thermal–Energy Storage (HTES) generation. In HTES, the energy storage system (ESS) is
physically linked to the thermal units in order for ESS charging to be possible. Similarly,
mixed‑integer programming is used to formulate the proposed resilient optimization archi‑
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tecture, which can account for market unpredictability (MIP). The problem was resolved
using the GAMS (General Algebraic Modelling System) program [82].

Recent research completedwith the software HOMER pro discusses the numerous so‑
lutions for meeting the mine’s Western Australian electricity needs. A risk‑constrained op‑
timization technique is developed using Monte‑Carlo uncertainty models to provide opti‑
mal scheduling, cost, and conditional value at risk (CVaR) [24]. A risk‑constrained optimiza‑
tion technique using Monte‑Carlo uncertainty models is developed for optimal scheduling
and cost analysis ofWesternAustralianmine’s electricity needs. A risk‑constrained stochastic
algorithm for resilient microgrid operation using demand‑side management is also bene‑
ficial [157,158]. While a multi‑objective bidding method for wind–thermal–photovoltaic
systems in the deregulated power market to reduce costs and emissions. These studies
demonstrate the importance of utilizing renewable energy sources and optimizing energy
systems for economic and environmental benefits [159,160].

Hybrid power producers (HPPs) consist of concentrated solar power plants (CSPPs),
wind turbines, demand response systems (DRSs), and compressed air energy storage (CAES)
units. The research studies focus on optimizing the performance of the HPP and minimiz‑
ing risk through the use of various techniques. Another technique introduces a distinct
model for achieving optimal behavior of CSPP‑based hybrid power producers (HPP) in
day‑ahead (DA) and intraday markets using a three‑stage architecture. To compare differ‑
ent techniques for the same challenges, by applying conditional value at risk (CVaR) based
on the GBP constraint technique, the utilization of CSPP‑basedHPP reduces the associated
risk making it advantageous [161,162]. In a separate piece of research, a hybrid power pro‑
duction system consisting of a concentrated solar system, a storage system, a wind turbine,
and a demand response provider was designed to operate in energy markets. The study
developed a mixed stochastic–interval model using stochastic and interval parameters to
address the uncertainties of demand response and solar energy. The proposed model was
optimized with boundary intersection and lexicographic optimization and demonstrated
that the model satisfies all its requirements [163,164]. A risk‑averse stochastic bi‑level pro‑
gramming method for a retailer’s competitive market decision making. The method uti‑
lized electric vehicles and sensitive loads to monitor real‑time prices and identify the most
cost‑effective vendors. The non‑linear stochastic model was converted into an equivalent
linear single‑level program using Karush–Kuhn–Tucker optimality constraints and dual‑
ity theory. The study demonstrated the applicability of the proposed model in real‑world
settings [165].

The autonomous operation of hybrid microgrids (HMGs) utilizing the unified inter‑
phase power controller (UIPC) to integrate AC and DC subsystems, which maintains bidi‑
rectional power flow using Model Reference Adaptive Control (MRAC). A new structural
scheme for the UIPC’s power converter and a harmonic‑based modeling technique are
introduced, and simulation results corroborate the acceptable islanding performance of
HMG’s proposed design [166]. A hierarchical stochastic management system is also pro‑
posed to manage interconnected grids, with a central entity responsible for connectivity
and power reference values exchanged with microgrids for both the main and within the
grid. Predictive control is derived from chance‑constrained models for the local operation
management of microgrids, taking into account system component unpredictability [167].
A discussion of the optimal scheduling approach for reconfigurable microgrids, taking
into account the islanded capacity constraint and the probability of islanding operation
(PIO) indicator, which assesses the likelihood of islanding. To address the non‑linearity of
the PIO issue and the error in the generation forecast, the 13‑interval approximation tech‑
nique is used. To validate the findings, a 10‑bus radial reconfigurable microgrid that in‑
cludes PV systems, wind turbines, batteries, and microturbines with varying levels of PIO
is used as a test system [168]. An effective optimization framework is also discussed based
on opportunity‑constrained constraints for the optimal management system consisting of
electrical load, heating load, cooling demand, and renewable energy generation. Energy
hub (EH) operators use the proposed scheme for optimal decision making. Despite the
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unpredictability of renewable power supply and hourly demand, a strong opportunity‑
constrained model simulating real time is implemented. Some operators are accountable
for the optimal operation of the hub’s assets using day‑ahead scheduling. A numerical sta‑
bility test is conducted on the step time size to validate the time resolution independence
of the solution [169].

8. Optimization Techniques Used for Energy Management System
For effective scheduling of distributed energy resources (DERs) in the system, a trans‑

active energy (TE) strategy may be considered. The microgrid participates in energy ex‑
change not only to meet the demand of the primary grid, but also to create a profit. Dy‑
namic balancing and energy supply management facilitated by TE can also produce the
similar results. Due consideration was given to commercial five‑grid participation in the
day‑ahead market using an IEEE 10‑bus test system to validate applicability and perfor‑
mance. The collected results demonstrated that by scheduling DERs using the proposed
method, we could receive the greatest possible profit [170]. Controlled microgrids can
reduce the complexity of distribution networks, which are growing increasingly intricate
to meet energy demands and consumer satisfaction. A facility for testing hybrid micro‑
grids was shown, demonstrating the high‑efficiency distribution architecture that incor‑
porated AC/DC communications. In addition, evaluations of control, architecture, and
performance, as well as hardware and software, are conducted using various converters
and a static synchronous compensator (STATCOM) to assess performance [171]. The ex‑
pansion of energy resources and their addition to traditional distribution is becomingmore
complex. In the power part, the writers described the resistance to introducing microgrids
and how adopting microgrids would reduce energy loss. The software used for micro‑
grid homework is capable of performing three primary functions. Simulation, sensitive
analysis, and optimization can be utilized to achieve optimal operation [172]. The energy
industry will be profoundly affected by big data technologies. Through the application of
cross‑domain data, a big data platform facilitates the production, development, monitor‑
ing, and exploitation of smart energy resources. A web‑based decision support system for
multi‑source data to assist in the design of energy management plans was developed. The
implementation of DSS results in a considerable decrease in energy consumption, a reduc‑
tion in CO2 emissions, and a 10% increase in energy production from renewable energy
sources. The conclusion is that the outcome is always determined by the present condition
and future goals [173]. Given the current state of the environment and economy, utilizing
hybrid energy sources is essential. Domestic consumption of heat and electricity is grow‑
ing. Real‑coded genetic algorithms are utilized to attain optimal operational costs in smart
homes. Consideration was given to the thermal and electrical loop that includes a boiler,
a battery energy storage system, and an electric vehicle in addition to a conventional load.
Numerous tests and observations revealed that amicro combined heat and power system’s
electric load plays a significant impact in lowering total energy costs [13].

The authors compared various EV‑charging methods. Two‑way power flow enables
users to sell excess energy back to the grid. During the study, it was determined that
flexible billing mechanisms were advantageous for both customers and utilities and had a
substantial positive effect on the economy [174]. Renewable energy resources (RERs) and
energy storage systems (ESSs) are extremely beneficial for nationswith a severe shortage of
electrical energy. The study offers methods for Home‑to‑Grid energy management (H2G).
It provides the following:
• Methods for improving energy performance.
• Lower energy costs.
• Reduced uncertainty through the integration of PV and ESS while considering user

preferences.
The GA algorithm was applied to optimize its scheduling and energy management,

yielding considerable results [14]. Table 5 shows the optimization methods used in the
smart grid system.
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Table 5. Optimization methods used in literature.

Techniques Optimization Methods Functions and Key Objectives

Deterministic
Techniques

MILP [11,110]
MILP is used for optimization, and it is easily operatable on
CPLEX Solver, which is used in unmanned aerial vehicles

(UAVs) to simulate their movement ways.

Dynamic Programming Algorithms
(DP) [175]

It is used to solve optimization issues, robot control,
navigation systems, and dependability design.

MINLP [11,71]
Mixed‑integer non‑linear programming (MINLP) is a strategy
to solve the optimization problems involving continuous,

discrete, and complex variables.

Metaheuristics
Techniques

Particle swarm optimization
(PSO) [16,18,28,29,68,151,176]

PSO is an algorithm to address optimization issues like power
management and it can be utilized for graphical effects.

Genetic algorithms
(GA) [12–14,19,55,175]

The genetic algorithms are used to find a comprehensive
architectural solution and are also used for image processing,
learning of robot behavior, and distributed applications for

data collection.

Artificial Fish Swarm [68]

Artificial Fish Swarms have frequently handled issues, image
processing, data clustering, robotics, wireless sensor networks,
power systems, financial forecasting, and medical diagnosis, as
well as great precision. There are some other applications like
neural network studies, color leveling, data segmentation, etc.

Artificial Intelligence
Techniques

Artificial Neural
Network [50,105,125,139]

There are a lot of applications of deep neural networks like
handwriting recognition, picture compression, and stock

exchange prediction.

Fuzzy Logic [147,151]
This is very useful in spaceflight of the automobile industry,
enhancement of transmission system’s performance, and

traffic control.

Special
Techniques

Elephant Herding Optimization [22] This is a natural‑phenomenon‑inspired optimization algorithm
that depends on the herding behavior of elephants.

Pontryagin’s Minimum
Principle [23]

This is a principle that is utilized in optimal control theory to
find the optimal control over a system by having the

constraints on states and input in mind.

9. Future Scope and Challenges
The integration of energy storage systems, electric vehicles, and artificial intelligence

can offer promising opportunities formicrogrid energymanagement. These includemulti‑
objective optimization, efficient V2G integration, predictive EV load forecasting, grid‑aware
EV routing, and EV‑integratedmicrogridmanagement. Advanced energy storage systems,
distributed management, AI‑driven control, and hybrid design are some of the microgrid
applications for these advanced technologies. The future of AI‑powered microgrid man‑
agement and control includes deep reinforcement learning for optimal decision making,
machine learning for anomaly detection and fault diagnosis, federated learning for dis‑
tributed microgrid intelligence, explainable AI for microgrid transparency, and AI‑based
predictive control. Microgrids require strong cybersecurity frameworks, secure data col‑
lecting, storage, and access control, as well as blockchain‑based security solutions, to pro‑
vide cybersecurity and data privacy. Additionally, standardization and interoperability
are crucial for open‑source platforms and standardized data formats encouraging research
and development.

Similarly, in future prospective buildings, energy management systems can be con‑
nected with grid‑interactive buildings to provide coordinated control of loads and renew‑
able energy sources. Community dynamics and user behavior modelling are examples of
human‑centric techniques. Microgrid technologies’ lifecycle assessments analyze their ef‑
fects on the environment and point out areas where sustainability can be improved. Adap‑
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tive control techniques, interoperability standards, resilience measurements, and policy
frameworks for microgrid integration are some examples of regulatory and policy con‑
siderations. Through these initiatives, sustainable energy management techniques will be
promoted, and the overall stability and security of the energy infrastructurewill be improved.

Interoperability, cybersecurity risks, regulatory barriers, funding and cost issues, lim‑
ited scalability, standardization issues, policy uncertainty, grid connection issues, com‑
munity engagement, technology obsolescence, environmental impact assessments, grid
resilience requirements, complex permitting processes, low awareness and education, en‑
ergymarket integration, ageing infrastructure, land use and zoning, reliability andmainte‑
nance, public perception, and limitations to energy storage are just a few of the challenges
thatmicrogridsmust overcome to be integrated. While cybersecurity threats involve cyber‑
security vulnerabilities, interoperability issues involve the smooth integration of various
microgrid components and technologies. The specific qualities of microgrids may not be
sufficiently addressed by regulatory restrictions, impeding their widespread implementa‑
tion. Regions with limited financial resources face issues due to costs and budget limits.
Energy storage solutions, such as batteries, can be expensive to install and maintain, with
limited capacity. Efficiency charging patterns in microgrids can be unpredictable, and in‑
tegration with microgrid management system requires sophisticated algorithms and data
analysis. The widespread adoption of EVs in microgrids is hindered by the high initial
infrastructure costs and enhances the need for clever pricing strategies. AI algorithms
require accurate and high‑quality data for accurate predictions and optimal energy man‑
agement decisions.

10. Conclusions
The researchers have managed to track down numerous technological anomalies in

the microgrid system that impede its seamless functionality and plunge its efficiency. The
energy management system, especially DSM, is optimized using demand response strate‑
gies. Hybrid DR schemes should be comprehensively perused in the literature to present
a tangible solution for the existing technological issues. One major obstacle hindering
the smooth operation of the smart grid is uncertainty encompassing renewable energy
resources. In the modern era, AI techniques are extremely beneficial in rendering smooth
technological operations and diminishing uncertainty regarding renewables and energy
demands. Different optimization techniques, such as metaheuristic techniques, are incor‑
porated in the literature that offer dynamic solutions. The techniques based on machine
learning are more resourceful and robust for many applications. So, ML‑based techniques
are highly recommended for future work. In the energy management system, the energy
storage mechanisms are integrated into the system for numerous purposes. Batteries are
preferred as a primary storage source compared to mechanical energy storage. The sys‑
tem with cybersecurity is indispensable to assure the safe and hazard‑proof operation of
the power system.

Recently, microgrids are becoming increasingly popular in addressing the widely
prevalent issues concerning the production and distribution of electrical power. In this
paper, comparative analysis has been conducted to investigate the various optimal ap‑
proaches for the efficient functionality of microgrids in tandem with figuring out how to
optimize demand‑side load management.

The results of the comprehensive analysis point out numerous areas for improvement
in the existing microgrid systems that bring about inefficient energy management due to
the recurrent utilization of outdated techniques. Furthermore, the paper examines the po‑
tential of DR andDMS techniques and observes the role of utility‑sidemanagement (USM),
generation‑sidemanagement (GSM), and demand‑sidemanagement (DSM) to smarten up
the overall energy management (EM) system.

The study reveals that DR management can be further divided into two distinctive
responses; the first is incentive‑based demand response (IBDR) and the other is the price‑
based demand response (PBDR) that further integrates factors like energy demand reduc‑
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tion, load side control, and time of use, which ultimately provide an understanding of
the demand response management strategies. The review paper further signifies using an
energy storage system (ESS) to optimize the consumption of electrical power and, subse‑
quently, presents a solution of using the combination of EESs and RESs for considerable
cost reduction and to handle fluctuation in the system effectively. The paper also incorpo‑
rates the growing importance of electric vehicles (EVs), which would help subside carbon
emissions and, as a result, would reduce the greenhouse effect. Hybrid electric vehicles
are the most advanced versions of electric vehicles available today and are deemed to be
the most integral part of the intelligent transportation system (ITS).

Moreover, the study emphasizes that technologically amplifyingAI‑based equipment
bodes well for secured and reliable electrical power transmission. The AI systems under
discussion include machine learning, natural language processing (NLP), robotics, and
machine vision. They act as vital components to effectively handle the uncertainties in
loadmanagement and process the data inmicrogridmanagement. The insidiously spread‑
ing threat of cyber‑attacks is also discussed in this paper, which needs to be pre‑empted
through optimized AI‑based security modules. Themethods discussed in the paper signif‑
icantly reduce the possibility of false data injection (FDI) in the communication systems of
the microgrids. It can also be observed that the values of real‑time pricing, time of use, and
critical peak pricing can be falsified through illegitimate intervention, and consequently,
could cause major problems for both the suppliers and the users.
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Abbreviations

The following abbreviations are used in this manuscript:

EV Electric Vehicle
ESS Energy Storage System
AI Artificial Intelligence
V2G Vehicle to Grid
AMI Advanced Metering Infrastructure
ANN Artificial neural network
PSO Particle swarm optimization
WDO Wind Driven Optimization
LSTM Long Short‑Term Memory
SVM Support Vector Machine
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KNN K‑Nearest Neighbor
GP Gaussian Process
PCA Principal Component Analysis
GMM Gaussian Mixture Model
MTGS Micro Gas Turbine Generation System
ICT Information and Communication Technology
DRP Demand Response Program
BESS Battery Energy Storage System
CHP Combined Heat and Power
DR Demand Response
HOMER Hybrid Optimization of Multiple Electric Renewables
MIP Mixed‑Integer programming
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