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Abstract: In the catalytic ozonation process (COP), the reactions are complex, and it is very difficult to
determine the effect of different operating parameters on the degradation rate of pollutants. Data-based
modeling tools, such as the multilayer perceptron (MLP) neural network, can be useful in establishing
the complex relationship of degradation efficiency with the operating variables. In this work, the
COP of acid red 88 (AR88) with Fe3O4 nano catalyst was investigated in a semi-batch reactor and
a MLP model was developed to predict the degradation efficiency (%DE) of AR88 in the range of
25 to 96%. The MLP model was trained using 78 experimental data having five input variables,
namely, AR88 initial concentration, catalyst concentration, pH, inlet air flow rate and batch time
(in the ranges of 150–400 mg L−1, 0.04–0.4 g L−1, 4.5–8.5, 0.5–1.90 mg min−1 and 5–30 min, respectively).
Its optimal topology was obtained by changing the number of neurons in the hidden layer, the
momentum and the learning rates to 7, 0.075 and 0.025, respectively. A high correlation coefficient
(R2 > 0.98) was found between the experimental and predicted values by the MLP model. Simultaneous
maximization of %DE and minimization of Fe3O4 concentration was carried out by multi-objective
particle swarm optimization (MOPSO) and the Pareto-optimal solutions were successfully obtained.
The trade-off was analyzed through multi-criteria decision making, and one Pareto-optimal solution
was selected. The developed model and optimal points are useful for treatment of AR88 wastewater.

Keywords: water treatment; Fe3O4 nano catalyst; acid red 88; multilayer perceptron; neural network

1. Introduction

The discharge of massive quantities of industrial-colored effluents into water bodies
has become a major concern [1]. Globally, the annual release of dyestuff into the environ-
ment is reported to be 0.28 million tons, from different sources including the textile, leather
goods, cosmetic and food industries [2]. These synthetic dyes are toxic for humans, fauna
and flora even at low levels [3]. They can be carcinogenic and cause dermatitis and allergic
sensitization [4]. Therefore, it is very important to utilize an effective treatment process for
these types of wastewaters before discharging into the environment. Due to the resistance
of textile wastewaters to biodegradation and their toxic effects on microorganisms, the
use of alternative treatment methods to achieve the aim of mineralizing or transforming
refractory molecules into others which could be further biodegraded is of great importance.
The application of combined physical and chemical processes, such as coagulation, floccu-
lation, filtration and adsorption, has been developed [5]. Researchers continue to explore
more efficient techniques to address the drawbacks of the previous methods, such as low
efficiency, high volumes of sludge and high operating/capital costs [6]. The ozonation
process, mostly used with catalysts (i.e., the catalytic ozonation process, COP), is an efficient
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treatment when mineralization is desired [7]. Gutowska et al. [8] concluded that ozonation
is more effective compared to the Fenton process for the degradation of reactive orange
113 dye. COP is classified in the category of advanced oxidation processes (AOPs), which
are widely used in water treatment processes [9].

Ozone is a powerful oxidant and an effective purifier in water and wastewater treat-
ment. Especially, ozonation treatment is widely applied to mineralize organic pollutants
in water. However, when ozone is used alone, mineralization is not completely effective
and some toxic and resistant byproducts (such as ketone, aldehyde, carboxylic acid and
bromate) are generated [10]. To reduce these problems, the catalytic ozonation process
(COP) is used to treat wastewaters containing high concentrations of refractory complexes
based on the formation of very reactive groups, particularly hydroxyl radicals. This process
is used to degrade a variety of organic compounds [11].

Recently, the combination of ozone with heterogeneous catalyst has attracted a lot of
attention from researchers of water and wastewater treatment [12]. During COP, highly
reactive free radicals, especially hydroxyl (OH•), are produced; they have outstanding
ability in the rapid degradation of recalcitrant and toxic organic compounds [13]. The
hydroxyl radical is the second strongest oxidant, with an oxidation potential of 2.8 V
(whereas fluorine has the highest electrochemical oxidation potential of 3.03 V). It rapidly
and non-selectively attacks the carbon–hydrogen bonds of organic components and con-
verts them to simple and mineral compounds [14]. Many synthesized catalysts—including
metal oxides [9,15], metal oxides attached on support [13,16] and iron-based [11,12]—have
been studied in COPs. Among them, magnetic Fe3O4 has received increasing attention in
water treatment due to its magnetic properties, low cost, recyclability and non-toxicity [17].
In addition, Fe3O4 contains both Fe2+ and Fe3+ in the octahedral sites and accelerates the
reaction of electron transfer during ozonation, which can facilitate the production of free
radicals and improve the oxidation efficiency. Therefore, magnetic Fe3O4 catalysts have
been successfully applied in COPs and are shown to exhibit high catalytic activity for the
reduction of organic pollutants [16,18].

Determining the effects of various operational parameters in AOPs is very difficult
because of the complexity of reactions. This problem leads to uncertainty during the design
of industrial chemical reactors. Obviously, this problem cannot be solved by simple linear
multivariate regression. Hence, artificial neural networks (ANNs) can be considered as a
promising alternative modeling approach. Multilayer perceptron (MLP) is a class of ANNs
that is widely used in data-based modeling and machine learning concerning chemical
processes [19,20]. One of the characteristics of modeling based on MLP is that it does not
require the mathematical description of the phenomena involved in the process. Hence,
MLP can be useful in the simulation of complex AOPs. So far, MLP has been widely
used in the modeling of AOPs. Cüce et al. [21] used MLP in the modeling of Fenton and
photo–Fenton processes. Photocatalytic degradation of dispersed dye by ZnO nano catalyst
was modeled using MLP, by Kıranşan et al. [22]. ANN modeling of different combinations
of AOPs includes sonocatalytic degradation [23], the solar photocatalytic process [24] and
photo-electrocatalysis of organic pollutants [25]. COP is also included in this list due to the
complexity of its reaction mechanism [26]. Asgari et al. [27] applied ANNs to the modeling
of the catalytic ozonation of textile wastewater using carbon doped/MgO nano catalyst.
Fluoxetine was degraded during COP, and this process of modeling and optimization was
performed [28].

Process optimization is one of the main goals of modeling. In this regard, the develop-
ment of data-based models such as MLP is a step towards achieving this goal. Presently, the
use of multi-objective optimization (MOO) has found a special place in many continuous,
semi-batch and batch processes of chemical engineering [29]. Unlike single-objective opti-
mization, the solutions obtained from MOO are a set of non-dominated (Pareto-optimal)
solutions; one of them can be selected as the optimal alternative using weighting methods
and multi-criteria decision making (MCDM) [30].
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In this paper, an ANN model was first developed using the experimental data of
an AR88 degradation in an ozonation reactor with Fe3O4 nano catalyst in semi-batch
mode. Then, MOO was carried out by considering the objective functions to maximize
the degradation efficiency of AR88 and to minimize the catalyst dosage simultaneously, to
obtain Pareto-optimal solutions. Finally, an optimal alternative was selected by using two
weighting methods—i.e., criteria importance through intercriteria correlation (CRITIC) and
entropy, followed by the technique for order of preference by similarity to ideal solution
(TOPSIS) and multi-attributive border approximation area comparison (MABAC) methods.
To the best of our knowledge, MOO/MCDM of the COP of AR88 has not been reported in
the literature so far.

The rest of this paper is organized as follows: In Section 2, the synthesis of the nano
catalyst is summarized. Then, the setup of COP and the conditions of experiments, along
with the lower and upper limits of operating variables, are given. In Section 3, the theory
of MLP, the building of the MLP model, the optimization method and the theory of MCDM
are described. The simulation results and the trends of variables are given in Sections 4
and 5, respectively. The optimization results and the selection of an optimum solution using
MCDM are covered in Section 6. Finally, the main findings of this study are summarized in
Section 7.

2. Experimental Details
2.1. Synthesis of Catalyst

Synthesis of mesoporous nano iron oxide was performed according to the procedure
described by Zhang et al. [31]. To this end, 8.5 g FeCl3·6H2O and 3.0 g FeCl2·4H2O were
pulverized and dissolved in 38 mL of 0.4 M HCl solution, which is deoxygenated by
nitrogen purging for 15 min. Then, under vigorous shaking in an ultrasonic bath at room
temperature, this solution is quickly added to 375 mL of a 0.7 M deoxygenated ammonia
solution. The black precipitate was separated by a magnetic field, washed with ultra-pure
water (18 MΩ) and dried in a vacuum oven at 55 ◦C. All these chemicals, at an analytical
grade, were purchased from Merck (Darmstadt, Germany). Characterization details of
the synthesized catalyst are given in the Supplementary Materials and in the work by
Fahadi et al. [16]. AR88 was obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). It
is from the category of azo dyes. The chemical structure and some physical properties of
AR88 are given in Table 1. The structure of AR88 dye includes two main parts, chromophore
(-N=N-) and auxochrome (-OH and -SO3Na). A chromophore is a part of a molecule that
creates color in it, and visible color occurs when a substance absorbs a certain wavelength
of visible light and passes or reflects the rest. The auxochrome groups provide other
properties, like solubility, charge and affinity, to substances [32].

Table 1. Chemical and physical properties of AR88 [32].

Chemical Structure Physical Properties
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2.2. COP Experiments and Data Collection

The COP was performed in a semi-batch glass reactor with continuous stirring
(Figure 1). Catalytic ozonation experiments were performed as follows. First, 350 mL
of AR88 solution with a desired concentration was poured into the reactor. Next, a specific
amount of catalyst was added to 50 mL of deionized water and sonicated for 30 min for
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proper dispersion and homogenization. The catalyst solution was also added to the reactor
solution. The pH of the solution was adjusted by adding the desired volume of 0.1 M
HCl and NaOH solutions, with the help of a pH meter (Knick-766, Knick Elektronische
Messgeräte GmbH & Co. KG, Berlin, Germany). Before starting ozonation, the reactor
mixture was stirred for 30 min. Dry air at a pressure of 2 bar was supplied from a cylinder.
The excess ozone in the reactor outlet stream was trapped in two containers containing
potassium iodide (2% w/w) solution before venting to the atmosphere.
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Figure 1. Schematic of the experimental setup for COP.

Air enters the mass flow controller through a needle valve and then enters the ozone
generator at a specified flow rate. The generated ozone is blown through a silicone tube
connected to the gas sparger at the top of the blade of the stirrer. Unreacted ozone enters
the ozone destruction unit and finally the gas products are discharged into the environment.
Sampling via the port (not shown in Figure 1) at the top of the reactor was done at specific
time intervals (usually 5 min).

To neutralize the dissolved ozone, 1 mL of sodium thiosulfate (0.1 M) was first added
to the sample. Next, the catalyst was separated by a super magnet and then by a centrifuge
at a speed of 8000 rpm. The remaining AR88 concentration was measured using a UV–Vis
spectrophotometer (Unico-4802 double beam, Unico, Shanghai, China). For each sample,
the degradation efficiency (%DE) was calculated by 100 (C0 − Ct)/C0, where C0 and Ct
are the initial and the final concentrations of AR88, respectively. The data required for
building the model were generated from the experiments conducted within the lower and
upper limits of the input variables listed in Table 2. These limits are based on preliminary
experiments. For example, a catalyst concentration of less than 0.04 g/L results in a low
%DE. If batch time is less than 5 min, getting the AR88 sample is difficult, whereas %DE
reaches a constant level when the batch time is more than 30 min. Lower and upper
bounds of air flow are based on the range of the mass flow controller. All experimental
runs were performed randomly to avoid any bias in the collected data due to the sequence
employed for experiments [33], and 78 datasets were generated. For each experiment, AR88
degradation was measured.

Table 2. The lower and upper limits of input variables.

Variable Name Units Minimum Maximum

Air flow L/min 0.5 1.9
pH - 4.5 8.5

Nano catalyst concentration g/L 0.04 0.4
AR88 concentration ppm 150 400

Batch time minutes 5 30

3. MLP Model, Particles Swarm Optimization and MCDM
3.1. MLP Model Development

ANN consists of an interconnected group of artificial nodes (neurons), which adapt
to map a set of input parameters to a set of output parameters, without knowing the
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complicated relationships between them [34]. MLP is a supervised feedforward neural
network that is widely used by researchers for multivariate nonlinear regression. It contains
one input layer, an output layer and multiple (usually one) hidden layers. Each node in a
layer is connected to the nodes in the layer before and after it. Depending on the application,
the number of nodes in each layer changes for better modeling. In the MLP topology used
in this study (Figure 2), there are five input nodes—which are input process variables—and
one output neuron. One bias node is also added to the input and output layers. The
optimum number of neurons in the hidden layer was determined based on trials and is
discussed in the next section. The nodes in the first layer have no transfer function, and
can only take inputs and transmit them into the network; the hyperbolic tangent (tanh)
transfer function is used in the hidden nodes, whereas the linear transfer function is set
to the output neuron. The total available datasets (patterns) were divided into training
(55 patterns) and testing (23 patterns). All inputs and output were normalized to [0, 1] and
[−0.9, 0.9], respectively, by the following equation:

xnr =
(xi − xmin)

(xmax − xmin)
(rmax − rmin) + rmin (1)
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Here, xnr stands for the normalized value, xi for input/output value, xmin and xmax
are the minimum and maximum values of each input or output variable. The rmax and rmin
are the normalized range for input and target data [34].

In the training process, the sum of each input (xh), multiplied by the corresponding
weight of each neuron (wh) in the hidden layer, is added to the bias value (bj); this is
given inside the brackets in the following equation. The output of each neuron (zj) is then
calculated by:

zj = tanh

(
H

∑
h=1

whxh + bj

)
(2)

Here, H is the number of weights from the preceding layer of neurons that connect
to the current hidden neurons (here, H = 5). Similarly, these values are fed as input for
the nodes of the output layer, and finally, the output of the network is calculated by
the following:

ŷi =
m

∑
j=1

ujzj + b2 (3)

Here uj, b2 and m are, respectively, the jth weight, bias value and number of weights
from the preceding layer of neurons that connect to the current output neuron. The output
for each pattern (ŷi) is compared with the corresponding target pattern (yi). This process
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is repeated for all patterns in the training set (k = 55), and the sum of squares of their
differences (E) is then calculated as follows.

E =
1
k

k

∑
i=1

(ŷi − yi)
2 (4)

Next, the values of weights in the output and hidden layer neurons are updated
according to Equations (5) and (6), respectively.

wi,t+1 = wi − η
∂E
∂w

+ µ(wi,t − wi,t−1) (5)

ui,t+1 = ui − η
∂E
∂u

+ µ(ui,t − ui,t−1) (6)

The parameters η, µ and t are the learning rate, the momentum rate and the iteration
number, respectively [34,35]. The correction of the weights is done until the number of
iterations reaches the maximum set by the user.

The values of the learning rate and momentum constants, along with the number
of neurons in the hidden layer, affect the performance of the MLP and should be deter-
mined through optimization. To this end, two performance indexes, namely, root mean
squared error (RMSE) and correlation coefficient (R2), are calculated for both testing and
training datasets.

RMSE =

√√√√ n

∑
i=1

(yi − ŷi)
2

n
(7)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (8)

Here, y is the average of the target values and n is the number of patterns used in
training and test sets. Other variables are defined as before.

3.2. MOPSO Algorithem

Various multi-objective optimization algorithms have been used in the optimization
of chemical engineering problems [29]. The particles swarm optimization (PSO) algorithm
has advantages such as simplicity, few adjustable parameters and faster convergence. In
this algorithm, a population of particles scattered in the search space is used to discover
the best value of the objective function. The difference between this algorithm and others
that use swarm intelligence is the type of particle motion.

Each particle, according to the best experience it has ever had (personal best), Pibest(g);
the best experience all particles in the swarm have ever had (global best), Gbest(g); and the
current velocity, Vi(g), selects a new velocity (or movement), Vi(g + 1) and then moves to
a new position, xi(g + 1). The equations for this are as follows:

Vi(g + 1) = α × Vi(g) + c1 × r1 × (Pibest(g)− xi(g)) +c2 × r2 × (Gbest(g)− xi(g)) (9)

xi(g + 1) = xi(g) + Vi(g + 1) (10)

Here, α denotes the inertia weight, c1 is the cognitive learning factor, c2 is the social
learning factor, and r1 and r2 are random numbers in the range [0, 1]. What makes the
MOPSO different from the PSO is its ability to handle several objective functions, which
requires the concept of dominance and the addition of the repository concept in the MOPSO.
The elite particles are then used as candidates for personal and global best particles [36].
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3.3. Weighting and MCDM Methods

Both the CRITIC and entropy methods start with the objective matrix having m rows
(with one row for each Pareto-optimal solution or alternative) and n columns (with one
column for each objective). The following steps are carried out for the CRITIC method.
The first step is the normalization of objective functions by Equations (11) and (12) for the
maximization and minimization functions, respectively [36].

Yij =
yij − mini∈myij

maxi∈myij − mini∈myij
(11)

Yij =
maxi∈myij − yij

maxi∈myij − mini∈myij
(12)

Here, yij is the value of the jth function for the ith solution in the objective matrix;
Yij is the value of yij after normalization. Then, the Pearson product moment correlation
between any two objective functions is calculated by the following equation.

φjk =
∑m

i=1
(
Yij − Yj

)(
Yik − Yk

)√
∑m

i=1
(
Yij − Yj

)2
√

∑m
i=1
(
Yik − Yk

)2
j, k ∈ [1, n] (13)

Here, Y j =
1
m ∑m

i=1 Yij and Yk =
1
m ∑m

i=1 Yik represent the arithmetic mean of the jth and
kth normalized objectives, respectively. Finally, the weight (wj) for each objective function
is computed by Equation (15), which requires the standard deviation of each objective
function (Equation (14)).

stdj =

√
∑m

i=1
(
Yij − Yj

)2

m
j ∈ [1, n], (14)

wj =
stdj∑n

k=1(1− φjk

)
∑n

j=1 stdj∑n
k=1(1− φjk

) j ∈ [1, n] (15)

In the entropy method, the objective matrix is normalized using the sum normalization:

Yij =
yij

∑m
k=1 ykj

(16)

The entropy value of each objective function is calculated using the normalized objec-
tive matrix.

Enj = − 1
ln(m)∑

m
i=1

(
Yijln Yij

)
j ∈ [1, n] (17)

Finally, the weights are given by the below:

wj =
1 − Enj

∑n
j=1
(
1 − Enj

) j ∈ [1, n] (18)

In the TOPSIS method, the weighted normalized objective function matrix is computed
by Equation (19). The ideal (P+) and negative-ideal (P−) solutions are determined by
Equations (20) and (21), respectively:

ϑij =
wjyij√
∑m

i=1 y2
ij

(19)

P+ =
{

ϑ+
1 , . . . ..ϑ+

n
}
=
{(

maxjϑij
∣∣i ∈ R′), (minjϑij

∣∣i ∈ R′′
)}

(20)
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P− =
{

ϑ−
1 , . . . ..ϑ−

n
}
=
{(

minjϑij
∣∣i ∈ R′), (maxjϑij

∣∣i ∈ R′′
)}

(21)

Here, R′ denotes the benefit criteria and R′′ indicates the cost criteria among the
objective functions. Equations (22) and (23) are then used to calculate the Euclidean distance
of each solution from the positive (d+j ) and negative (d−j ) ideal solutions, respectively.

d+j =

√
n

∑
i=1

(
ϑij − ϑ+

1

)2
(22)

d−j =

√
n

∑
i=1

(
ϑij − ϑ−

1

)2
(23)

Finally, the closeness coefficient (C) of each solution is calculated by the following:

C =
d−j

d−j + d+j
(24)

The solution (alternative) with the highest value of C is the solution recommended by
the TOPSIS method [37].

The MABAC method is started by weighting the objective functions using [38].

vij =
(
1 + Yij

)
× wj i ∈ [1, m] and j ∈ [1, n] (25)

Then, the boundary approximation area and the distance of each non-dominated
solution to the boundary approximation area are calculated by Equations (26) and (27),
respectively.

bj =
(
∏m

i=1 vij

)1/m
j ∈ [1, n] (26)

qi = ∑n
j=1(vij − bj

)
i ∈ [1, m] (27)

The recommended and top-ranked solution has the greatest distance [29]. All MCDM
calculations were performed using a Microsoft Excel (2019) program developed by Wang
and Rangaiah [37].

4. Optimization of MLP Topology
4.1. Effect of the Number of Neurons in the Hidden Layer

Figure 3 shows the effect of the number of neurons in the hidden layer of the MLP
network on the evaluation indices (R2 and RMSE); these indices were calculated for both
the test and training datasets. The lowest value of RMSE and the highest value of R2 for
the test and training data are for the MLP network with seven neurons in the hidden layer.
Therefore, the subsequent experiments to determine the optimal structure of the network
were performed with this number of neurons in the hidden layer.



Processes 2024, 12, 515 9 of 18

Processes 2024, 12, 515 9 of 18 
 

 

Therefore, the subsequent experiments to determine the optimal structure of the network 
were performed with this number of neurons in the hidden layer. 

  
(a) (b) 

Figure 3. Effect of the number of neurons in the hidden layer on the performance of MLP: (a) RMSE 
and (b) R2 index. 

4.2. Effect of the Momentum Rate 
To determine the optimal values of the momentum and learning constants, experi-

ments were performed on the MLP network with seven neurons in the hidden layer, using 
different values for the momentum rate. The resulting R2 and RMSE indices for each value 
of the momentum rate are shown in Figure 4, which indicates that the optimal momentum 
rate is 0.075. 

  
(a) (b) 

Figure 4. Effect of momentum rate on the (a) RMSE and (b) R2 indexes of MLP network. 

4.3. Effect of Learning Rate 
The effect of the learning rate on the RMSE and R2 indexes is presented in Figure 5, 

for MLP with seven neurons in the hidden layer and a momentum rate at the optimal 
value found earlier. These results show that the optimum learning rate for the current 
dataset is 0.025. 

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8 9 10 11

RM
SE

Number of neurons

Test
Train

0.97

0.98

0.99

1

4 5 6 7 8 9 10 11

R2

Number of neurons

Test
Train

0

1

2

3

4

0.15 0.125 0.1 0.075 0.05 0.025 0.0125

RM
SE

Momentum rate

test train

0.96

0.97

0.98

0.99

1

0.15 0.125 0.1 0.075 0.05 0.025 0.0125

R2

Momentum rate

test train

Figure 3. Effect of the number of neurons in the hidden layer on the performance of MLP: (a) RMSE
and (b) R2 index.

4.2. Effect of the Momentum Rate

To determine the optimal values of the momentum and learning constants, experi-
ments were performed on the MLP network with seven neurons in the hidden layer, using
different values for the momentum rate. The resulting R2 and RMSE indices for each value
of the momentum rate are shown in Figure 4, which indicates that the optimal momentum
rate is 0.075.
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4.3. Effect of Learning Rate

The effect of the learning rate on the RMSE and R2 indexes is presented in Figure 5, for
MLP with seven neurons in the hidden layer and a momentum rate at the optimal value
found earlier. These results show that the optimum learning rate for the current dataset
is 0.025.
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Figure 5. Effect of learning rate on the (a) RMSE and (b) R2 indexes of the MLP network.

Predictions of %DE of the COP by the optimal MLP network are compared with the
experimental data in Figure 6. As shown by this parity plot, high correlation coefficients
(≥0.98) are obtained for both training and test sets.
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Figure 6. Comparison of the experimental results with the predictions by the optimal MLP network:
(a) training and (b) test dataset.

The MLP network provides the weights that are coefficients between the artificial neu-
rons and are considered analogous to synapse strengths between the axons and dendrites
in real biological neurons [39]. The optimal ANN used in this work has the weights listed
in Table 3. The level of influence of each input variable on relating the output variable to
it can be obtained through the neural weight matrix [40]. The level of importance of each
variable was calculated by Equation (4) in the work of Izadkhah et al. [40]; the calculated
values are given in Table 4. As can be seen, all the variables—initial concentration of AR88
(C0), Fe3O4 concentration (Ccat), pH, air flow rate (Qair) and batch time (t)—have effects on
the %DE. In particular, pH, air flow rate and batch time have strong effects.
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Table 3. Weights between input and hidden layers (W); weights between hidden and output layers
(U); and weights for bias of input (Bias 1) and output (Bias 2) neurons.

Neurons

W
U

Inputs

Air Flow
Rate (L/min)

Fe3O4
Concentration

(g/L)
pH

AR88
Concentration

(ppm)

Batch Time
(min) Bias 1 Output

1 3.007 −1.7655 −0.1634 0.1607 −2.253 1.9279 1.7037
2 0.3935 2.0732 −1.2326 0.43 0.8501 0.1594 1.3765
3 −0.7518 0.8413 0.6331 1.4249 2.4173 −0.0823 1.0787
4 1.2668 −0.0189 4.1809 0.2729 0.9084 0.5251 −1.8337
5 1.1559 0.0542 2.4457 0.342 1.1018 1.0184 1.1093
6 −0.5103 −0.1347 0.9134 2.0912 0.6846 0.0846 −1.0664
7 −0.3097 0.5031 0.7026 0.0794 0.0501 0.0501 0.1756

Bias 2 1.204

Table 4. Relative importance (%) of each input variable for the DE of AR88.

Variables Importance %

C0 12.2
Ccat 14.5
pH 28.9
Qair 20.0

Batch time 24.4
Total 100

5. Analysis of the COP of AR88 Using the Optimal MLP Network
5.1. Effect of Inlet Air Flow Rate

Using the optimal MLP network, the effect of the inlet air flow rate through the
ozone generator on AR88 removal efficiency was investigated, and the results are shown
in Figure 7. The values predicted by the network are shown as continuous lines and
the experimental data are presented as individual points. As depicted, within the range
tested, increasing the air flow rate increases the dye degradation due to the increasing
concentration of ozone molecules. Note that ozone molecules in the reactor are first
absorbed by the active sites of the catalyst and then converted into active radicals such as
OH• and O•−

2 , which degrade the pollutant [10].
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Figure 7. Effect of input air flow rate (0.5 L/min to 1.9 L/min) through the ozone generator on dye
degradation efficiency (pH = 5.5, initial dye concentration = 150 ppm and catalyst concentration = 0.4 g/L).



Processes 2024, 12, 515 12 of 18

5.2. Effect of the Catalyst Concentration

Catalyst concentration is one of the important factors of the COP. To determine the
optimal amount of catalyst to achieve the maximum efficiency of AR88 degradation, differ-
ent concentrations of Fe3O4 catalyst were selected. The results are given in Figure 8, which
shows that increasing the amount of catalyst increases the %DE within the range tested;
the reason for this increasing trend is the presence of more active sites for ozone molecule
placement and its degradation into active radicals [41]. As shown in Figure 8, the MLP
model has a good ability to predict the %DE with increasing catalyst concentration.
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concentration = 150 ppm).

5.3. Effect of Initial pH of the Solution

The pH value of the aqueous solution has a significant effect on the COP of organic
compounds because it affects the surface properties of the catalyst, as well as the decompo-
sition of ozone and organic molecules. As can be seen in Figure 9, the %DE decreases with
the increase of the pH within the range tested; a possible reason for this is the change in
the electric charge on the surface of the catalyst when the pH of the solution changes [16].
Further, the optimal MLP model accurately predicts the effect of pH.
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Figure 9. Effect of pH (4.5 to 8.5) on the DE (initial dye concentration = 150 ppm, catalyst concentration
= 0.4 g/L).
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5.4. Effect of Initial Concentration of AR88

The pollutant concentration is another important factor that affects the COP. The effect
of the initial concentration of AR88 was investigated in the range of 150–400 ppm, and the
experimental and prediction results are presented in Figure 10. When the concentration
of dye increases, the number of active radicals will be limited and will not be able to
destroy all dye molecules; as a result, the %DE decreases [42]. As depicted in Figure 10, the
AR88 degradation with time for different initial concentrations is well-simulated by the
trained MLP.
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5.5. Catalytic Ozonation Reaction Mechanism

The heterogeneous catalytic ozonation is complex, involving multiple reactions and
steps influenced by various factors [16]. The catalyst plays diverse roles such as providing
reaction sites for adsorption and catalysis. Heterogeneous COP encompasses three main
mechanisms: (i) adsorption of ozone molecules on the catalyst surface and their decompo-
sition into free radicals, which then react with organic pollutants; (ii) adsorption of organic
pollutants on the catalyst, which are susceptible to attack by ozone molecules or other
active species; and (iii) simultaneous adsorption of organic pollutants and ozone molecules
on the catalyst surface, followed by interaction with each other. In a specific study [17], the
Fe3O4 catalyst was found to enhance the yield of free radicals and significantly improve the
degradation efficiency of a specific pollutant compared to the ozonation process without
any catalyst.

In heterogeneous COP, reactions take place both in the solution and on the catalyst
surface. The proposed mechanisms in the solution phase are represented by the following:

O3 + AR88 → [. . . many steps] → CO2 + H2O (28)

OH• + AR88 → [. . . manysteps] → CO2 + H2O (29)

In the solid phase, the adsorption of ozone molecules onto the surface Lewis acid sites
of Fe2+ leads to the production of FeO2+ (Equation (30)). The adsorbed H2O on the surface
of Fe3O4 can dissociate into OH−, forming the surface hydroxyl groups (Equation (31)).
Consequently, Fe3+ can be obtained from the transformation of FeO2+, and it can further
react with O3 and H2O to produce OH• and H+ (Equation (32)). Additionally, Fe3+ is
reduced back to Fe2+ via reactions with superoxide (O−•

2 ) or perhydroxyl radicals (HO•
2), as

shown in Equations (35) and (36); thus, the AR88 molecules in the solution could occupy the
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surface of the catalyst and decompose or even be mineralized by O−•
2 and OH• (Equations

(35) and (36)).
Fe2+ + O3 → FeO2+ + O2 (30)

FeO2+ + H2O → Fe3+ + OH• + OH− (31)

Fe3+ + O3 + H2O → FeO2+ + OH• + O2 + H+ (32)

Fe2+ + O3 → Fe3+ + O−
3 (33)

O−
3 + OH• → O−•

2 + HO•
2 (34)

Fe3+ + O−•
2 → Fe2+ + O2 (35)

Fe3+ + HO•
2 → Fe2+ + H+ + O2 (36)

OH• + AR88 → [. . . many steps] → CO2 + H2O (37)

O−•
2 + AR88 → [. . . many steps] → CO2 + H2O (38)

A comparison of degradation efficiency with biological, photocatalysis and adsorption
processes in the literature is shown in Table S2. Although high %DE has been reported in
these processes, the initial concentration of contaminant is lower than the value tested in
this study. In addition, the time required to reach these high levels of %DE is much higher
than that elapsed in the present study.

6. MOO/MCDM of Catalytic Ozonation Process

The simultaneous maximization of %DE and minimization of the catalyst concentra-
tion were considered for the COP of AR88. Figure 11 shows the Pareto-optimal solutions
obtained by the MOPSO algorithm. Clearly, the %DE of AR88 increases with the increase in
Fe3O4 concentration; thus, there is a trade-off between the two selected objective functions.
Further, the Pareto-optimal front has a wide range and good distribution.
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For selecting one of the Pareto-optimal solutions, the CRITIC and entropy methods
were applied to these non-dominated solutions and the objective weights were calculated.
The values of weights are given in Table 5. The CRITIC method gives nearly equal weights
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for both objective functions. However, the entropy weights have more difference and
catalyst concentration has a high weight. With the CRITIC weights, the TOPSIS and
MABAC methods were applied, and the optimal solutions recommended by these MCDM
methods are shown by the (∆) and (♢) symbols in Figure 11, respectively.

Table 5. Weights recommended by CRITIC and entropy methods.

Weighting Method %DE Ccat (g/L)

CRITIC 0.5043 0.4957
Entropy 0.0162 0.9838

The optimal solutions recommended by TOPSIS and MABAC are different when
using CRITIC weights (Table 6). A low degradation efficiency and Fe3O4 concentration is
preferred by the TOPSIS method, whereas MABAC selected the moderate %DE (95.05%)
and catalyst concertation (0.152 g/L). The recommended solution when using entropy
weights was the same for both TOPSIS and MABAC (Table 6). Note that TOPSIS and
MABAC, both using entropy weights, may or may not give the same recommended
solution depending on the application [30].

Table 6. Optimal solutions selected by TOPSIS and MABAC using CRITIC and entropy methods.

With CRITIC Weights With Entropy Weights

%DE Ccat (g/L) %DE Ccat (g/L)

TOPSIS 90.20 0.100 90.20 0.1
MABAC 95.05 0.152 90.20 0.1

7. Conclusions

In this work, a data-based model was developed to enhance the degradation process
of AR88 effluent in the presence of Fe3O4 nano catalyst and ozone. The developed neural
network model is a three-layered MLP with five inputs, one output and seven neurons
in the hidden layer. The MLP topology optimization, along with those of the learning
rate and momentum parameter, was carried out. The optimum values of 0.025 and 0.075
were found for the learning rate and momentum parameter, respectively. The optimum
MLP model has a regression coefficient of 0.99 and 0.98 for the training and test dataset,
respectively. An analysis of COP was performed and the MLP model made excellent
predictions of the extensive experimental data. An analysis of the weights of neurons
revealed that pH, inlet air flow rate and time have the biggest effect on the COP process.
The maximization of %DE and the minimization of catalyst concentration in the COP
process were done using the optimal MLP model and MOPSO. As expected, there is a trade-
off between these objectives, and the optimal range for %DE is 90–98 while for catalyst
concentration it is 0.1–0.196. One optimal solution was selected using the CRITIC and
entropy weighting methods followed by the TOPSIS and MABAC algorithms. The TOPSIS
algorithm with both weighting methods, as well as the MABAC algorithm with entropy
weights, recommended the solution using the optimal values of 90.20% and 0.100 g/L for
%DE and Fe3O4 concentration, respectively. The techniques of data-based modelling and
optimization for multiple objectives, successfully employed in this work, can be adopted for
experimental data on many wastewater treatment processes to find the optimal conditions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pr12030515/s1, Refs [43–49] are cited in Supplementary Materials.
Title of Figures and Tables in supplementary matrials as follow: Figure S1. XRD patterns of Fe3O4
nanoparticles; Figure S2. FTIR spectrums of mesoporous Fe3O4; Figure S3. (a) N2 adsorption-
desorption isotherms and (b) BJH plot for Fe3O4 nanoparticles; Figure S4. FESEM image (plot a) and
EDS spectrum (plot b) of Fe3O4 nanoparticles; Table S1. Porosity data obtained from BET, BJH and
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t-Plot for mesoporous Fe3O4 nanoparticle; Table S2. Comparison of degradation efficiency (DE%) of
AR88 by COP with other processes in the literature.

Author Contributions: S.R.N.: conceptualization, supervision, resources, writing—original draft
preparation; S.G.: methodology, software, formal analysis; G.P.R.: conceptualization, visualization,
writing—review and editing. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: All data is available through communication with the first author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tanveer, R.; Yasar, A.; Nizami, A.S.; Tabinda, A.B. Integration of physical and advanced oxidation processes for treatment and

reuse of textile dye-bath effluents with minimum area footprint. J. Clean. Prod. 2023, 383, 135366. [CrossRef]
2. Zewde, A.A.; Zhang, L.; Li, Z.; Odey, E.A. A review of the application of sonophotocatalytic process based on advanced oxidation

process for degrading organic dye. Rev. Environ. Health 2019, 34, 365–375. [CrossRef]
3. Huang, T.; Yan, M.; He, K.; Huang, Z.; Zeng, G.; Chen, A.; Peng, M.; Li, H.; Yuan, L.; Chen, G. Efficient removal of methylene blue

from aqueous solutions using magnetic graphene oxide modified zeolite. J. Colloid Interface Sci. 2019, 543, 43–51. [CrossRef]
4. Nachiyar, C.V.; Rakshi, A.D.; Sandhya, S.; Jebasta, N.B.D.; Nellore, J. Developments in treatment technologies of dye-containing

effluent: A review. Case Stud. Chem. Environ. Eng. 2023, 7, 100339. [CrossRef]
5. Solayman, H.M.; Hossen, M.A.; Abd Aziz, A.; Yahya, N.Y.; Leong, K.H.; Sim, L.C.; Monir, M.U.; Zoh, K.D. Performance evaluation

of dye wastewater treatment technologies: A review. J. Environ. Chem. Eng. 2023, 11, 109610. [CrossRef]
6. Jorfi, S.; Pourfadakari, S.; Kakavandi, B. A new approach in sono-photocatalytic degradation of recalcitrant textile wastewater

using MgO@ Zeolite nanostructure under UVA irradiation. Chem. Eng. J. 2018, 343, 95–107. [CrossRef]
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