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Abstract: Given that ultrasound-assisted aqueous extraction is gaining importance within “green tech-
nology” and to increase the efficiency of extracting bioactive compounds from Levisticum officinale root
waste, optimization of its parameters was undertaken. Multi-objective (multi-criteria) optimization
can be an extremely promising tool not only for designing and analyzing the extraction process, but
also for making process-control decisions. Therefore, the main objective of this study was to develop
and optimize an environmentally friendly ultrasound-assisted extraction methodology for the aque-
ous extraction of bioactive compounds from the roots of Levisticum officinale, which are considered
a by-product. The focus was on determining the optimal extraction conditions of the independent
variables, such as solid–liquid ratio, extraction time and ultrasound power, so that the optimized
extracts present the highest bioactive potential expressed in terms of levels of phenolic compounds,
flavonoids, sugars and antioxidant potential. Based on the Pareto-optimal solution sets, it was
found that to maximize the criteria, aqueous extraction should be carried out at a Levisticum officinale
biomass/solvent ratio of 0.0643 g/mL for a time of 8.1429 to 9.0000 min, with ultrasound assistance
of 162.8571 to 201.4286 W. Among the compromise solutions, the so-called “best efficient solution”
was indicated as the solution for which the Euclidean distance from the ideal point of Utopia was the
smallest (among all analyzed points of the collection), which had coordinates x1comp = 0.0750 g/mL,
x2comp = 9.0000 min and x3comp = 214.2857 W. The results obtained will provide a valuable tool to
assist in the decision-making process of controlling such an extraction process.

Keywords: antioxidant; extraction; flavonoids; lovage; multi-criteria design; optimization; Pareto;
polyphenols

1. Introduction

Extraction is the process of deriving the biologically active compounds from a variety
of materials, including plant matrices. A number of different methods in line with the
principles of ‘Green chemistry’ are used for extraction, including maceration, infusion,
microwave-assisted extraction (MAE) [1], ultrasound-assisted extraction (UAE) [2], super-
critical carbon dioxide [3], Soxhlet extraction, ultrahigh pressure extraction [4], enzyme-
assisted extraction (EAE) and infrared radiation (IR) [5]. The process parameters, including
solvent type, temperature, time and material/solvent ratio determine the efficiency of the
extraction procedure. Nowadays, the observed development of extraction techniques is
mainly related to minimizing the cost of the process while maximizing the efficiency of
the extraction of biologically active compounds (e.g., maximum antioxidant potential or
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antimicrobial or biostimulatory potential) [6]. However, in terms of increasing environ-
mental concerns, water is indicated as a safe solvent that is widely used to produce plant
extracts [7].

Among the extraction methods, ultrasound-assisted technology (UAE) is currently
used for the extraction of bioactive phytochemicals from various plant materials and
by-products [8]. UAE additionally allows an efficient and uncomplicated transfer of the
designed method from the laboratory to the industrial scale [9]. However, the efficiency
of many compound’s extraction in this method is determined by a number of process
parameters including, but not limited to, the temperature, time, power and frequency of the
ultrasound [9–12]. Studies by He et al. [13] and Rocha et al. [8] even indicate that, compared
to conventional extraction, the use of ultrasound leads to improved extraction efficiency of
bioactive compounds, including phenolic compounds and anthocyanins [14]. Considering
that phenolic compounds have a wide range of biological activities and applications
(including agrochemicals), the development and prototyping of efficient methods for their
extraction from natural sources is currently of invaluable importance. However, depending
on the potential applications of the extracts, it is still challenging to design the process
appropriately, despite the efforts made in this direction by many researchers [12,15,16].
According to Batinić et al. [17], it is extremely challenging to develop a single, general and
efficient protocol for the extraction of active compounds, including phenolic compounds,
from different plant materials. Therefore, the extraction process should be optimized for
each plant matrix [17]. Mathematical and statistical tools are, therefore, used to analyze not
only the influence of process variables, but also to optimize the experimental conditions
of the process [14,18]. Extraction optimization is carried out using a number of methods,
including empirical, statistical and combined methods. It should be emphasized that an
appropriate optimization procedure and its results are essential for the future industrial
application of the process and the commercialization of the manufactured product [19].

Among the aromatic plants used by the food, cosmetic and pharmaceutical industries
is Levisticum officinale WDJ Koch, commonly known as lovage [20]. Many studies indicate
the medicinal potential of this plant [21]. Recent studies also indicate the agropotential of
this plant [22–24]. Currently, the leaves of Levisticum officinale are used primarily as a spice,
and as a result, the roots of this plant seem to go unnoticed, which means that they are
often treated as a by-product [25]. The results of several research endeavors indicate that
water extract form lovage roots contains a broad and diverse range of bioactive compounds
and secondary metabolites (saponins, flavonoids, phenolic acids, steroids, carbohydrates,
organic acids) [22,25–28]. However, the active phytochemicals of plants are mainly located
inside the cells, and an efficient extraction method is required to isolate them. Ultrasound-
assisted extraction appears to be an excellent tool for this objective [29]. Additionally, there
is interest in the possibility of using organic aqueous extraction to increase the efficiency
of extracting bioactive compounds from lovage roots, which can be transformed from an
agri-food by-product into valuable intermediates or products in various industries [25]. As
many plant extracts have therapeutic or antimicrobial effects, it seems forward thinking
to approach their unconventional use in, among other industries, agriculture. The reason
is the fact that their action may have biostimulating potential for crop plants. This is
particularly relevant in the current agricultural situation, where excessive use of fertilizers
is associated with a range of environmental problems in different ecosystems [30]. Thus,
improving crop production, which is a major agronomic challenge, while reducing the
use of chemicals, will be possible if new agronomic methods are incorporated, including
the use of natural biostimulants, which are currently considered among the best products,
targeting action to increase plant protection and growth, while improving yield quantity
and quality [31,32].

Given that UAE aqueous extraction is gaining importance within ‘green technology’
and to increase the efficiency of extracting bioactive compounds from Levisticum officinale
root waste, optimization of its parameters was undertaken. Multi-objective (multi-criteria)
optimization can be an extremely promising tool not only for designing and analyzing
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the extraction process, but also for making process-control decisions. Therefore, the main
objective of this study was to develop and optimize an environmentally friendly UAE-
based methodology for the aqueous extraction of bioactive compounds from the roots of
Levisticum officinale, which are considered a by-product. The focus was on determining the
optimal extraction conditions of the independent variables, such as the solid–liquid ratio,
extraction time and ultrasound power, so that the optimized extracts present the highest
bioactive potential expressed in terms of levels of phenolic compounds, flavonoids, sugars
and antioxidant potential.

2. Materials and Methods
2.1. Plant Material—Levisticum Officinale

The dried roots of the Levisticum officinale (sourced from Runo Polska, PL-EKO 07 EU
Organic Farming) were ground to a powder (fraction size of 500 µm). The ground powder
was stored at 4 ◦C in airtight bags until further use.

2.2. Ultrasound-Assisted Extraction (UAE) Procedure

The extraction was performed using an Ultron U-509 ultrasonic system with an op-
erating frequency set at the 20 kHz. The lovage-root biomass was mixed with ultrapure
deionized water (extraction solvent) in a 150 mL flat-bottomed amber glass bottle with the
appropriate extractant:solid ratio. The glass bottle was immersed in an ultrasonic bath in
a fixed position to ensure that the acoustic field in the bottle was as regular as possible.
During extraction, the temperature was controlled at a constant 60 ◦C by circulating water
from a thermostated water bath. UAE extraction parameters were extraction time (3, 6 and
9 min), sample/solvent ratio (w/v) (2.5 g/100 mL (0.025 g/mL), 5 g/100 mL (0.050 g/mL),
7.5 g/100 mL (0.075 g/mL) and ultrasound power (60, 120 and 240 W).

All extractions were carried out in triplicate. Extractions were followed by centrifuga-
tion (9500 rpm, 20 min) and filtration (Whatman® No. 1 filter paper). The supernatant was
collected and stored at 4 ◦C in sealed dark glass bottles until further use and analysis.

2.3. Quantification of Bioactive Compounds in the Produced Extracts

The total phenolic content (TPC) was determined in the samples obtained using
ultrasound-assisted extraction. The quantification of the pool of phenolic compounds was
performed using a modified spectrophotometric method proposed by Mugwagwa and
Chimphango [33] with anhydrous sodium carbonate and Follin-Ciocalteau reagents. A
standard curve was prepared and used (gallic acid as a standard). TPC was expressed as
mg gallic acid equivalent/g extract.

The total flavonoid content (TFC) in the extracts was evaluated using the spectropho-
tometric method (with the AlCl3 reagent) presented by Iqbal et al. [34]. The concentration
of TFC in the samples was determined as catechin equivalent (µmol/L) from a standard
curve for this compound.

The total antioxidant activity (TAA) was also analyzed in water extracts from Levis-
ticum officinale using the spectrophotometric method. The antioxidant activity of DPPH
was assessed based on the method of Lee et al. [2]. A methanol solution of DPPH (2,2-
difenylo-1-pikrylohydrazyl) was used. The scavenging activity was calculated according to
[(Abscontrol − Abssample)/Abscontrol)] × 100.

The total reducing sugar content (RSC) was determined using a spectrophotometric
method using 3,5-dinitrosalicylic acid (DNSA). The measurement was carried out based on
the method of Krivorotov and Sereikaite [35]. The level of reducing sugars in the extracts
was determined using a standard curve for D-glucose, and the results were expressed as g
of D-glucose equivalent (GE) per L of extract.

2.4. Mathematical Model

For the majority of engineering processes, the relationships between the system’s
responses and the independent variables are unknown. Therefore, it is necessary to identify
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the correct approximation to represent these responses as functions of these variables. For
this purpose, polynomial functions are used [36]. Multivariate regression models (generated
in Matlab R2021a) were used to perform ultrasound-assisted extraction optimization. The
models were created, based on experimental data (content of bioactive compounds in
extracts from Levisticum officinale—decision criteria). The sample/solvent ratio (g/mL)
(x1), time of extraction (s) (x2) and ultrasound power (W) (x3) were selected as process
parameters (in the optimization procedure—decision variables).

The multivariable polynomial, describing the analyzed decision criteria as a function
of the decision variables, was defined as (1):

yreg(x1, x2, x3) = a0 + a1 ∗ x1 + a2 ∗ x2 + a3 ∗ x3 + a4 ∗ x1 ∗ x2 + a5 ∗ x1 ∗ x3 + a6 ∗ x2 ∗ x3

+a7 ∗ x2
1 + a8 ∗ x2

2 + a9 ∗ x2
3

(1)

The Fisher test value (F-value), p-value, the coefficient of determination (R2), the
adjusted determination coefficient (Adj R2), and the mean squared prediction error (MSE)
were used to evaluate the model accuracy [37].

R2 (2) and Adj R2 (3) were expressed as follows:

R2 =
∑n

i=1 wi(ŷi − y)2

∑n
i=1 wi(yi − y)2 = 1 − ∑n

i=1 wi(yi − ŷi)
2

∑n
i=1 wi(yi − y)2 (2)

Adj R2 = 1 − ∑n
i=1 wi(yi − ŷi)

2 (n − 1)

∑n
i=1 wi(yi − y)2(v)

(3)

The mean squared prediction error (MSE) is the index of the mean square deviation
between the experimental data and the values, resulting from the adopted model (4):

MSE =
∑n

i=1 wi(yi − ŷi)
2

v
(4)

2.5. Multi-Criteria Optimization

The defined optimization task was considered in a four-dimensional criteria space (5):

K = [K1, K2, K3, K4] ∈ R4 (5)

In this space, solutions were sought for which all four analyzed criteria would have
extreme values. The decision criteria were defined as K1—TPC total phenolic content (mg
GAE/g); K2—TFC total flavonoids content (µmol CAT/L); K3—TAA total antioxidant activ-
ity (DPPH- %inh); K4—RSC reducing sugar content (g GE/L). The aforementioned criteria
were determined for a specific set of decision variables for the extraction process, assisted
with ultrasound: x1—sample/solvent ratio (g/mL); x2—time (min); x3—ultrasound power
(W). The objective of the optimization procedure was to identify the parameters for the
production of aqueous extracts from Levisticum officinale, for which criteria K1–K4 will have
the maximum value. The domain (D) of the set of decision variables was defined as the
Cartesian product (6):

D = x1 × x2 × x3 (6)

The restrictions/limitations on the decision variables were as follows (7)–(9):

x1 ∈ ⟨0.025 ; 0.075⟩ [g/mL] (7)

x2 ∈ ⟨60 ; 240⟩ [W] (8)

x3 ∈ ⟨3 ; 9⟩ [min] (9)

For the defined domain (D) of the set of decision variables (x1–x3), the values of K1–K4
were determined using multivariate approximation of the obtained experimental results.
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A diagram of the optimization procedure is shown in Figure 1. The various stages of
the procedures related to the determination of Pareto fronts (Pareto-optimal solutions) and
compromise solutions are presented. Details related to the determination of compromise
and preferred solutions are presented in Sections 2.6 and 2.7.
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The multi-criteria optimization task was related to the determination of a set of
solutions in the domain D for decision criteria that satisfied the following conditions (10):

K1 → max, K2 → max, K3 → max, K4 → max (10)

In the subsequent step, all decision criteria were scaled to dimensionless variables and
normalized, assuming that Ki

min i Ki
max are, respectively, the minimum and maximum

values of the criteria for the analyzed set of decision variables (11), (12):

K(n)
i =

Kmax
i − Ki

Kmax
i − Kmin

i
(11)
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i = 1, 2, 3, 4
K(n)

i ∈ ⟨0; 1⟩ (12)

This approach provided an opportunity to compare the values of criteria that involved
different characteristics and were initially expressed in different units. After this procedure,
the highest value of the actual criterion corresponded to the value 0 (in the space of
normalized criteria). Then, a dominance relation was introduced between two, arbitrary
vectors of decision criteria K = [k1, k2, k3, k4] i K′ = [k1

′, k2
′, k3

′, k4
′] belonging to D (13) [38]:

K ≻ K′ ⇔ K − K′ ∈ C C =
{
(a1; a2 ; a3; a4) ∈ R4

}
(13)

2.6. Quantification of Bioactive Compounds in the Produced Extracts

The method for obtaining a smart representation of solutions from Pareto fronts
was used. In the proposed method, multi-objective Pareto front topology optimization is
based on the weighted sum method for each criterion [39]. For the analyzed criteria, the
relationship was assumed (14):

K =
√

K2
1 + K2

2 + K2
3 + K2

4 (14)

After assigning weights for each decision criteria, the relationship was of the form (15):

K =
√

w1K2
1 + w2K2

2 + w3K2
3 + w4K2

4 (15)

The criteria were assigned weights: w1 + w2 + w3 + w4 = 1. The scheme for reducing
the set of Pareto-optimal solutions and determining preferred solutions is shown in Figure 2.
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For criteria K1–K3, the values of weights w1, w2 and w3 were 0.3. And for criterion K4,
the value of weight w4 was 0.1.

2.7. Reducing the Set of Pareto Optimal Solutions—The Compromise Solutions

At this stage of the optimization procedure, the definition of the Utopia point, consid-
ered the optimal solution in all respects, was adopted [40]. The Utopia point is referred
to as the “ideal point” that maximizes all goals simultaneously, but it is also the so-called
“unattainable point”. Therefore, the concept of achievable compromise solutions on the
Pareto front with a minimum Euclidean distance from the Utopia point (dU) was intro-
duced. In the search for compromise solutions on the Pareto front, a normalization of the
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objective function in the range [0,1] was introduced. A schematic of the procedure is shown
in Figure 3.
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In the subsequent step, the distance of all solutions on the Pareto front, measured from
the Utopia point, was determined. The Pareto-optimal solution with the minimum distance
from the Utopia point was selected as the best solution from the given set [41].

Thus, in order to analyze the set of all permissible solutions, a Euclidean metric of the
form was introduced in the space of the normalized decision criteria (16):

dU = d(K0 K) =

√√√√ 4

∑
i=1

K2
i (16)

where K0 = (0, 0, 0, 0) is the beginning of the coordinate system, the so-called utopian
solution (dU).

3. Results and Discussion
3.1. Models Fitting

The experimental data were fitted using a multivariate polynomial model. The regres-
sion coefficients of the resulting equations describing the individual extract-quality criteria
in terms of the decision factors/variables analyzed were presented as Table 1.

Analysis of the regression coefficients in Table 1 shows that both process time and
ultrasound power had a negative effect, while the biomass/water ratio had a positive effect
on the TPC. A similar relationship was found for TAA. However, for TFC, it was shown
that all factors had a positive effect on this characteristic of Levisticum officinale extracts. For
the RSC the positive effect correlated with the root biomass/water ratio and ultrasound
power, while extraction time had a negative effect on RSC.

An analysis of the proposed models for ultrasound-assisted aqueous extraction of
Levisticum officinale roots is shown in Table 1. The high R2 values (>0.80) of 0.91 for TPC
(K1), 0.88 for TFC (K2), 0.93 for TAA and 0.93 for RSC, respectively, indicate that the models
based on multivariate polynomials sufficiently reflected the experimental data. According
to Ahmed et al. [42], a high correlation and strong fit is shown using a regression model
with an R2 value greater than 0.8. In addition, the analyses showed that the Adj R2 values
were 0.86, 0.81, 0.89 0.85 for TPC, TFC, TAA and RSC, respectively, confirming a good model
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fit. Based on the analyses, it can be concluded that the generated models were characterized
using the predictive ability of the characteristics of Levisticum officinale extracts depending
on the parameters of the extraction process [43].

Table 1. The predicted quadratic polynomial models for properties extracted from Levisticum
officinale polyphenols, flavonoids, antioxidant potential and reducing sugars.

Source
Total Phenolic Content

(TPC)
(mg GAE/g)

Total Flavonoids
Content (TFC)
(µmol CAT/L)

Total Antioxidant
Activity (TAA)
(DPPH—%inh)

Reducing Sugar
Content (RSC)

(g GE/L)

Absolute term, a0 166.92 −126 22.9 4.02

Linear

a1 4852.1 10,707.8 2122.25 87.53
a2 −0.956 0.29 −0.33 0.02
a3 −20.533 44.8 −5.97 −1.79

Interaction

a4 5.58 2.89 0.32 0.035
a5 213.7 105.3 −2.22 21.12
a6 0.043 0.045 0.012 0.003

Quadratic

a7 −49,195.96 −87,147.45 −16,726.9 −1197.48
a8 0.0012 −0.0026 −0.00029 −0.0001
a9 0.66 −3.87 0.387 0.059

Indicators

MSE 373.84 1308.28 16.84 1.11
R-square 0.91 0.88 0.93 0.91

Adjusted R square 0.86 0.804 0.889 0.854

F-statistic

sse 6.36 × 103 2.22 × 104 286.1482 18.8592
F-value 18.21 12.796 24.0004 17.9322

ssr 6.13 × 104 1.51 × 105 3.64 × 103 1.79 × 102

p-value 4.74 × 10−7 6.05 × 10−6 5.91 × 10−8 5.31 × 10−7

Legend: sse—sum of squared errors (residuals), expressed as a numerical value; ssr—the sum of squares due to
regression (SSR) or explained sum of squares (ESS) is the sum of the differences between the predicted value and
the mean of the dependent variable; p-value—a vector of p-values for testing whether elements of b are 0.

The fit of the polynomial models to the experimental results of the phenolic compound
content together with the interpolation is shown in Figure 4.

The research showed that the content of phenolic compounds in the extracts increased
when extraction of Levisticum officinale roots was carried out using an increased plant
biomass to solvent ratio. Admittedly, the increases in TPC were no longer as significant
when the root-to-water ratio was increased from 0.05 to 0.075 g/mL. Additionally, it was
found that increasing the extraction time led to the production of extracts with higher
levels of phenolic compounds. The results also showed that increasing the ultrasound
power affected the total pool of phenols extracted from Levisticum officinale. The highest
TPC extraction yields (above 300 mg GAE/g) were recorded for extracts produced using a
biomass/solvent ratio of 0.075 g/mL, for 9 min and at an ultrasound power of 240 W. This
is supported by the results obtained by Nikolić et al. [41], in which the authors analyzed the
effect of ultrasound-assisted extraction parameters on the content of phenolic compounds
in the extracts. According to the researchers, changing the ratio of solvent to plant biomass
also had a greater effect on TPC than process time [44]. Similar observations were reached
by Brahmi et al. [45], who analyzed the effect of ultrasound-assisted extraction conditions
on the amount of extracted phenolic compounds from Opuntia ficusindica. The researchers
showed that both the content of phenolic compounds and the antioxidant potential of



Processes 2024, 12, 275 9 of 24

the extracts reached a certain level at a certain time, after which no more significant
differences caused by increasing this extraction parameter were observed. Also, Irakli
et al. [9], who showed that the total polyphenols content of the extracts increased with
increasing extraction time, noted a limiting time for the effect of ultrasound, after which
the TPC extraction efficiency stabilized and then gradually decreased. Medina-Torres
et al. [46] explain these observations with the fact that ultrasound-assisted extraction time
is generally divided into two phases. The first is the ‘washing stage’, and it is during
this process that the maximum number of active compounds is extracted. On the other
hand, in the next stage, the so-called ‘slow extraction phase’, compounds contained in the
plant biomass are transferred to the solvent using a diffusion mechanism. Therefore, it
is important to determine the influence of the time of the ultrasound-assisted extraction
procedure and to optimize this parameter, as unskillfully controlling such a process and
increasing the time of the procedure may, consequently, lead to degradation of bioactive
compounds induced by radiation generated using ultrasound [45]. Kutlu et al. [47] also
highlighted the importance of ultrasound power for the extraction efficiency of phenolic
compounds. The aforementioned researchers found that the amount of TPC extracted
from Artemisia dracunculus increased by 15% with increasing ultrasonic power at the same
analyzed sonication time and solvent-to-sample ratio. Similar observations were made
by Garcia-Mendoza et al. [48] who extracted active compounds from Juglans regia. They
found that TPC levels in the extracts increased by 12% when the process was carried out at
increased ultrasonic power (from 180 to 220 W) [47].
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Analysis of the flavonoids’ levels in extracts from the roots of Levisticum officinale
showed that this characteristic was influenced by the parameters of the extraction process,
assisted with ultrasound (Figure 5). It was found that increasing the time of the extraction
procedure generally resulted in a higher pool of flavonoids in the samples. However, such
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significant differences in TFC were no longer observed for extraction times of 6 min and
9 min.
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Figure 5. Interpolation and regression function of criterion K2 (TFC, total flavonoid content) as a
function of process parameters (decision variables) x1 (sample/solvent ratio (g/mL)) and x3 (time
(min)) for (A) x2 = 60 W (ultrasound power), (B) x2 = 120 W (ultrasound power), (C) x2 = 240 W
(ultrasound power).

The study also showed that flavonoids’ levels in the extracts changed with changes in
the ratio of root biomass to solvent. These changes were greater the longer the extraction
process time was. When analyzing the effect of ultrasound power, it was found that the
lowest concentration of TFC occurred in extracts produced when the process was assisted
with ultrasound at 60 W. In contrast, the increase in flavonoids in the aqueous extracts was
highest as a result of power at 120 W. Assefa et al. [46] evaluated the effect of extraction
time on the antioxidant activity and flavonoid content of extracts from Citrus junos. The
study of the aforementioned authors proved that antioxidant potential and flavonoid levels
increased with increasing extraction process duration until a critical time value was reached,
after which the analyzed indicators already assumed a constant value. The researchers
suggest that this is due to the fact that both antioxidant compounds and flavonoids were
completely extracted. They also came to similar conclusions regarding the effect of changing
the biomass/solvent ratio. The authors, therefore, emphasize the need to optimize these
extraction process parameters. An ill-considered increase in the use of plant biomass is not
only connected with a negative economic impact, but also disturbs the efficiency of the
extraction of bioactive compounds from different matrices, which is based on mass-transfer
principles. Rational control of the process in terms of this parameter leads to a reduction in
biomass consumption, which in turn results in reduced process and energy costs [49].

Increasing the time of the extraction procedure and increasing the plant biomass/water
ratio were shown to be beneficial for increasing TAA (Figure 6). However, when the process
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was assisted with ultrasound at 60–120 W at the average analyzed time parameters and
the mentioned biomass ratio, a certain state of stabilization was observed in the total
antioxidant potential, expressed as % inh DPPH. In addition, increasing the ultrasound
power to the maximum analyzed (240 W) no longer led to significant changes in the TAA
of the extracts. Nikolić et al. [44] even found that increasing the UAE time and excessively
increasing the solid/liquid ratio lead to a decrease in the antioxidant potential of Centaurium
erythraea extracts. The authors suggest that the effect of prolonged exposure to cavitation
energy may be to degrade plant metabolites and reduce the antioxidant potential of the
compounds. Babotă et al. [50] additionally indicate that increasing the ratio of the plant
matrix to solvent too much may, after reaching a certain limiting phase, already reduce mass
transfer, leading to a reduction in the extraction efficiency of bioactive compounds [44].
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function of process parameters (decision variables) x1 (sample/solvent ratio (g/mL)) and x3 (time
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According to Dawidowicz et al. [51], the observed slight decrease in TAA could be
related to a decrease in the concentration of hydrogen ions, which in turn led to an increase
in the reaction rate between DPPH and flavonoids. The results of the research by Pekal and
Pyrzynska [52] proved that radicals had higher antioxidant activity in the DPPH test of
tea extracts due to the dominance of the electron transfer mechanism with a conjugated
proton. The above-mentioned authors showed that the pH of the extracts determined
the results obtained in the DPPH antioxidant activity test, leading to differences in the
assessment of their antioxidant activity recorded in less-acidic environments. Additionally,
Dawidowicz and Olszowy [53] proved that changing the concentration of hydrogen ions
leads to changes in the mechanism of the DPPH scavenging process [52]. Another reason
for the decrease in TAA could be the amount of compounds extracted after 6 min, resulting
from the biomass to solvent ratio used. According to Bolling et al. [54], this is due to
the fact that there is a non-linear function between sample concentration and antioxidant
activity as a result of synergistic or antagonistic interactions between the components of
the extracts [55].

The situation was different for the content of reducing sugars (Figure 7).
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The RSC did not change if the extraction time was extended, using low biomass/water
ratios. In contrast, in the other cases analyzed, this characteristic increased with increased
procedure duration. Increased ultrasound power resulted in higher sugar-extraction effi-
ciency. However, the differences between 120 and 240 W were no longer significant. Similar
observations were reached by Mondal et al. [56] who analyzed the extraction efficiency of
reducing sugars from Arctium lappa L. root waste. The researchers showed that the highest
concentration of sugars was contained in extracts produced with increased ultrasound-
assisted extraction parameters (biomass/solvent ratio and process time) [56]. However, as
highlighted by AlYammahi et al. [57], there are few reports in the literature concerning the
ultrasonic extraction of sugars. Particularly in regard to targeted optimization of extrac-
tion parameters for maximizing the extraction of reducing sugars. AlYammahi et al. [57]
evaluated the effect of extraction parameters on the level of sugars in extracts produced
using ultrasound from Phoenix dactylifera. The researchers showed that both extraction time
and biomass/solvent ratio had a significant effect on this characteristic of the extracts. The
authors explained the observed relationships using the increased solubility of sugars in
the solvent, resulting in increased release and diffusivity of these compounds from the
plant biomass. Nuerxiati et al. [58] show that unjustified prolongation of extraction time
already leads to a decrease in extraction rate and amount of extracted sugars [57]. On the
other hand, da Silva Donadone et al. [59] put forward the conclusion that an additional
aspect of the extraction process, determining the efficiency of carbohydrate extraction from
the plant matrix, is the power of ultrasound. Chen et al. [18] showed that RSC extraction
from mulberry fruit was increased as a result of increasing the ultrasound power from 60
to 180 W. Hu et al. [60] explain this by the fact that increased ultrasound power increases
the effect of cavitation and vibration and thus leads to greater disintegration of the plant
matrix cell walls, thereby promoting carbohydrate dissolution and diffusion [59].

Summarizing this stage of experimental research, it was found that the content of
polyphenols, flavonoids and the antioxidant potential of the extracts changed with the
process parameters. A longer extraction procedure and an increased biomass/solvent
ratio led to a simultaneous increase in the analyzed quality parameters of the extracts,
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mainly as the antioxidant potential of plant extracts is determined by the level of phenolic
compounds. According to Wong et al. [61], there is a correlation between high polyphenol
content and high antioxidant activity. Othman et al. [62] showed that all samples of herbal
plant extracts had a positive correlation between TPC and DPPH free-radical scavenging
activity. The high DPPH inhibition capacity may also be a result of the presence of low-
molecular-weight phenolic compounds [63,64]. Othman et al. [62] proved that there is
a low positive correlation found for antioxidant activity and total flavonoid content in
the composition of plant extracts. These observations confirm the study by Miliauskas
et al. [65], in which the authors proved that the observed low correlations are influenced by
flavonoids present in extracts with specific structures (hydroxyl position in the molecule),
which determine antioxidant properties. Thus, it is indicated that depending on the extracts
studied and the compounds extracted from them, the levels and correlations between the
biologically active compounds should be determined individually [66].

3.2. Multi-Criteria Optimization

The mathematical models generated, together with the interpolation and the corre-
sponding equations, were used in a further procedure to optimize the parameters of the
extraction processes. The objective of the optimization was to identify sets of optimal
solutions that would yield extracts with the highest possible TPC, TFC, TAA and RSC.
Figures 8 and 9 show the Pareto fronts in the decision criteria space (TPC, TFC, TAA, RSC).
There were two sets of optimal solutions in the analyzed criteria space. The representation
of the fronts in the decision criteria space (2D and 3D option) allowed us to obtain a global
view into the entire studied domain of the efficiency of the extraction procedure, defined in
terms of the maximization of the individual decision criteria. It should be emphasized that
the correlations observed in Figures 8 and 9 were obtained after the process of normalizing
the decision criteria, as a result of which, for the maximized decision criteria, 0 is the best
scenario. The demonstrated multifaceted degree of difficulty of the research problem, as
well as the post-optimization theory of decision making, necessitated depicting the effects
of multi-objective (multi-criteria) optimization (Figure 10) in the space of decision variables
x1 (sample/solvent ratio), x2 (time) and x3 (ultrasound power).

Thus, in this optimization task, several objectives have been considered simultaneously,
and the effect of multi-criteria optimization will be to generate sets of optimal solutions,
based on the trade-off between the different objectives and the corresponding values of the
decision variables [67]. Pareto front analysis showed that the optimal solutions in the space
of decision variables form two disjointed sets (Figure 10). It should also be mentioned that
the parameters of the ultrasound-assisted water extraction (i.e., decision variables x1, x2 and
x3) were also determinants of the objective function of the identified domain. Navigating
the Pareto fronts, it was shown that two scenarios could be adopted for the simultaneous
maximization of the decision criteria. The first assumes that ultrasound-assisted extraction
can be carried out for 3 min, using low ultrasound power (60.0000 to 72.8571 W) and a
biomass/solvent ratio of 0.0607 to 0.0643 g/mL (Table 2).

The second scenario is based on a second set of Pareto-optimal solutions. In this case,
maximization of the criteria can be achieved using Levisticum officinale aqueous extraction
at a biomass/solvent ratio of 0.0643 g/mL for a time between 8.1429 and 9.0000 min, with
ultrasound assistance of 162.8571 to 201.4286 W. Thus, for satisfactory maximization of TPC,
TFC, TAA and RSC in the extracts, the process boundary conditions (maximum parameter
values) are not required. The set of Pareto-optimal solutions (Table 2) also shows that
maximization of the criteria can occur as a result of increasing the plant biomass/water ratio
(0.714 g/mL), when the extraction procedure can be carried out at the average ultrasonic
power analyzed (150- 188.5714 W) in a time ranging from 7.7143 to 9.000 min.
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front); blue color indicates dominated solutions.
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Figure 9. Pareto solution sets for maximizing regression equations for the relationship between
criteria K1 (TPC total phenolic content—maximized), K2 (TFC total flavonoid content—maximized),
K4 (RSC reducing sugar content). Red color indicates Pareto-optimal solutions; blue color indicates
dominated solutions.
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Table 2. Optimal values of decision variables—Pareto front solutions.

x1opt
(Sample/Solvent

Ratio)

x3opt
(Time)

x2opt
(Ultrasound

Power)

x1opt
(Sample/Solvent

Ratio)

x3opt
(Time)

x2opt
(Ultrasound

Power)

0.0607 3.0000 60.0000 0.0679 8.5714 188.5714
0.0607 3.0000 72.8571 0.0679 9.0000 188.5714
0.0643 3.0000 60.0000 0.0679 8.5714 201.4286
0.0643 3.0000 72.8571 0.0679 9.0000 201.4286
0.0643 8.1429 162.8571 0.0679 9.0000 214.2857
0.0643 8.5714 162.8571 0.0679 9.0000 227.1429
0.0643 9.0000 162.8571 0.0679 9.0000 240.0000
0.0643 8.5714 175.7143 0.0714 7.7143 150.0000
0.0643 9.0000 175.7143 0.0714 7.7143 162.8571
0.0643 8.5714 188.5714 0.0714 8.1429 162.8571
0.0643 9.0000 188.5714 0.0714 8.5714 162.8571
0.0643 9.0000 201.4286 0.0714 8.1429 175.7143
0.0679 7.7143 150.0000 0.0714 8.5714 175.7143
0.0679 7.7143 162.8571 0.0714 9.0000 175.7143
0.0679 8.1429 162.8571 0.0714 8.1429 188.5714
0.0679 8.5714 162.8571 0.0714 8.5714 188.5714
0.0679 7.7143 175.7143 0.0714 9.0000 188.5714
0.0679 8.1429 175.7143 0.0714 8.5714 201.4286
0.0679 8.5714 175.7143 0.0714 9.0000 201.4286
0.0679 9.0000 175.7143 0.0714 8.5714 214.2857
0.0679 8.1429 188.5714 0.0714 9.0000 214.2857

According to Woinaroschy and Damşa [67], the effect of multi-objective optimization
(as opposed to optimization with only one objective) is to determine multiple points (as
shown in Figure 10 and Table 2). These points are referred to as optimal in the sense that an
improvement in one objective (criterion) can only be achieved if one or more others (criteria)
are made worse [68]. According to Kao and Jacobson [69], analyzing a large set of Pareto-
optimal solutions can be a kind of challenge. Often there is a need, voiced by decision
makers in technological processes rather than engineers, for the necessity of selecting from
a small set of preferred Pareto-optimal solutions. On the one hand, obtaining large sets of
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Pareto-optimal solutions is an ideal approach (on the formal side), additionally providing
the decision-maker with a diverse set of solutions. However, in many situations where the
decision maker has unassessed importance, his or her preferences indicate that it is often
impractical to identify a good subset of solutions from among too many options [70,71].
Therefore, the focus of the presented research was to extend the multi-objective optimization
procedure with the objective of generating smaller subsets of Pareto-optimal solutions called
preferred solutions [59,72–74]. The effects of this approach to navigating and reducing the
set of Pareto-optimal solutions are shown in Figure 11.
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Figure 11. Visualization of smart Pareto solutions in the context of Pareto front optimal solutions
in the decision variable spaces x1 (sample/solvent ratio), x2 (ultrasound power) and x3 (time). Red
color indicates Pareto-optimal solutions; blue color indicates dominated solutions; black dots/circles
indicate smart Pareto solutions (preferred solutions).

Pareto set reduction and the use of the so-called smart Pareto approach made it possible
to determine subsets of preferred solutions. The allocation of criterion weights focused on
awarding greater importance to the first three criteria for the quality of the aqueous extracts,
extracted using ultrasound-assisted extraction (K1, K2, K3) (Table 3). In the optimal subset
(Figure 11, Table 3), it was noted that with the enhanced performance of TPC, TFC and TAA
(maximized with weights of criteria K1-K3), the extraction procedure could be carried out
in 8.5714 min, with biomass/solvent ratios of 0.0679, 0.0714, 0.0750 g/mL and ultrasound
power of 201.4286, 214.2857 and 188.5714 W. In contrast, the second option in this subset
indicates a marginal (boundary analyzed) extraction time of 9 min, a Levisticum officinale
root/water weight ratio of 0.0643 to 0.0750 g/mL and ultrasound power of 175.7143 to
240.0000 W.

Turning to further the analysis of the multi-objective optimization procedure, which is
an important part of operations research, it should be emphasized that there is no single
optimal solution to multi-objective problems, but a set of solutions. From this set, it is
possible to extract Pareto-optimal, efficient, non-dominated, compromise or equivalent
solutions [75]. At this stage of the research, the focus was on determining a set of compro-
mise solutions. The search for these solutions was based on the definition of a Utopia point
(an ideal, unattainable point). The best solution from this set has the smallest Euclidean
distance from the Utopia point. The use of this optimization procedure is an extension of
the trade-off methods proposed by Gebreel [75] and Gebreel [76], in which the researcher
shows the possibility of solving multi-objective optimization problems based on obtaining
the best solution that is close to the Utopia point in space. The sets of compromise solutions
in the space of two decision variables are shown in Figure 12.
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Table 3. Set of preferred solutions from Pareto fronts—smart Pareto approach.

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

0.0643 9.0000 188.5714 0.0714 9.0000 201.4286
0.0643 9.0000 201.4286 0.0714 8.5714 214.2857
0.0679 9.0000 175.7143 0.0714 9.0000 214.2857
0.0679 9.0000 188.5714 0.0714 9.0000 227.1429
0.0679 8.5714 201.4286 0.0714 9.0000 240.0000
0.0679 9.0000 201.4286 0.0750 9.0000 175.7143
0.0679 9.0000 214.2857 0.0750 8.5714 188.5714
0.0679 9.0000 227.1429 0.0750 9.0000 188.5714
0.0679 9.0000 240.0000 0.0750 9.0000 201.4286
0.0714 9.0000 175.7143 0.0750 9.0000 214.2857
0.0714 8.5714 188.5714 0.0750 9.0000 227.1429
0.0714 9.0000 188.5714 0.0750 9.0000 240.0000
0.0714 8.5714 201.4286Processes 2024, 12, 275 18 of 25 
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Figure 12. Sets of trade-off solutions based on distance from the Utopia point as a function of decision
variables (A)—x1 (sample/solvent ratio) and x2 (ultrasound power), (B)—x2 (ultrasound power) and
x3 (time), (C)—x1 (sample/solvent ratio) and x3 (time). Green color indicates compromise solutions;
blue color indicates dominated solutions.

For better visualization and to enhance the decision maker’s operational capabilities,
Figure 13 shows the set of trade-off solutions in the space of all decision variables analyzed.
The locations of these set points are defined in Table 4.
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Figure 13. Illustration of trade-off solutions based on distance from the Utopia point as a function
of decision variables x1 (sample/solvent ratio), x2 (ultrasound power) and x3 (time). Green color
indicates compromise solutions; blue color indicates dominated solutions.

A very large set of compromise solutions was demonstrated. The values of the decision
variables for this subset ranged from the average to the maximum analyzed (boundary
conditions) values of the ratio of Levisticum officinale biomass to solvent. The extraction
procedure time started at 8.1429 to 9 min. While the power had a wide range from 85.7143
to 240.0000 watts. Thus, the presented procedure provides the decision maker with ample
opportunities and shows precise options for controlling the ultrasound-assisted extraction
process for maximizing the total content of phenolic compounds, flavonoids, sugars and
antioxidant potential.

Table 4. Compromise solutions based on distance from Utopia point.

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

0.0607 9.0000 162.8571 0.0714 9.0000 137.1429
0.0607 9.0000 175.7143 0.0714 8.1429 150.0000
0.0607 9.0000 188.5714 0.0714 8.5714 150.0000
0.0607 9.0000 201.4286 0.0714 9.0000 150.0000
0.0607 9.0000 214.2857 0.0714 8.1429 162.8571
0.0607 9.0000 227.1429 0.0714 8.5714 162.8571
0.0607 9.0000 240.0000 0.0714 9.0000 162.8571
0.0643 9.0000 124.2857 0.0714 8.1429 175.7143
0.0643 9.0000 137.1429 0.0714 8.5714 175.7143
0.0643 9.0000 150.0000 0.0714 9.0000 175.7143
0.0643 8.5714 162.8571 0.0714 8.1429 188.5714
0.0643 9.0000 162.8571 0.0714 8.5714 188.5714
0.0643 8.5714 175.7143 0.0714 9.0000 188.5714
0.0643 9.0000 175.7143 0.0714 8.1429 201.4286
0.0643 8.5714 188.5714 0.0714 8.5714 201.4286
0.0643 9.0000 188.5714 0.0714 9.0000 201.4286
0.0643 8.5714 201.4286 0.0714 8.1429 214.2857
0.0643 9.0000 201.4286 0.0714 8.5714 214.2857
0.0643 8.5714 214.2857 0.0714 9.0000 214.2857
0.0643 9.0000 214.2857 0.0714 8.1429 227.1429
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Table 4. Cont.

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

x1
(Sample/Solvent

Ratio)
x3 (Time)

x2
(Ultrasound

Power)

0.0643 8.5714 227.1429 0.0714 8.5714 227.1429
0.0643 9.0000 227.1429 0.0714 9.0000 227.1429
0.0643 8.5714 240.0000 0.0714 8.1429 240.0000
0.0643 9.0000 240.0000 0.0714 8.5714 240.0000
0.0679 9.0000 98.5714 0.0714 9.0000 240.0000
0.0679 9.0000 111.4286 0.0750 9.0000 85.7143
0.0679 8.5714 124.2857 0.0750 9.0000 98.5714
0.0679 9.0000 124.2857 0.0750 8.5714 111.4286
0.0679 8.5714 137.1429 0.0750 9.0000 111.4286
0.0679 9.0000 137.1429 0.0750 8.5714 124.2857
0.0679 8.5714 150.0000 0.0750 9.0000 124.2857
0.0679 9.0000 150.0000 0.0750 8.1429 137.1429
0.0679 8.5714 162.8571 0.0750 8.5714 137.1429
0.0679 9.0000 162.8571 0.0750 9.0000 137.1429
0.0679 8.1429 175.7143 0.0750 8.1429 150.0000
0.0679 8.5714 175.7143 0.0750 8.5714 150.0000
0.0679 9.0000 175.7143 0.0750 9.0000 150.0000
0.0679 8.1429 188.5714 0.0750 8.1429 162.8571
0.0679 8.5714 188.5714 0.0750 8.5714 162.8571
0.0679 9.0000 188.5714 0.0750 9.0000 162.8571
0.0679 8.1429 201.4286 0.0750 8.1429 175.7143
0.0679 8.5714 201.4286 0.0750 8.5714 175.7143
0.0679 9.0000 201.4286 0.0750 9.0000 175.7143
0.0679 8.1429 214.2857 0.0750 8.1429 188.5714
0.0679 8.5714 214.2857 0.0750 8.5714 188.5714
0.0679 9.0000 214.2857 0.0750 9.0000 188.5714
0.0679 8.1429 227.1429 0.0750 8.1429 201.4286
0.0679 8.5714 227.1429 0.0750 8.5714 201.4286
0.0679 9.0000 227.1429 0.0750 9.0000 201.4286
0.0679 8.1429 240.0000 0.0750 8.1429 214.2857
0.0679 8.5714 240.0000 0.0750 8.5714 214.2857
0.0679 9.0000 240.0000 0.0750 9.0000 214.2857
0.0714 9.0000 85.7143 0.0750 8.1429 227.1429
0.0714 9.0000 98.5714 0.0750 8.5714 227.1429
0.0714 8.5714 111.4286 0.0750 9.0000 227.1429
0.0714 9.0000 111.4286 0.0750 8.1429 240.0000
0.0714 8.5714 124.2857 0.0750 8.5714 240.0000
0.0714 9.0000 124.2857 0.0750 9.0000 240.0000
0.0714 8.5714 137.1429

Among the compromise solutions, the so-called super compromise solution also called
the best efficient solution [76] was identified. This was the solution whose Euclidean
distance from the ideal point of Utopia was the smallest among all analyzed points of
the set. Such a solution had coordinates x1comp = 0.0750 g/mL, x2comp = 9.0000 min and
x3comp = 214.2857 W. At this stage, it should be emphasized that Pareto sets are particularly
extremely useful in understanding the trade-off relationships between different objectives
and criteria in a multi-objective problem [77,78].

Figure 14 shows a graphical visualization of the sets of preferred solutions in the
context of the compromise solutions. In fact, the choice of path in post-optimization inter-
pretation will be the result of the knowledge, experience and preferences of specific decision
makers. Only the combination of mathematical methods and optimization procedures
with knowledge of processes, technologies or apparatus or industry capabilities will allow
informed control of the extraction process for increased extraction of bioactive compounds.
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However, it should be emphasized that the challenge associated with the articulation
of preferences by decision makers is a current research problem. According to Wang
et al. [79], only by building a practical bridge between the process designer’s preferences
and knowledge and optimization capabilities and procedures will a complete decision-
making process be achieved [80].

4. Conclusions

The research focused on the design, analysis and optimization of an environmentally
friendly ultrasonic-assisted extraction using water as an eco-friendly solvent for the plant
matrix in the form of Levisticum officinale roots. This approach will enable future use of the
extracts in various industries including food, cosmetics and pharmaceuticals. In addition,
the resulting post-extracted plant material can be further and safely revalorized, due to the
use of water as a solvent. The study showed that the total pool of phenolic compounds
and flavonoids, as well as the antioxidant potential, increased with prolongation of the ex-
traction process until a critical time value was reached, after which the analyzed indicators
already assumed a similar constant value. A similar relationship was noted when increasing
the biomass ratio of Levisticum officinale roots to water and the power of ultrasound. Only
in the case of reducing sugars, the highest efficiency of their extraction was found when the
boundary analyzed process conditions were applied. Based on the Pareto-optimal solution
sets, it was found that to maximize the criteria aqueous extraction should be carried out at a
Levisticum officinale biomass/solvent ratio of 0.0643 g/mL for a time of 8.1429 to 9.0000 min,
with ultrasound assistance of 162.8571 to 201.4286 W. Pareto set reduction and the use of
the so-called smart Pareto approach made it possible to determine subsets of preferred
solutions. In the optimal subsets, it was noted that, for the increased extraction efficiency
of TPC, TFC and TAA, the extraction procedure could be carried out in 8.5714 min, with
biomass/solvent ratios of 0.0679, 0.0714, 0.0750 g/mL and ultrasound power of 201.4286,
214.2857 and 188.5714 W. In contrast, the second option in this subset indicates an edge
extraction time of 9 min, a Levisticum officinale root/water ratio of 0.0643 to 0.0750 g/mL
and ultrasound power of 175.7143 to 240.0000 W. Among the compromise solutions, the so-
called “best efficient solution” was indicated The solution for which the Euclidean distance
from the ideal point of Utopia was the smallest (among all analyzed points of the collection)
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had coordinates x1comp = 0.0750 g/mL, x2comp = 9.0000 min and x3comp = 214.2857 W. The
novelty and originality of the presented research is the design and optimization of balanced
extraction, assisted using ultrasound, for maximizing the yield of the extracted valuable
bioactive compounds, with the identification of Pareto-optimal, preferred and compromise
solutions. The results obtained will provide a valuable tool to assist in the decision-making
process of controlling such an extraction process, assuming that there is a possibility of
increasing the scale of industrial processing of Levisticum officinale roots into extracts with
added value from the point of view of bioactive compounds.
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