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Abstract: This paper proposes an observer-based proportional Derivative (O-BPD) fuzzy controller
for uncertain discrete-time nonlinear descriptor systems (NDSs). Representing NDSs with the
Takagi–Sugeno fuzzy model (T-SFM), the proportional derivative (PD) feedback method can be
utilized in the fuzzy controller design via the Parallel Distributed Compensation (PDC) concept, such
that the noncausal problem and impulse behavior are avoided. A fuzzy observer is proposed to
obtain unmeasured states to fulfill the PD fuzzy controller. Moreover, uncertainties and transient
response performances are taken into account for the NDSs. Then, a stability analysis process and
corresponding stability conditions are derived from the Lyapunov theory with the robust control
method and the pole constraint. Different from existing research, the Singular Value Decomposition
(SVD) and the projection lemma are utilized to transfer the stability conditions into the Linear Matrix
Inequation (LMI) form. Because of this reason, the conservatism of the analysis process can be
reduced by eliminating the restriction on the positive definite matrix in the Lyapunov function. By
giving the proper center and radius parameters of the pole constraint in the O-BPD fuzzy controller
design process, the expected transient responses can be obtained for different designers and different
practical applications. Finally, the effectiveness and applicability of the proposed O-BPD fuzzy
controller are demonstrated by two examples of the simulation.

Keywords: Takagi–Sugeno fuzzy model; discrete-time nonlinear descriptor systems; proportional
derivative feedback; observer-based control; uncertainties; regional pole placement constraint

1. Introduction

Because of the generality in describing real physical phenomena, research on nonlinear
descriptor systems (NDSs) has accelerated rapidly in recent years [1]. Including but not
limited to aerospace engineering systems [2], DC motor systems [3], and circuit systems [4],
NDSs have already been successfully applied to describe the dynamic behaviors of various
practical systems. Different from linear systems, nonlinear systems are not proportional to
the input–output relation and lack the superposition property, which make them harder to
analyze. However, many innate phenomena of practical industrial and natural systems
occur as nonlinear behaviors. More and more scholars devote their efforts to researching
analysis methods for nonlinear systems. In 1985, the Takagi–Sugeno fuzzy model (T-SFM)
was proposed to express the dynamic behaviors of nonlinear systems [5]. In accordance
with the membership function of each rule, a nonlinear system can be described with
fuzzy subsystems in locally linear input–output relations by IF-THEN rules. This feature
can efficiently reduce the control and analysis problems of nonlinear systems to a linear
problem, such that the intricacy of the fuzzy controller design method can be decreased.
Because of this advantage, many performance requirements have already been considered
for the control problem of nonlinear systems based on the T-SFM, such as time delay and
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external disturbance [6,7]. Using the representation of T-SFM, the fuzzy observer and
controller can also be developed for an NDS with many valuable linear design theories.

For a descriptor system, the structure is established with two expressions, including
difference equations and algebra equations [8,9], which are also called slow subsystems and
fast subsystems. Owing to this advantage, the descriptor system is able to express a wider
variety of physical behaviors than the normal system only constructed with differential
equations. Moreover, the control method for typical linear systems can also be applied
based on the representation of the descriptor system, such as time delay [10]. However, this
kind of structure also leads to impulse behavior and the noncausal problem in descriptor
systems. The impulse behavior is caused by the infinite eigenvalues of descriptor systems,
which will cause a huge variety in a second and even lead to the instability of systems.
Additionally, the noncausal problem of descriptor systems may violate the time sequence,
which means the state is not only related to the initial states and past inputs but also
influenced by the future inputs at any time [11,12]. This feature will lead to failure when
the normal control methods are applied to descriptor systems. Moreover, the fast-changing
characteristic caused by the description of fast subsystems may also increase the possibility
of the system collapse. Although the controller design method becomes more challenging,
the control issue of NDS is still worth being widely discussed because of the general
description for various practical systems.

With the expression of the T-SFM, the T-S fuzzy descriptor system (T-SFDS) can also
be constructed for NDSs to avoid the non-trivial controller design process. According to
references [13,14], the Parallel Distributed Compensation (PDC) concept is introduced for
the fuzzy controller design of T-SFM. Note that each linear fuzzy controller shares the
same premise part of the subsystem in T-SFM. To solve the control problem of descriptor
systems with a singular matrix, the Proportional Difference (PD) state feedback technique
has been proposed [15,16]. In study [17], derivative feedback was proven to efficiently
avoid impulse behavior and keep causality and regularity in descriptor systems. Via the
derivative element in the PD state feedback technique, the invertibility of a singular matrix
can be satisfied such that the description of descriptor systems can be recast to the normal
system. Applying the PDC-based PD state feedback controller, the impulse behaviors and
noncausal problems are solved for the NDS. To further fulfill the feedback signal in the PD
controller, the unmeasurable states of the control systems are obtained by the observer [18].
With the advantage of the observer and the PD feedback, the O-BPD fuzzy controller can
be designed for the NDS.

Improving the robustness of NDSs, uncertainties such as aging equipment, rust or wear
and tear, are also considered. The effect of uncertainties may decrease the sensitivity when
the system operates, and even lead to unexpected system failures. Moreover, modeling error
between the NDS and practical systems also often exists, which will degrade the control
performance with the designed controller. Because of this reason, a robust control method
is introduced to solve uncertain problems such that the designed controller can be more
consistent with practical applications [19,20]. Combining the linear robust control method
into the PD fuzzy controller design process, the control performance of the uncertain T-
SFDS (UT-SFDS) can be ensured. To implement the stability analysis process, Lyapunov
theory is considered in terms of the energy concept [21]. However, analyzing the stability
condition and designing the fuzzy controller design for UT-SFDS are more challenging
than the typical T-SFM.

In terms of practical control systems, it is also necessary to consider the performance
of transient responses. That is, the overshoot caused by the designed controller may exceed
the tolerance level of the systems. This will decrease the rationality and applicability of the
control method. In the present day, the pole placement approach is still widely applied to
improve the transient responses because of its intuitiveness and effectiveness [22]. Com-
pared with the method that directly assigns the pole location, the regional pole placement
constraint can offer a more flexible scheme to achieve the required transient responses [23].
Moreover, performance parameters such as rising time, settling time, and overshoot can be
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improved and traded off by just adjusting the regional constraint. For discrete-time control
systems, the pole placement constraint has been proposed to limit the poles of systems in a
disk within a unit circle [24]. In [25], pole placement was successfully applied to an NDS,
and a controller was designed with the T-S fuzzy model. In [26], a PD observer design
method was proposed for linear descriptor systems with pole placement. For nonlinear
discrete-time systems with uncertainties, the pole placement method was also combined
with the covariance control theory in [27]. However, there are still scarcely any existing
papers discussing the control issue of NDSs via the O-BPD fuzzy controller with the robust
control and pole placement methods. Despite the improvement in robustness and transient
responses, the stability condition is much more difficult to transfer into the LMI form due
to the consideration of a singular matrix, uncertainties, and the pole constraint. To solve the
analysis problem, mathematical techniques including projection lemma [28], the Singular
Value Decomposition (SVD) technique [29], and the Schur complement [30] are merged.

Integrating the concepts mentioned above, an O-BPD fuzzy controller design method is
proposed in this paper for NDSs with the requirement of robustness and transient response.
Based on the representation of UT-SFDS, NDSs with uncertain problems are expressed with
several linear fuzzy subsystems. To avoid impulse behavior and noncausal problems for
NDSs, the PD technique is applied to design each linear fuzzy controller by using the PDC
method. Moreover, a fuzzy observer is also formulated for the estimation of unmeasurable
states, which is supplied for the feedback signal of the PD fuzzy controller. To achieve the
expected performance of transient responses, the pole placement constraint in a disk is also
considered. Then, the Lyapunov theory is applied to derive the stability conditions and
analyze the stability of UT-SFDS. The robust control method and pole placement constraint
are simultaneously combined into the analysis process. Via the SVD technique, Schur
complement, and projection lemma, not only can the stability conditions be transferred into
the LMI form, but a less conservative analysis process can also be provided. That is, the
limitation of the diagonal form for the common positive definite matrix of the Lyapunov
function is no longer required. Since the conditions are successfully transferred in LMI
form with the mathematical techniques, the convex optimization algorithm [31] is able to be
efficiently applied to solve the control problem. The contributions compared with existing
research of O-BPD fuzzy controllers [32] for discrete-time NDSs are presented as follows.

(1) The uncertain problem is considered for NDSs and the robust control method is
utilized in the O-BPD fuzzy controller design process to ensure robustness.

(2) Via the combination of pole constraints, transient responses can be improved for
the different requirements across various practical NDSs. Moreover, the tradeoff of
transient performance parameters such as rising time, settling time, and maximum
overshoot can be conveniently achieved by adjusting the center and radius parameters
of the stability disk.

(3) Due to the consideration of a singular matrix, uncertainties, and the pole constraint,
the O-BPD fuzzy controller design problem becomes more challenging. Different from
the analysis method in [32], the SVD technique is applied with a projection lemma
to solve the proposed problem. Thus, the restriction on the positive definite matrix,
which is required to be set as a diagonal form in the analysis process in [32], can be
relaxed via the proposed design method.

(4) Although the requirement of robustness and transient responses is improved, the
robust control method and pole constraint lead to a more conservative O-BPD design
process. By eliminating the restriction of the positive definite matrix, a more relaxed
analysis process is investigated to ensure the requirements.

Finally, simulations are provided with two examples including a numerical and bio-
economic NDS to prove the effectiveness of the proposed O-BPD fuzzy controller.

The arrangement of this paper is outlined as follows. In Section 2, the UT-SFDS is built
for the uncertain NDS and the O-BPD fuzzy controller is developed. In Section 3, a stability
theorem is proposed for the closed-loop UT-SFDS with Lyapunov theory. In Section 4, the
simulation results of a numerical descriptor system and bio-economy descriptor system are



Processes 2024, 12, 540 4 of 21

presented with the designed robust O-BPD fuzzy controller. In Section 5, some conclusions
are provided for this research.

Notation: Rmx and Rmx×my represent the vector with dimension mx and the matrix with dimen-
sion mx × my, respectively. I is the identity matrix with the appropriate dimension. sym{ℑ} repre-
sents the short notation for ℑ+ℑT. ∗ represents the symmetric term in the matrix. ℑ(h) represents

the short notation for
m
∑

i=1
hi{ℑ}. rank(ℑ) represents the rank of ℑ.

2. System Formulation and Problem Statement

To develop the robust O-BPD fuzzy controller, the UT-SFDS was constructed for the
representation of NDSs. To improve the applicability of the robust O-BPD fuzzy controller,
a fuzzy observer was also established to estimate the unmeasurable states in practical
control systems. Then, an O-BPD fuzzy controller was developed with the observer state by
using the PDC method. Moreover, mathematical transformation techniques including the
SVD technique and projection lemma were considered to solve the derivation problem in
the stability analysis. Firstly, the UT-SFDS was established with IF-THEN rules as follows.

Plant Rule i:

IF Θ1(k) is Mi1 and . . . and Θn(k) is Min, THEN

Ex(k + 1) = (Ai + ∆Ai(k))x(k) + (Bi + ∆Bi(k))u(k) (1)

y(k) = Cx(k) (2)

where premise variables are expressed as Θz(k), the fuzzy sets are expressed as Miz,
z = 1, 2 . . . , n is the number of premise variables, i = 1, 2 . . . , r is the number of fuzzy
rules, and the state vector, the control input vector, and the output vector are expressed
as x(k) ∈ Rmx , u(k) ∈ Rmu , and y(k) ∈ Rmy . Ai ∈ Rmx×mx , Bi ∈ Rmx×mu , and C ∈ Rmy×mx

are constant matrices, E is a constant matrix with rank(E) < mx, and ∆Ai(k) ∈ Rmx×mx

and ∆Bi(k) ∈ Rmx×mu are the time-varying uncertainties. Note that these uncertainties are
expressed as ∆Ai and ∆Bi in the rest of this paper to save space. Then, the structure of
uncertainties are described as follows:[

∆Ai ∆Bi
]
=

[
HAi∆(t)WAi HBi∆(t)WBi

]
(3)

where HAi, WAi, HBi, and WBi are real constant matrices with appropriate dimensions, and
∆(t) is the unknown time-varying function satisfying ∆T(t)∆(t) ≤ I. By the defuzzification
process, the UT-SFDS (1)-(2) is obtained as follows:

Ex(k + 1) =
r

∑
i=1

hi(Θ(k)){(Ai + ∆Ai)x(k) + (Bi + ∆Bi)u(k)} (4)

y(k) =
r

∑
i=1

hi(Θ(k)){Cx(k)} (5)

where hi(Θ(k)) =

n
∏

z=1
Miz(Θz(k))

r
∑

i=1

n
∏

z=1
Miz(Θz(k))

, Miz(Θz(k)) is the grade of membership of Θz(k) in Miz,

hi(Θ(k)) ≥ 0 and
r
∑

i=1
hi(Θ(k)) = 1.

Based on UT-SFDS (4)-(5), the O-BPD fuzzy controller was designed to ensure the
stability of NDSs with the requirement of robustness and transient responses. According
to UT-SFDS (4)-(5), the fuzzy observer was also developed to estimate unmeasured states.
For the problem of uncertainties in UT-SFDS (4)-(5), the robust control method was also
combined into the design process. Moreover, the pole placement constraint was applied
to constrain the poles of the dominant term of UT-SFDS (4)-(5) into a specific disk region.
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To ensure the observability and controllability of UT-SFDS (4)-(5), a definition is provided
as follows.

Definition 1. If the relationships rank
[

vE − Ai
C

]
= rank

[
E
C

]
= mx and rank

[
vE − Ai Bi

]
=

rank
[
E Bi

]
= mx, where |v| > 1 and ∀v ∈ C, are all satisfied, the observability and

controllability of UT-SFDS (4)-(5) are guaranteed.

Similar to uncertainties, hi(Θ(k)) is defined as hi in the following context to save space.
In order to obtain the unmeasured states and complete the PD fuzzy controller, the fuzzy
observer was designed as follows.

Observer Rule i:

IF Θ1(k) is Mi1 and . . . and Θn(k) is Min, THEN

E
⌢
x (k + 1) = Ai

⌢
x (k) + Biu(k) + Lpi

(
y(k)−⌢

y (k)
)
+ Ldi

(
y(k + 1)−⌢

y (k + 1)
)

(6)

⌢
y (k) = C

⌢
x (k) (7)

where
⌢
x (k) ∈ ℜmx is the estimated state vector and

⌢
y (k) ∈ ℜmy is the output vector, and

the matrices Lpi and Ldi are the observer gains. With defuzzification, fuzzy observers (6)-(7)
can be represented as follows.

E
⌢
x (k + 1) =

r

∑
i=1

hi

{
Ai

⌢
x (k) + Biu(k) + Lpi

(
y(k)−⌢

y (k)
)
+ Ldi

(
y(k + 1)−⌢

y (k + 1)
)}

(8)

⌢
y (k) =

r

∑
i=1

hi

{
C
⌢
x (k)

}
(9)

According to the PDC method and the designed fuzzy observers (8)-(9), the O-BPD
fuzzy controller was developed as follows.

Controller Rule i:

IF Θ1(k) is Mi1 and . . . and Θn(k) is Min, THEN

u(k) = −Fpi
⌢
x (k)− Fdi

⌢
x (k + 1) (10)

where Fpi and Fdi are the gains for the proportional and derivative controller. Referring

to study [33], one can know that the estimated states
⌢
x (k + 1) and

⌢
x (k) are, respectively,

defined for the current time and the previous time.
Similarly, PD fuzzy controller (10) was also constructed as follows by defuzzification.

u(k) = −
r

∑
i=1

hi

{
Fpi

⌢
x (k) + Fdi

⌢
x (k + 1)

}
(11)

By substituting fuzzy controller (11) into UT-SFDS (4)-(5), the following fuzzy system
was obtained.

Ex(k + 1) =
r

∑
i=1

r

∑
j=1

hihj

{
(Ai + ∆Ai)x(k)− (Bi + ∆Bi)Fpj

⌢
x (k)− (Bi + ∆Bi)Fdj

⌢
x (k + 1)

}
(12)

In order to confirm the estimated error can achieve convergence, the error vector
between real states and estimated states are e(k) = x(k)−⌢

x (k) and e(k + 1) = x(k + 1)−
⌢
x (k + 1). Applying the estimated error, the fuzzy system (12) can be expressed as follows.
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Ex(k + 1) =
r
∑

i=1

r
∑

j=1
hihj

{(
∆Ai − ∆BiFpj

)
x(k)−

(
∆BiFdj

)
x(k + 1)

+(Bi + ∆Bi)Fpje(k) + (Bi + ∆Bi)Fdje(k + 1)
} (13)

Then, the following error dynamic system was obtained by subtracting fuzzy observer
(8) from fuzzy system (13).

Ee(k + 1) = Ex(k + 1)− E
⌢
x (k + 1)

=
r
∑

i=1

r
∑

j=1
hihj

{(
∆Ai − ∆BiFpj

)
x(k)−

(
∆BiFdj

)
x(k + 1)

+
(
Ai + ∆BiFpj − Lpi

)
e(k) +

(
∆BiFdj − LdiC

)
e(k + 1)

} (14)

Consequently, the following augmented system was built according to fuzzy system
(4) and error dynamic system (14).[

E 0
0 E

][
x(k + 1)
e(k + 1)

]
=

r
∑

i=1

r
∑

j=1
hihj

{[
Ai − BiFpj + ∆Ai − ∆BiFpj BiFpj + ∆BiFpj

∆Ai − ∆BiFpj Ai − LpiC + ∆BiFpj

][
x(k)
e(k)

]
+

[
−BiFdj − ∆BiFdj BiFdj + ∆BiFdj

−∆BiFdj −LdiC + ∆BiFdj

][
x(k + 1)
e(k + 1)

]} (15)

With definition (3), fuzzy system (15) can be further represented as follows.

~
ERij(h)x̃(k + 1) =

~
ARij(h)x̃(k) (16)

where x̃(k) =
[
xT(k) eT(k)

]T, x̃(k + 1) =
[
xT(k + 1) eT(k + 1)

]T,
~
ERij(h) =

r
∑

i=1

r
∑

j=1
hihj

{~
ERij

}
,

~
ERij(h) =

r
∑

i=1

r
∑

j=1
hihj

{~
ERij

}
,

~
ERij = ERij +

~
HBi∆(t)

~
WBdi,

ERij =

[
E + BiFdj −BiFdj

0 E + LdiC

]
,

~
HBi =

[
HBi
HBi

]
,

~
WBdi =

[
WBiFdj −WBiFdj

]
,

~
ARij = ARij +

~
HAi∆(t)

~
WAi +

~
HBi∆(t)

~
WBpi, ARij =

[
Ai − BiFpj BiFpj

0 Ai − LpiC

]
,

~
HAi =

[
HAi
HAi

]
,

~
WAi =

[
WAi 0

]
and

~
WBpi =

[
−WBiFpj WBiFpj

]
.

It is worth noting that the original singular matrix E in the UT-SFD (4)-(5) become an

invertible matrix
~
ERij(h) in (16) because of the PD fuzzy controller and observer. Because

of this reason, the inverse matrix
~
E
−1

Rij(h) can be multiplied on the left-hand side of (16), and
the following UT-SFDS can be obtained.

x̃(k + 1) =
~
E
−1

Rij(h)
~
ARij(h)x̃(k) (17)

According to Definition 1, it is seen that UT-SFDS (17) can meet the requirements of
controllability and observability. Moreover, the impulse behavior and noncausal problem of
UT-SFDS (4)-(5) can also be solved by the description of (17). For the uncertainties existing in
the stability analysis process, the following lemma is introduced for the time-varying term.

Lemma 1 ([19]). By giving the appropriate dimension of matrices H and W satisfying ∆T(t)∆(t) ≤ I
for the time-varying term ∆(t), the following relationship with a scalar ε > 0 can be found.

HT∆T(t)W + WT∆(t)H ≤ εHTH + ε−1WTW (18)

For the stability analysis of UT-SFDS (17), the projection lemma is also provided for
the derivation as follows.

Lemma 2 ([28]). For any matrix Ψ, if and only if the given matrices ρ ∈ Rmρ×mχ , ω ∈ Rmω×mχ ,
and the symmetric matrix χ ∈ Rmχ×mχ satisfy rank(ρ) < mχ and rank(ω) < mχ, such that
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χ+ ρTΨω+ωTΨTρ < 0 (19)

then the following two inequalities are also held.

ρT
⊥χρ⊥ < 0 and ωT

⊥χω⊥ < 0 (20)

where ρ⊥ and ω⊥ are the null-space matrices of ρ and ω, respectively.

Additionally, the following SVD technique is provided to make it possible for the
stability conditions to be transferred into LMI form.

Lemma 3 ([29]). For a time-invariant matrix C, the structure can be decomposed as follows by the
SVD technique.

C = U
[
Σ 0

]
VT (21)

where U ∈ Rmy×my and V ∈ Rmx×mx are the orthogonal matrices, and Σ ∈ Rmy×my is the
diagonal matrix with positive diagonal elements.

Ensuring better transient responses for NDSs based on fuzzy system (17), the so-called
D-stable pole placement constraint is introduced in the following lemma to constrain all
the poles in the disk.

Lemma 4 ([24]). The poles of the dominant term in the closed-loop T-S fuzzy system (17) are
constrained in a disk D(q, γ) if there exists a common positive matrix P, such that the following
condition is established.

[
−P−1 Γii(h)− qI
∗ −γ2P

]
< 0 (22)

where Γii(h) =
~
E
−1

Rij(h)
~
ARij(h); q and γ are the center and radius of the disk.

Merging the use of Lemma 1 into Lemma 4 and the Schur complement, the stability
criteria are proposed based on closed-loop UT-SFDS (17) by Lyapunov theory to achieve
better robustness and transient responses.

3. O-BPD Fuzzy Controller Design Method

In this section, the stability analysis process and design method of O-BPD fuzzy
controller (11) are developed for NDSs with UT-SFDS (17) and Lyapunov theory. Moreover,
the stability conditions with pole constraint (22) are derived and transferred into LMI
form via the robust control method (18), projection lemma (19)-(20), SVD (21), and Schur
complement to guarantee the stability of UT-SFDS (17). Therefore, the robustness and
transient response performances can be improved for NDSs. Firstly, the following theorem
is introduced to ensure stability and constrain all the dominant terms’ poles of UT-SFDS
(17) into a disk D(q, γ).

Theorem 1. If there exist the gains Fpj, Fdj, Lpi and Ldi, common positive definite matrix P, R,

and α scalar ε, with the given parameters α, V, q,
~
HAi,

~
HBi,

~
WAi,

~
WBdi, and

~
WBpi, such that the

following sufficient conditions are satisfied, then UT-SFDS (17) is asymptotically stable and the
poles are located in the region D(q, γ)
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[
P − sym

{
ERij

TΨ
}
+φ11 ΨTARij +φ12

∗ −P +φ22

]
< 0, for i, j = 1, 2, . . . , r and i ̸= j (23)

P − sym
{

ERii
TΨ

}
+

^
φ11 ΨT(ARii − qERii) +

^
φ12

∗ −γ2P +
^
φ22

 < 0, for i, j = 1, 2, . . . , r and i = j (24)

where φ11 = εΨT
~
HBi

~
H

T

BiΨ + ε−1
~

W
T

Bdi
~

WBdi + εΨT
~
HAi

~
H

T

AiΨ, φ12 = −ε−1
~

W
T

Bdi
~

WBdi,

φ22 = ε−1
~

W
T

Ai
~

WAi,φ11 =
^
φ11,

^
φ12 = ε−1

~
W

T

Bdi

(
~

WBpi − q
~

WBdi

)
,

^
φ22 = ε−1

(
~

W
T

Bpi − q
~

W
T

Bdi

)
(

~
WBpi − q

~
WBdi

)
+ ε−1

~
W

T

Ai
~

WAi, P =

[
P11 P12
∗ P22

]
, and Ψ =

[
VRVT 0

∗ αVRVT

]
.

Proof of Theorem 1. Firstly, the quadratic Lyapunov function is defined as follows for the
energy analysis of UT-SFDS (17).

V(x̃(k)) = x̃T(k)Px̃(k) (25)

The difference of Lyapunov Function (25) are obtained as follows.

∆V(x̃(k)) = V(x̃(k + 1))− V(x̃(k)) = x̃T(k + 1)Px̃(k + 1)− x̃T(k)Px̃(k)

=

(
~
E
−1

Rij(h)
~
ARij(h)x̃(k)

)T

P
(

~
E
−1

Rij(h)
~
ARij(h)x̃(k)

)
− x̃T(k)Px̃(k)

= x̃T(k)
(

~
A

T

Rij(h)
~
E
−T

Rij (h)P
~
E
−1

Rij(h)
~
ARij(h)− P

)
x̃(k)

(26)

If conditions (23) and (24) are satisfied by Theorem 1, then the following two conditions
can be obtained by separating the items related to uncertainties (3).[

P − sym
{

ERij
TΨ

}
ΨTARij

∗ −P

]
+ ε

[
ΨT

~
HBi
0

][
ΨT

~
HBi
0

]T

+ ε−1

− ~
W

T

Bdi
~

W
T

Bpi

− ~
W

T

Bdi
~

W
T

Bpi

T

+ε

[
ΨT

~
HAi
0

][
ΨT

~
HAi
0

]T

+ ε−1

[
0

~
W

T

Ai

][
0

~
W

T

Ai

]T

< 0, for i, j = 1, 2, . . . , r and i ̸= j

(27)

[
P − sym

{
ERij

TΨ
}

ΨT(ARij − qERij
)

∗ −γ2P

]
+ ε

[
ΨT

~
HBi
0

][
ΨT

~
HBi
0

]T

+ ε−1

 −
~

W
T

Bdi
~

W
T

Bpi − q
~

W
T

Bdi

 −
~

W
T

Bdi
~

W
T

Bpi − q
~

W
T

Bdi

T

+ε

[
ΨT

~
HAi
0

][
ΨT

~
HAi
0

]T

+ ε−1

[
0

~
W

T

Ai

][
0

~
W

T

Ai

]T

< 0, for i, j = 1, 2, . . . , r and i = j

(28)

Applying Lemma 1, condition (27) can also be satisfied by the definition of membership

functions
r
∑

i=1
hi = 1, 0 ≤ hi ≤ 1.[

P − sym
{

ET
Rij(h)Ψ

}
ΨTARij(h)

∗ −P

]
+

[
ΨT

~
HAi(h)

0

]
∆(t)

[
0

~
W

T

Ai(h)

]T

+

− ~
W

T

Bdi(h)
~

W
T

Bpi(h)

∆T(t)

[
ΨT

~
HBi(h)

0

]T

+

[
0

~
W

T

Ai(h)

]
∆T(t)

[
ΨT

~
HAi(h)

0

]T

+

[
ΨT

~
HBi(h)

0

]
∆(t)

− ~
W

T

Bdi(h)
~

W
T

Bpi(h)

T

= χ+ ρTΨω+ωTΨTρ < 0, for i, j = 1, 2, . . . , r and i ̸= j

(29)



Processes 2024, 12, 540 9 of 21

where ρ =
[
−~

ERij(h)
~
ARij(h)

]
, ω =

[
I 0

]
and χ =

[
P 0
∗ −P

]
.

To develop stability analysis with the projection lemma, the orthogonal vectors

ρT
⊥ =

[
~
A

T

Rij(h)
~
E
−T

Rij (h) I
]

and ωT
⊥ =

[
0 I

]
are chosen according to the matrices ρ and ω

in condition (29). Based on the orthogonal vectors, the following two equivalent conditions
can also be satisfied with Lemma 2.

~
A

T

Rij(h)
~
E
−T

Rij (h)P
~
E
−1

Rij(h)
~
ARij(h)− P = ρT

⊥χρ⊥ < 0 (30)

and
−P = ωT

⊥χω⊥ < 0 (31)

With the same concept from (27) to (31), the condition (28) can be derived into the following
form by applying Lemmas 1 and 2.[

P − sym
{

ET
Rij(h)Ψ

}
ΨT(ARij(h)− qERij(h)

)
∗ −γ2P

]
+

[
ΨT

~
HAi(h)

0

]
∆(t)

[
0

~
W

T

Ai(h)

]T

+

 −
~

W
T

Bdi(h)
~

W
T

Bpi(h)− q
~

W
T

Bdi(h)

∆T(t)

[
ΨT

~
HBi(h)

0

]T

+

[
0

~
W

T

Ai(h)

]
∆T(t)

[
ΨT

~
HAi(h)

0

]T

+

[
ΨT

~
HBi(h)

0

]
∆(t)

 −
~

W
T

Bdi(h)
~

W
T

Bpi(h)− q
~

W
T

Bdi(h)

T

=
^
χ+

^
ρ

T ^
Ψ

^
ω+

^
ω

T ^
Ψ

T
^
ρ < 0, for i, j = 1, 2, . . . , r and i = j

(32)

where
^
ρ =

[
−

~
ERij(h)

~
ARij(h)− q

~
ERij(h)

]
,

^
ω =

[
I 0

]
, and

^
χ =

[
P 0
∗ −γ2P

]
. The orthog-

onal vectors
^
ρ

T

⊥ =
[

~
A

T

Rij(h)
~
E
−T

Rij (h)− qI I
]

and
^
ω

T

⊥ =
[
0 I

]
are chosen in condition (32).

The following two equivalent conditions are established.(
~
A

T

Rij(h)
~
E
−T

Rij (h)− qI
)

P
(

~
E
−1

Rij(h)
~
ARij(h)− qI

)
− γ2P =

^
ρ

T

⊥
^
χ

^
ρ⊥ < 0 (33)

and

−P =
^
ω

T

⊥
^
χ

^
ω⊥ < 0 (34)

Therefore, one can know that conditions (30) and (31) can be achieved by satisfying condi-
tion (23) in Theorem 1 because of Lemmas 1 and 2. Similarly, conditions (33) and (34) can
also be satisfied by condition (24). Via the Schur complement, it is obvious that the pole
placement constraint (22) is satisfied by condition (33). Therefore, all the poles of dominant
term in (17) can be forced in the designed disk region D(q, γ). Moreover, if the center and
radius parameters of the pole constraint are set as q = 0 and γ = 1, the stability condition
with the form (30) for the case i = j is also satisfied by condition (33). This also means
that the fact ∆V(x̃(k)) < 0 is also achieved via (26). It is worth noting that the case of all
the pairs of center and radius, which are located in the unit circle, can also achieve the
stability and pole constraint (22). It can be concluded that if conditions (23) and (24) are
satisfied by the O-BPD fuzzy controller design method in Theorem 1, then UT-SFDS (17) is
asymptotically stable and all the poles of dominant terms are placed in the disk D(q, γ) by
satisfying the pole constraint (22).

However, stability conditions (23) and (24) still are not presented in LMI form and are
unable to be solved with the convex optimization algorithm in programs. Because of this
reason, the SVD technique and Schur complement are applied in the following theorem to
convert conditions (23) and (24) into LMI form. □
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Theorem 2. If there exist the matrices Qdj, Qpj, Gdi, and Gpi , definite matrices
~
P11 and

~
P22,

matrices
~
P12 and R =

[
Z11 0
Z21 Z22

]
, and a scalar ε, with the given parameters α, V, q, γ, HAi,

HBi, WAi, and WBi , such that the following sufficient conditions are satisfied, then the closed-loop
UT-SFDS (17) is asymptotically stable and the pole placement constraint (22) can be satisfied.



Ω11
~
P3 + αBiQdj Ω13 αBiQpj εHBi εHAi −QT

djW
T
Bi 0

∗ Ω22 0 Ω24 εHBi εHAi αQT
djW

T
Bi 0

∗ ∗ −
~
P11 −

~
P12 0 0 −QT

pjW
T
Bi VRTVTWT

Ai

∗ ∗ ∗ −
~
P22 0 0 αQT

pjW
T
Bi 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0

for i, j = 1, 2, . . . , r and i ̸= j

(35)



Ω11
~
P12 + αBiQdi

^
Ω13 αBiQpi + αqBiQdi εHBi εHAi −QT

diW
T
Bi 0

∗ Ω22 0
^
Ω24 εHBi εHAi αQT

diW
T
Bi 0

∗ ∗ −γ2
~
P11 −γ2

~
P12 0 0 −QT

piW
T
Bi −

^
Ω7 VRTVTWT

Ai

∗ ∗ ∗ −γ2
~
P22 0 0 αQT

piW
T
Bi +

^
Ω7 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0

for i, j = 1, 2, . . . , r and i = j

(36)

where Ω11 =
~
P11 − sym

{
VRTVTET + QT

djB
T
i

}
, Ω13 = AiVRVT − BiQpj, Ω22 =

~
P22 −

sym
{

αVRTVTET + αCTGT
di

}
, Ω24 = αAiVRVT − αGpiC,

^
Ω13 = AiVRVT − BiQpi −

qEVRVT − qBiQdi,
^
Ω24 = αAiVRVT − αGdiC − αqEVRVT − αqGdiC,

^
Ω7 = qQT

diW
T
Bi,

Gdi = Ldi
⌢
R, and Gpi = Lpi

⌢
R.

Proof of Theorem 2. Applying the Schur complement to conditions (23) and (24), the
following two inequalities can be obtained.



P − sym
{

ET
RijΨ

}
ΨTARij εΨT

~
HBi εΨT

~
HAi −

~
W

T

Bdi 0

∗ −P 0 0
~

W
T

Bpi
~

W
T

Ai
∗ ∗ −εI 0 0 0
∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i ̸= j

(37)
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

P − sym
{

ET
RijΨ

}
ΨT(ARij − qERij

)
εΨT

~
HBi εΨT

~
HAi −

~
W

T

Bdi 0

∗ −γ2P 0 0
~

W
T

Bpi − q −
~

W
T

Bdi
~

W
T

Ai
∗ ∗ −εI 0 0 0
∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i = j

(38)

Then, the following condition can also be obtained by multiplying on the left-hand side of
(37)-(38) by diag

{
Ψ−T, Ψ−T, I, I, I, I

}
and on the right-hand side by diag

{
Ψ−1, Ψ−1, I, I, I, I

}
respectively.

~
P − sym

{
Ψ−TET

Rij

}
ARijΨ

−1 ε
~
HBi ε

~
HAi −Ψ−T

~
W

T

Bdi 0

∗ −
~
P 0 0 Ψ−T

~
W

T

Bpi Ψ−T
~

W
T

Ai
∗ ∗ −εI 0 0 0
∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i ̸= j

(39)



~
P − sym

{
Ψ−TET

Rij

} (
ARij − qERij

)
Ψ−1 ε

~
HBi ε

~
HAi −Ψ−T

~
W

T

Bdi 0

∗ −γ2
~
P 0 0 Ψ−T

~
W

T

Bpi − qΨ−T
~

W
T

Bdi Ψ−T
~

W
T

Ai
∗ ∗ −εI 0 0 0
∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i = j

(40)

where
~
P = Ψ−TPΨ−1 and

~
P =

[~
P11

~
P12

∗
~
P22

]
. Then, defining the Qdj and Qpj to substitute

FdjVRVT and FpjVRVT, inequalities (39) and (40) can be rewritten as follows.

~
Ω11

~
P12 + αBiQdj

~
Ω13 αBiQpj εHBi εHAi −QT

djW
T
Bi 0

∗
~
Ω22 0

~
Ω24 εHBi εHAi αQT

djW
T
Bi 0

∗ ∗ −
~
P11 −

~
P12 0 0 −QT

pjW
T
Bi VRTVTWT

Ai

∗ ∗ ∗ −
~
P22 0 0 αQT

pjW
T
Bi 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i ̸= j

(41)
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

~
Ω11

~
P12 + αBiQdj

^
Ω13 αBiQpj + qαBiQdj εHBi εHAi −QT

djW
T
Bi 0

∗
~
Ω22 0

^
Ω24 εHBi εHAi αQT

djW
T
Bi 0

∗ ∗ −γ2
~
P11 −γ2

~
P12 0 0 −QT

pjW
T
Bi −

^
Ω7 VRTVTWT

Ai

∗ ∗ ∗ −γ2
~
P22 0 0 αQT

pjW
T
Bi + α

^
Ω7 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0,

for i, j = 1, 2, . . . , r and i = j

(42)

where
~
Ω11 =

~
P11 − sym

{
VRTVTET + QT

djB
T
i

}
,

~
Ω13 = AiVRVT − BiQpj,

~
Ω22 =

~
P22 −

sym
{

αVRTVTET + αCT⌢R
T

LT
di

}
,

~
Ω24 = αAiVRVT − αLpi

⌢
RC,

^
Ω13 = AiVRVT − BiQpj −

qEiVRVT − qBiQdj,
^
Ω24 = αAiVRVT − αLpiCVRVT − qαEiVRVT − qαLdiCVRVT, and

^
Ω7 = qQT

djW
T
Bi.

Using the SVD technique (21) in Lemma 3, the matrix CVRVT in (41) and (42) can be
decomposed as the matrices U, Σ, and V as follows:

CVRVT = U
[
Σ 0

]
VTV

[
Z11 0
Z21 Z22

]
VT =

⌢
RC (43)

where
⌢
R = UΣZ11Σ−1UT

~
Ω11

~
P12 + αBiQdj

~
Ω13 αBiQpj εHBi εHAi −QT

djW
T
Bi 0

∗
~
~
Ω22 0

~
~
Ω24 εHBi εHAi αQT

djW
T
Bi 0

∗ ∗ −
~
P11 −

~
P12 0 0 −QT

pjW
T
Bi VRTVTWT

Ai

∗ ∗ ∗ −
~
P22 0 0 αQT

pjW
T
Bi 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0

for i, j = 1, 2, . . . , r and i ̸= j

(44)



~
Ω11

~
P12 + αBiQdi

^
Ω13 αBiQpi + αqBiQdi εHBi εHAi −QT

diW
T
Bi 0

∗
~
~
Ω22 0

^
^
Ω24 εHBi εHAi αQT

diW
T
Bi 0

∗ ∗ −γ2
~
P11 −γ2

~
P12 0 0 −QT

piW
T
Bi −

~
Φ7 VRTVTWT

Ai

∗ ∗ ∗ −γ2
~
P22 0 0 αQT

piW
T
Bi + α

~
Φ7 0

∗ ∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −εI


< 0

for i, j = 1, 2, . . . , r and i = j

(45)
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where
~
~
Ω22 =

~
P22 − sym

{
αVRTVTET + αCTGT

di

}
,

~
~
Ω24 = αAiVRVT − αGpiC, and

^
^
Ω24 = αAiVRVT − αGpiC − qαEiVRVT − qαGdiC.

Obviously, conditions (44) and (45) are satisfied if conditions (35) and (36) are achieved
by Theorem 2. Then, conditions (41) and (42) are achieved by the SVD technique. Via
the Schur complement, conditions (37) and (38) can also be achieved. Consequently, the
closed-loop UT-SFDS (13) can achieve the asymptotically stability and the pole placement
constraint (22) according to the stability analysis process of Theorem 1. □

After LMI stability conditions (35) and (36) are derived, the control gains Fdj and Fpj
can be obtained with Qdj and Qpj by solving the control problem of Theorem 1 with the
convex optimization algorithm. The observer gains Ldi and Lpi can also be obtained by

Gdi and Gpi. Moreover, the positive definite matrix is obtained with P = Ψ−T
~
PΨ−1 =[~

P11
~
P12

∗
~
P22

]
. Different from the design method in [32], the matrix P is no longer required to

be set as the diagonal form.
Via the O-BPD fuzzy controller design method in Theorem 2, asymptotic stability in

NDSs can be achieved and the robustness can be improved. The impulse behavior and
noncausal problems are also avoided by the PD feedback technique. Moreover, better
transient responses can be achieved for NDSs by selecting more suitable center and radius
parameters for the pole constraint. In the next section, the O-BPD fuzzy controller is
designed by Theorem 2 and applied to numerical and bio-economic NDSs for simulations.

4. Simulation of Numerical NDS and Bio-Economic NDS

In this section, the proposed O-BPD controller is validated by two simulations in-
cluding a numerical NDS and a practical bio-economic NDS. The first simulation of a
numerical NDS is provided to validate the applicability of the O-BPD fuzzy controller and
the fuzzy observer designed by Theorem 2. In the second simulation, the effectiveness
of the proposed O-BPD fuzzy controller is illustrated based on a bio-economic NDS by
adjusting the center and radius parameters of the pole constraint. Moreover, the better
O-BPD fuzzy controller is applied to compare with the design method in [32] to further
verify the advantage of Theorem 2 in solving the control problem of the NDS.

4.1. Numerical NDS

In the first simulation, a numerical NDS was considered to verify the proposed robust
O-BPD fuzzy controller design method. Therefore, the following UT-SFDS was constructed
for the representation of a numerical NDS.

Ex(k + 1) =
2

∑
i=1

hi(x2(k)){(Ai + ∆Ai)x(k) + (Bi + ∆Bi)u(k)} (46)

y(k) =
2

∑
i=1

hi(x2(k)){Cx(k)} (47)

where E =

1 0 0
0 1 0
0 0 0

, A1 =

1.1 0.3 0.3
0.7 −0.9 0
0.5 0 −1

, A2 =

 1.2 0.5 0
−0.4 0.8 0
−0.5 0 1.2

, B1 = B2 =

1 0
1 0
0 1

, and C =

[
1 1 0
0 0 1

]
. The structure of the uncertainties ∆Ai and ∆Bi according

to (3) are considered with HA1 =

0.01
0
0

, HA2 =

−0.03
0
0

, HB1 =

 0
0

0.05

, HB2 =

 0
0

0.1

,
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WT
A1 =

 0
0.02

0

, WT
A2 =

 0
0.01

0

, WT
B1 =

[
0

−0.02

]
, WT

B1 =

[
0

0.03

]
, and ∆(t) = sin(t).

The membership functions for each rule are given as h1(x2(k)) =
(

1 − x2(k)
3

)
/2 and

h2(x2(k)) =
(

1+ x2(k)
3

)
/2. Based on Lemma 3, the matrix C is decomposed as follows.

C = U
[
Σ 0

]
VT =

[
−1 0
0 −1

][
1.4142 0 0

0 1 0

]−0.7071 −0.7071 0
0 0 −1

0.7071 −0.7071 0

T

(48)

From the model matrices Ai, Bi, and C, it is verified that the controllability and
observability are guaranteed according to Definition 1. Note that UT-SFDS (46)-(47) is an
unstable system. Therefore, the purpose in this simulation was to apply the O-BPD fuzzy
controller designed by Theorem 2 to achieve stability and to obtain a fast settling time.
According to the consideration, the disk region was set as D(q, γ) = (0.1, 0.9) for the pole
constraint of Lemma 4 in Theorem 2. Then, setting α = 0.5, the following gains of the
fuzzy controller and fuzzy observer were obtained via solving Theorem 2 with the convex
optimization algorithm.

Fd1 =

[
5.5795 5.8707 −2.5616
19.1983 19.4214 −226.3391

]
, Fd2 =

[
5.4775 5.7454 −2.2351
19.0814 19.2917 −265.7760

]
,

Fp1 =

[
0.0793 −0.3120 1.1000
−0.9957 −1.0263 13.9918

]
, Fp2 =

[
0.1944 −0.1185 0.4570
−1.0105 −0.9919 14.1978

]
,

Ld1 =

10.1769 21.4084
14.0270 −4.0086
41.8403 −584.1124

, Ld2 =

 7.3280 46.3471
11.4947 −2.8957
41.6191 −588.8856

,

Lp1 =

−0.1837 0.4413
−1.4235 2.9356
−2.1078 30.2008

 and Lp2 =

 0.2707 −1.8929
0.0179 −1.3867
−2.3055 31.4310


(49)

Giving the initial conditions for the system and observer as x(0) =
[
0.7 0.2 0.3

]T

and
⌢
x (0) =

[
0 0 0

]T, the responses of system states and observer states are presented in
Figure 1 by applying the O-BPD fuzzy controller (11) and the fuzzy observer (8)-(9) with the
gains in (49). From the simulation results in Figure 1, it can be seen that the system state can
achieve stability within 0.5 s. Additionally, the fuzzy observer also can estimate the system
state rapidly. This is because the pole placement constraint is also combined into the stability
conditions for the estimated error in Theorems 1 and 2. Consequently, the estimation
performance for fuzzy observer is also enhanced. Moreover, the effect of uncertainties
is also suppressed for the responses of the numerical NDS. After the applicability and
efficiency of the proposed O-BPD fuzzy controller design method in Theorem 2 are verified,
comparison results with study [32] are provided in the following simulation.

4.2. Bio-Economical NDS

To further demonstrate the advantage of the proposed O-BPD fuzzy controller design
method in this paper, the simulation results of a practical bio-economic NDS compared
with [32] are presented in this subsection. It was noticed that the research in [32] developed
a O-BPD fuzzy controller design method for NDSs without the consideration of uncertain
problems and pole constraints. Then, the simulation of comparison was implemented as
follows. Firstly, the following bio-economic NDS was considered as follows to describe the
relationship between the biological population and the harvest economy.

.
x1(t) = −ax1(t) + bx2(t) (50)

.
x2(t) = βx1(t)− λx2

2(t)− x2(t)x3(t) + u1(t) (51)
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0 = x3(t)(γx2(t)− c)− f + u2(t) (52)

where x1(t), x2(t), and x3(t), respectively, denote the density of the immature population,
the density of the mature population, and the effort of capturing the mature population;
u1(t) and u2(t) are the control inputs such as tax to balance the biological resource. To
compare with the research in [32], the same parameters a = 0.2, b = 0.7, β = 0.05,
λ = 0.1, γ = 1, c = 30, and f = 0 were selected for the bio-economic NDS (50)-(52) in
this simulation.
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Referring to reference [32], the Euler discretization technique and the T-S fuzzy mod-
elling method were applied to obtain the following discrete-time UT-SFDS with the sam-
pling time T = 0.05s.

Ex(k+1) =
2

∑
i=1

hi(x(k)){(Ai + ∆Ai)x(k) + (Bi + ∆Bi)u(k)} (53)
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y(k) =
2

∑
i=1

hi(x(k)){Cx(k)} (54)

where x2(k) ∈ [−µ, µ] is considered for the UT-SFDS, the states and input vectors are denoted
as x(t) =

[
x1(t) x2(t) x3(t)

]T and u(t) =
[
u1(t) u2(t)

]T, and the matrices are given

as E =

1 0 0
0 1 0
0 0 0

, A1 =

0.8690 0.0090 0.0011
0.0023 0.9228 0.2279

0 0 −31.5

, A2 =

0.8690 0.0087 −0.0011
0.0022 0.8778 −0.2222

0 0 −22.5

,

B1 = B2 =

 0 0
0.05 0

0 1

, and C =

[
1 1 0
0 0 1

]
. According to (3), the uncertainties ∆Ai and

∆Bi are constructed with HA1 =

0.01
0
0

, HA2 =

−0.01
0
0

, HB1 =

 0
0.1
0

, HB2 =

 0
0.1
0

,

WT
A1 =

 0
0

−0.3

, WT
A2 =

 0
0

0.2

, WT
B1 =

[
0.01

0

]
, WT

B2 =

[
0.01

0

]
, and ∆(t) = sin(t).

The membership functions for each rule are denoted as h1(x2(k)) =
(

1 − x2(k)
µ

)
/2 and

h2(x2(k)) =
(

1+ x2(k)
µ

)
/2, where µ = 5 is chosen for x2(k) of UT-SFDS (53)-(54). Accord-

ing to the SVD technique of Lemma 3, the matrix C is decomposed as follows.

C = U
[
Σ 0

]
VT =

[
−1 0
0 −1

][
1.4142 0 0

0 1 0

]−0.7071 0 0.7071
−0.7071 0 −0.7071

0 −1 0

T

(55)

Similar to Section 4.1, the model matrices of UT-SFDS (53)-(54) satisfy the condition
of controllability and observability in Definition 1. Moreover, the UT-SFDS (53)-(54) is
also an unstable system. For the simulations of a bio-economic NDS, the purpose was to
achieve stability and obtain more proper transient responses by applying the O-BPD fuzzy
controller designed by Theorem 2. It is expected that better and more reasonable responses
can be obtained by the proposed Theorem 2 than in [32], which did not consider the robust
control performance and the pole constraint in the O-BPD fuzzy controller design process.

To illustrate the function and advantage of the pole placement method in Theorem 2,
the simulation results for different pairs of center and radius parameters are first presented.
Because of this reason, three cases of the disk region, D(q, γ) = (0, 1), D(q, γ) = (0.2, 0.8),
and D(q, γ) = (0.4, 0.6), were selected for the pole placement method. Then, solving
Theorem 2 by the convex optimization algorithm with the setting α = 0.5 and, respectively,
with the parameters q and γ of three cases, the gains of the fuzzy controller and fuzzy
observer were obtained as follows.

For the disk region D(q, γ) = (0, 1)

Fd1 =

[
−0.5796 −0.6107 −1262.8598

3717.2356 3717.2355 7677698.0422

]
,

Fd2 =

[
−0.5796 −0.6107 −1262.8598

3717.2356 3717.2355 7677698.0422

]
, Fp1 =

[
−0.2189 −0.1037 −481.1946
0.0279 0.0277 81.3524

]
,

Fp2 =

[
−0.2189 −0.1037 −481.1946
0.0279 0.0277 81.3524

]
, Ld1 =

 −615.3827 −1272047.6197
−615.8080 −1273013.1170
−9628.6077 −19886702.2077

,

Ld2 =

 349.1854 720173.4031
348.7086 719156.8067

−9627.8376 −19885942.7480

, Lp1 =

 0.4211 −42.0172
0.4791 39.0784
−0.0521 −153.5534

, and

Lp2 =

0.4184 −47.4161
0.4607 46.9822
0.0346 34.6102



(56)
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For the disk region D(q, γ) = (0.2, 0.8)

Fd1 =

[
0.0319 −0.0170 0.9793
−7.3295 −7.2396 −18622.6250

]
, Fd2 =

[
0.0343 −0.0113 5.7403
−7.3304 −7.3306 −18625.0568

]
,

Fp1 =

[
0.0045 0.1231 0.8691
−0.9047 0.9046 2323.1495

]
, Fp2 =

[
0.0050 0.1234 0.2827
0.9045 0.9044 2321.6365

]
,

Ld1 =

 0.4909 18.5034
0.5358 21.0806
18.9761 48221.3062

, Ld2 =

 0.5088 28.4811
0.5250 31.1130

18.9728 48215.0429

,

Lp1 =

 0.3210 −1.9911
0.3353 −2.3404
−2.3351 −5979.9267

, and Lp2 =

 0.3187 −3.0793
0.3142 −3.9985
−2.3284 −5953.7510


(57)

For the disk region D(q, γ) = (0.4, 0.6)

Fd1 =

[
0.0200 −0.0156 −0.1413
−2.5519 −2.5520 −8111.9903

]
, Fd2 =

[
0.0225 −0.0079 3.0627
−2.5572 −2.5574 −8128.8580

]
,

Fp1 =

[
0.0055 0.0902 0.4217
0.7495 0.7494 2407.4104

]
, Fp2 =

[
0.0054 0.0907 −0.2606
0.7466 0.7465 2396.1923

]
,

Ld1 =

0.4871 17.5114
0.5370 18.9687
6.5929 20971.1937

, Ld2 =

0.5035 20.8348
0.5215 22.3058
6.5820 20938.1836

,

Lp1 =

 0.1546 −4.7652
0.1598 −5.1148
−1.8623 −5969.3581

 and Lp2 =

 0.1499 −5.5019
0.1421 −6.2784
−1.8622 −5959.9672


(58)

Selecting the initial states x(0) =
[
10 4 1

]T for the bio-economical NDS (50)–(52)

and
⌢
x (0) =

[
0 0 0

]T for the fuzzy observer (8)-(9), the state responses can be presented
as follows by applying O-BPD fuzzy controller (11) with gains (56)–(58).

It is obvious that the maximum overshoot of the state responses is much larger when
applying the O-BPD fuzzy controller with the pole-constrained region D(q, γ) = (0, 1).
Although the overshoot is not caused by the O-BPD fuzzy controller designed with the
regions D(q, γ) = (0.2, 0.8) and D(q, γ) = (0.4, 0.6), the settling time obtained by setting
D(q, γ) = (0.2, 0.8) is better than D(q, γ) = (0.4, 0.6). To clearly present the transient
performances of responses obtained by the three disks, the following table is provided.

From Table 1, it is not difficult to see that the setting of disk D(q, γ) = (0, 1) can
achieve a faster rising time than other two cases. Note that the rising time is defined as the
time at which the value first deviates from 0 by 0.05. However, the value of maximum over-
shoot is also higher than the other two cases. Comparing the cases D(q, γ) = (0.2, 0.8) and
D(q, γ) = (0.4, 0.6), the faster rising time can be improved by the setting ofD(q, γ) = (0.2, 0.8),
which only causes a slight overshoot. Moreover, the overshoot of state is x1(k) smaller. Via
the simulation results in Figure 2 and Table 1, when adjusting the parameters of center and
radius for the pole constraints, the disk region D(q, γ) = (0.2, 0.8) is selected for the O-BPD
fuzzy controller design approach of Theorem 2. Applying the O-BPD fuzzy controller (11)
with the gains in (57) of case D(q, γ) = (0.2, 0.8), the state responses compared with the
research [32] are presented as follows.

Table 1. A comparison of transient performances of each state for different disks.

States Transient Performances D(q,γ) = (0, 1) D(q,γ) = (0.2, 0.8) D(q,γ) = (0.4, 0.6)

x1(k)
Rising Time 3.75 s 3.95 s 3.95 s

Maximum Overshoot −0.001 −0.0001 −0.001

x2(k)
Rising Time 1.45 s 3.65 s 3.85 s

Maximum Overshoot −0.1319 −0.001 −0.001

x3(k)
Rising Time 0.05 s 0.20 s 0.25 s

Maximum Overshoot −0.0059 −0.0030 −0.0015
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different disk regions; (c) responses of system state x2(k) with different disk regions; (d) responses of
system state x3(k) with different disk regions.

According to the simulation results in Figure 3, the proposed O-BPD fuzzy controller
can obtain smoother responses for the bio-economical NDS (50)–(52), even under the effect
of uncertainties. For the practical situation, uncertainties such as weather and temperature
changes’ effects on immature and mature populations are also inevitable in bio-economic
NDSs (50)–(52). Therefore, the proposed O-BPD fuzzy controller can ensure the robustness
of practical NDSs. From the simulation result in Figure 3a, one can see that the response
of state x1(k) obtained by the proposed O-BPD fuzzy controller is same as the responses
obtained by [32]. This is because it is difficult to further improve the transient response of
state x1(k), which can be seen from the results in Figure 2b.

From the responses of the second state in Figure 3b, it is witnessed that the O-BPD
fuzzy controller designed by [32] can achieve a faster settling time. However, this also
causes a larger maximum overshoot. From the perspective of practical applications, this un-
reasonably drastic change cannot be tolerated by any biological system. On the contrary, the
proposed O-BPD fuzzy controller design method can obtain smoother responses to achieve
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balance for the bio-economic NDS (50)–(52) by selecting the region D(q, γ) = (0.2, 0.8) for
pole constraint (22).
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In addition, the effort of capturing the mature population can achieve balance rapidly
and avoid the overshoot via the proposed O-BPD fuzzy controller in Figure 3c. This
advantage also means that it will not waste the redundant resources for capturing. Notably,
the effort of capturing the mature population x3(t) is difficult to quantify. Therefore, the
application of the fuzzy observer in our research can also allow an estimation of the state
and fulfill the O-BPD fuzzy controller in practical situations. Based on the comparison
results, it can be said that better and smoother economic balance can be achieved for the
bio-economic NDS (50)–(52) by the proposed O-BPD fuzzy controller in this paper.

5. Conclusions

An O-BPD fuzzy controller design method is proposed in this paper to solve the
control problem of discrete-time NDSs with the requirements of robustness and transient
responses. Based on the UT-SFDS, an NDS with an uncertain problem is represented.
To improve applicability and fulfill the PD fuzzy control method, a fuzzy observer is
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also combined to estimate the state variables, which are possibly difficult to measure in
practical situations. Using the PDC concept, a PD fuzzy controller is developed based
on the UT-SFDS and fuzzy observer. Ensuring that the expected transient responses can
be obtained, pole placement constraints are also combined into the design of the O-BPD
fuzzy controller. Via Lyapunov theory, a stability criterion based on the UT-SFDS is also
proposed to achieve stability with the pole constraint. Via simultaneously applying the SVD
technique, projection lemma, robust control method, and Schur complement, the stability
conditions are efficiently recast into LMI form. More importantly, the conservativeness
caused by the diagonal positive definite matrix in the existing research is also eliminated
by the use of SVD and projection lemma. The simulation results in the two examples verify
that the proposed O-BPD fuzzy controller can provide a smoother and more reasonable
response for a bio-economic NDS to achieve convergence, such that biologically immature
and mature populations can adequately strike a balance with the harvest economy. It is
worth noting that a tradeoff between the different transient properties such as maximum
overshoot, settling time, and rising time can be conveniently achieved for the requirements
of different practical applications by adjusting the center and radius parameters of the
pole constraint. In the future, an extension to the proposed O-PBD fuzzy controller can
be developed with the aim of exploring issues such as time delay and disturbance, which
would further improve the applicability of the control method.
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