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Abstract: This paper presents a bi-level inverse robust economic dispatch optimization model
consisting of wind turbines and pumped storage hydropower (PSH). The inner level model aims to
minimize the total generation cost, while the outer level introduces the optimal inverse robust index
(OIRI) for wind power output based on the ideal perturbation constraints of the objective function.
The OIRI represents the maximum distance by which decision variables in the non-dominated frontier
can be perturbed. Compared to traditional methods for quantifying the worst-case sensitivity region
using polygons and ellipses, the OIRI can more accurately quantify parameter uncertainty. We
integrate the grid multi-objective bacterial colony chemotaxis algorithm and the bisection method to
solve the proposed model. The former is adopted to solve the inner level problem, while the latter is
used to calculate the OIRI. The proposed approach establishes the relationship between the maximum
forecast deviation and the minimum generation cost associated with each non-dominated solution in
the optimal load allocation. To demonstrate its economic viability and effectiveness, we simulate the
proposed approach using real power system operation data and conduct a comparative analysis.

Keywords: wind power; pumped storage hydropower; economic dispatch

1. Introduction

The global power industry has placed significant emphasis on net zero emission,
proposed during the 21st UN Climate Change Conference. The future is poised for a
substantial surge in the utilization of renewable energy for power generation. Nevertheless,
the inherent unpredictability of renewable resources poses a challenge, leading to potential
imbalances between supply and demand. To mitigate the impact of renewable energy
generators on the power system, the paramount focus is on advancing energy storage
systems. Pumped storage hydropower (PSH) has gained widespread popularity due to
its substantial capacity and cost-effectiveness [1]. Javed et al. [2] discussed the economic,
environmental, and technical aspects of solar–wind–PHS systems, affirming the positive
role of PHS in integrating renewable energy into the power systems. The integration of
PSH has increased the flexibility and efficiency of renewable power generation.

With the large-scale integration of wind power into the grids, the impact of wind
power’s uncertainty on the scheduling and control operations of the power system has
become increasingly pronounced [3]. Therefore, it is crucial to address the uncertainties as-
sociated with wind power when studying the coordinated scheduling of wind power–PSH
systems. Many researchers have explored the relationship between uncertainty and wind
power distribution using probabilistic models, including interval prediction [4], quantile
regression prediction [5], the scenario generation method [6], two-stage stochastic pro-
gramming [7], chance-constrained programming [8], and interval forecasting [9]. Interval
prediction, quantile regression prediction, and the scenario generation method primarily fo-
cus on characterizing uncertain variables. However, these methods face challenges, such as
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high computational complexity and the inability to guarantee computational accuracy and
security, limiting their further development. The last three methods rely on deterministic
probability distribution models and require significant sampling computations. However,
due to the impact of wind power uncertainty [10], these optimal dispatch models are com-
plex, high-dimensional, non-convex, and non-differentiable multi-objective optimization
problems. As a result, traditional methods often yield inaccurate density functions for wind
power output, limiting their practical application.

Robust optimization methods are widely used because they do not require spe-
cific probability distributions to deal with wind power uncertainty. Since the 1970s,
Soyster et al. [11] pioneered the use of linear robust optimization methods for solving
uncertain linear programming problems. To overcome the limitations of this approach,
a constraint protecting the nominal parameter level was introduced in the literature [12].
A maximum perturbation is added to the left side of the constraint equation, and an op-
timization dualization technique is used to integrate the equations, resulting in a linear
robust model. Jin et al. [13] provide a more comprehensive definition of robustness in
optimization problems. Robustness refers to the ability of the non-dominated solution set
to maintain certain performance characteristics when decision variables are perturbed. It is
often used to characterize the sensitivity of parameters to disturbances.

References [14,15] tackle supply and demand uncertainties by constructing a stochastic
robust optimization model. The Benders’ decomposition method is then employed to solve
this model. However, the solutions obtained through this method may fall outside of the
specified range during parameter perturbations. References [16,17] introduce a bi-level
interval robust scheduling optimization model that accounts for the unpredictable nature of
wind power. This model is utilized to formulate wind power scheduling plans for the next
few hours. By applying strong duality theory, the model is transformed into a quadratic
programming problem for the solution. However, interval robust optimization methods
tend to search for overly conservative solutions that meet the fluctuation constraints in the
objective functions. Ji et al. [18] improve upon conventional fuzzy scheduling optimization
problems by incorporating fuzzy numbers to account for the inherent uncertainty in wind
power ramping time. The methodology generates an uncertain set that encompasses
worst-case scenarios, presenting a scheduling model based on fuzzy robust optimization
methods. This multi-objective robust design based on fuzzy theory commonly employs
the weighted analysis method for formulating objective functions, introducing a notably
subjective element into the methodology. Gunawan et al. [19] propose a multi-objective
robust optimization method by introducing the concept of the worst-case sensitivity region
(WCSR). The WCSR’s radius acts as a robust indicator and is included in the constraints,
transforming the problem into a constrained multi-objective optimization. However, this
method has some limitations, such as the subjective construction of uncertainty and the lack
of capability to search for a globally optimal solution. To overcome these issues, we propose
a bi-level inverse robust optimization dispatch model for wind power–PSH complementary
systems. The main contributions of this paper are summarized as follows.

Firstly, this paper presents a novel approach for improving the integration of wind
power into the electricity grid while achieving economic efficiency. The proposed approach
is based on the characteristics of pumped storage hydropower stations and develops a bi-
level inverse robust economic dispatch optimization model that considers the uncertainties
of wind power and the participation of pumped storage hydropower stations in scheduling.
Secondly, the proposed model incorporates ideal disturbance constraints on the objective
function, which are based on decision makers’ preferences. We use hypersphere contraction
and expansion to explore decision variable points with the best robustness in the non-
dominated solution set. The OIRI is introduced to represent the maximum distance at which
decision variables in the non-dominated frontiers can be perturbed. It provides the worst-
case perturbation for each point in each dimension of the high-dimensional space, which
enhances the generating units’ robustness against disturbances and establishes the optimal
relationship between wind power integration and the objective function. Thirdly, we
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propose a novel approach combining the grid multi-objective bacterial colony chemotaxis
algorithm with the bisection method. The inner level problem is addressed by the grid
multi-objective bacterial colony chemotaxis algorithm, and the OIRI is calculated using
the bisection method. The effectiveness of the proposed model and algorithm is validated
through simulations using actual grid-connected data. This approach can be useful for
dispatchers in optimizing the schedule of wind power–PSH complementary systems.

2. Inverse Robust Optimization Preliminaries

This subsection briefly introduces the general bi-level inverse robust optimization
model. Inner level optimization aims to obtain superior decision vectors and feasible
solutions within the feasible domain. The outer level seeks to derive the maximum range of
robustness among the results obtained from the inner layer by imposing ideal disturbance
constraints. According to the conventional robust optimization model and the worst-case
sensitivity region, we have the following bi-level inverse robust model.

Outer level problem:

f ind{OIRI(x) = max∥x − x0∥2, f} (1)

s.t. f(x0) ∈ U(f(x), d) ∩ Φ (2)

d = f(x)− f(x0), u(f) = {d|d ∈ U(0, ε)}, d ∈ u(f) (3)

Inner level problem:
Minimize f = [ f1, f2, · · · , fm]

T (4)

gj(x), max
d∈u(f)

gj(x0) ≤ 0, j = 1, 2, . . . , J (5)

hk(x), max
d∈u(f)

hk(x0) = 0, k = 1, 2, . . . , K (6)

where x = [x1, x2, . . . , xn]
T is the n-dimensional decision vector and x0 is the decision

vector satisfying all constraints in the inner and outer levels. The optimal inverse robust
indicator OIRI will be defined in Definition 1. f is the m-dimensional objective function
vector; d denotes the ideal disturbance vector; ε = [ε1, ε2, . . . , εm]

T is the m-dimensional
vector consisting of ideal disturbance coefficients; and all elements are positive. U(0, ε)
represents the neighborhood of the zero point composed of all points with a distance less
than ε from the circle; U(·) is the closure of the neighborhood of U(·); Φ denotes the inner
decision vector space; gj(x)/hk(x) represent inequality/equality constraints, respectively;
J and K are the number of inequality constraints and equality constraints, respectively; and
m and n are the number of objective functions and decision variables, respectively.

The Pareto front of this model (1)–(6) is referred to as the inverse robust Pareto frontier.
The following definitions are given:

Definition 1. Assuming Ω is the feasible region of the inner level problem, for any x ∈ Ω and any
given ideal disturbance coefficients ε > 0, there exists a convex neighborhood of ∆max ⊂ Ω so that
for any x0 ∈ ∆max, y = f(x0) satisfies the inner and outer constraints. ∆max is referred to as the
optimal inverse robust indicator (OIRI) if and only if the following two conditions are met:

(1) The mapping function f satisfies f : ∆max 7−→ U(f(x), ε)
⋂

Φ .

(2) There is no region Λ that satisfies both Λ ⊂ Ω and ∆max ⊆ Λ, so that f : Λ 7−→ U(f(x), ε)
⋂

Φ .

Equation (2) indicates that when solving the outer level problem, it is necessary to
ensure that the objective function values of boundary points fall within the feasible domain
and the range of ideal disturbance constraints. The optimal inverse robust indicator
represents the maximum distance by which a decision vector x, satisfying Equations (2)–(4)
in the non-dominated frontier, can be perturbed outward.
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3. Bi-Level Inverse Robust Model for Wind Power–PSH Complementary Systems

The scheduling model developed in this section is a bi-level inverse robust optimiza-
tion model that takes into account thermal power plants, pumped storage hydropower
stations, and wind power. The model is structured as Equations (1)–(6) and considers
the decision makers’ expected deviation range from the total generation cost and forecast
results as ideal disturbance constraints. Additionally, the model defines the OIRI as the
maximum wind power fluctuation that the optimization results can tolerate. The inner
level of the model minimizes the total generation cost, while the outer level solves for the
OIRI and the corresponding total generation cost f, thus determining the Pareto frontier.

The objective function of the outer level problem is defined as

OIRI = max
T

∑
t=1

∥∥Pw
t − Pw0

t
∥∥

2 (7)

where Pw
t =

[
Pw

j,t

]
Nw×1

is the non-dominated decision vector of wind power obtained

from the inner level problem and Pw0
t =

[
Pw0

j,t

]
Nw×1

is the decision vector within U(Pw
t , ε).

A larger OIRI indicates greater robustness in the inner level optimization results for Pw
t ,

implying a stronger ability of the wind power generation plan to withstand fluctuations.
The total generation cost f is defined as

f =
T

∑
t=1

(
Nc

∑
i=1

Ci,t(Pi,t) +
Nw

∑
j=1

φj

((
Pw

j,t or Pw0
j,t

)
− Pprw

j,t

)2
+

Np

∑
k=1

[
SCk,t(hk,t) + ϕk

(
Pps

k,t − Pprps
k,t

)2
])

(8)

where T is the number of dispatch time intervals. Nc/Nw/Np represent the number of ther-
mal units, wind farms, and PSHs, respectively. Pw

j,t/Pprw
j,t denote the output power/forecasted

output power of wind farm j in the inner level at period t, respectively; Pw0
j,t represents the

output power of wind farm j in the outer level at period t; Pps
j,t /Pprps

j,t denote the output
power/forecasted output power of PSH j in the inner level at period t, respectively; and
the fuel cost Ci,t(Pi,t) of the thermal unit i can be expressed as a quadratic function in

relation to its output power Pi,t. φj

((
Pw

j,t or Pw0
j,t

)
, Pprw

j,t

)
denotes the penalty cost of wind

farm j deviating from the planned output at period t. φj/ϕk are the penalty coefficients.

SCk,t

(
Pps

j,t

)
is the sum of start-up and shut-down costs. It can be expressed as

SCk,t(hk,t) = hk,t(1 − hk,t−1)S
ps
k + hk,t−1(1 − hk,t)Dps

k (9)

where hk,t denotes the PSH’s working state, taking 1 for start and taking 0 for stop and
Sps

k,t/Dps
k,t are the start-up cost and shut-down cost of the PSH k.

As shown in (5) and (6), the constraints of the inner level are listed as follows.

(1) Power balance constraints:

Nc

∑
i=1

Pi,t +
Nw

∑
j=1

Pw
j,t +

Np

∑
k=1

Pps
k,t = Dt (10)

where Dt is the total power load.

(2) Generation limit constraints:
Pi ≤ Pi ≤ Pi (11)

Pw
j ≤ Pw

j ≤ Pw
j (12)

where Pi/Pi are the lower/upper limits of thermal unit i, respectively. Pw
j /Pw

j are the
lower/upper output limits of wind farm j, respectively.
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(3) Climbing constraints for thermal units:

−rpd
i,t · ∆T ≤ Pi,t − Pi,t−1 ≤ rpu

i,t · ∆T (13)

where rpd
i,t/rpu

i,t are the maximum upward/downward ramping rates, respectively.
∆T is the dispatch time interval.

(4) Spinning reserve constraints:

Nc
∑

i=1
hi,t

(
Pspin

i,t − Pi,t

)
+

Nk
∑

k=1
Pps

k,t ≥ SPup
t

Pspin
i,t = hi,t−1 · min

(
hi,t−1Pi,t, Pi,t−1 + rpu

i,t · ∆T
)

SPup
t = βc

Nc
∑

i=1
Pi,t + βw

Nw
∑

j=1
Pw

j,t

(14)



Nc
∑

i=1
hi,t

(
Pi,t − Pspin

i,t

)
+

Nk
∑

k=1
Pps

k,t ≥ SPdn
t

Pspin
i,t = hi,t−1 · max

(
hi,t−1Pi,t, Pi,t−1 − rpd

i,t · ∆T
)

SPdn
t = βw

Nw
∑

j=1
Pw

j,t

(15)

where hi,t is the binary variable and denotes the working state of thermal unit i at

period t; Pspin
i,t /Pspin

i,t are the minimum/maximum feasible outputs of thermal unit i at
period t; and SPup

t /SPdn
t are the upward/downward requirements of power systems

at period t. βc/βw are the spinning reserve rates of the thermal unit and the wind farm.

(5) Transmission constraints:

TPl ≤
Nc

∑
i=1

TFl,iPi,t +
Nw

∑
j=1

TFl,jPw
j,t +

Np

∑
k=1

TFl,kPps
k,t ≤ TPl (16)

where TPl/TPl are the lower/upper power flow limits of line l and TFl,i denotes the
power transfer distribution factors from unit i to line l.

(6) Minimum on and off time constraints:
(

Ton
i,t−1 − Zon

i

)
(hi,t−1 − hi,t) ≥ 0(

To f f
i,t−1 − Zo f f

i

)
(hi,t − hi,t−1) ≥ 0

(17)

where Ton
i,t−1/Toff

i,t−1 are the start-up/shut-down times of thermal unit i at period t − 1,

respectively and Mon
i /Moff

i represent the minimum start-up/shut-down times of the
thermal power unit i.

(7) PSH’s capacity constraints:

In actual operation, PSHs are required to satisfy constraints regarding reservoir water
balance. We adopt a daily energy balance mode wherein the electricity consumed during
pumping and the electricity generated during generation are equal throughout the day,
thus ensuring that the reservoir water level remains relatively unchanged at the beginning
and end of the day.

−ηk

T

∑
t=1

Np

∑
k=1

Pps
k,t =

T

∑
t=1

Np

∑
k=1

Pps
k,t (18)

where ηk is the energy conversion efficiency of PSH k.
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(8) Start–stop frequency constraints:

T

∑
t=1

∣∣hk,t − hk,t−1
∣∣ ≤ THk (19)

where THk is the maximum daily start–stop times of PSH k. Frequent starts and stops
can accelerate the deterioration of the generator, leading to increased maintenance
requirements, higher repair costs, and a potentially shorter operational lifespan.
Equation (19) refers to limitations imposed on how frequently the PSH can be start
up or shut down within a given period. When the PSH k starts up or shuts down,∣∣hk,t − hk,t−1

∣∣ is equal to 1. Summing up
∣∣hk,t − hk,t−1

∣∣ over an operating cycle T yields
the total number of start-ups and shut-downs of PSH k.

(9) Ideal perturbation constraint: ∥∥f(Pw
t )− f

(
Pw0

t
)∥∥

2 ≤ ε (20)

Equation (20) ensures that the outer level optimization satisfies the ideal disturbance
constraints. In this section, we present a dispatch model that utilizes bi-level inverse robust
optimization theory. This model provides the optimal load allocations for conventional
thermal power units, wind farms, and PSHs. Additionally, it will identify the maximum
insensitivity regions relative to each optimal allocation point when there are uncertain
parameters in the system undergoing perturbations.

4. Solution Procedure

The model developed in this paper has an inherent coupling between the inner and
outer layers. Therefore, a singular intelligent optimization algorithm is not enough for
obtaining effective solutions. To address the inner level optimization problem, the grid
multi-objective bacterial colony chemotaxis algorithm is employed.

4.1. Brief Introduction of the Multi-Objective Bacterial Colony Chemotaxis Algorithm

The role of the multi-objective bacterial colony chemotaxis algorithm [20,21] is to
solve the inner level optimization problem. The trajectory of a bacterium comprises
consecutive linear paths interspersed with instantaneous changes in direction, with each
path defined by its speed, direction, and duration. All paths are characterized by a uniform,
constant speed. Upon changing direction, a bacterium selects a new trajectory based
on a probability distribution that exhibits azimuthal symmetry relative to the preceding
direction. The angle between consecutive trajectories follows a probability distribution,
while the duration of each trajectory is determined by an exponentially declining probability
distribution. Notably, both the angle and duration probability distributions are unaffected
by the parameters of the preceding trajectory.

Here, x is used to represent decision variables Pi,t and Pps
j,t . Before applying the multi-

objective bacterial colony chemotaxis algorithm, all constraints are added as penalty terms
to the objective function. Figure 1 shows the flow chart of the multi-objective bacterial
colony chemotaxis algorithm, which can be briefly explained as follows.
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Figure 1. Flow chart of the multi-objective bacterial colony chemotaxis algorithm.

Step 1: Initialize bacterial positions. Generate Nba bacteria randomly in this model.
The velocity v is assumed to be a scalar constant value.

Step 2: Compute the random duration τ that follows an exponential probability
density function:

P(X = τ) =
1
γ

e−τ/γ (21)

γ =

{
γ0 if xpre ≻ xcur

γ0

(
1 + b ∗ min

∣∣∣ fmpr
lpr

∣∣∣) if xpre ≺ xcur
(22)

γ0 = ξ0.03 · 10−1.73 b = γ0 ·
(

γ−1.54
0 · 100.6

)
(23)

where γ0 and b are the minimal mean time and dimensionless parameter, respectively. They
can be calculated through (23) according to reference [21]. ξ is the calculation precision.
fipr, i = 1, 2, . . . , m is the difference between the actual and the previous function values.
lpr is the vector connecting the previous and the actual positions in the parameter space.
xpre and xcur are the previous and current locations of bacteria.

The position and motion of bacteria is defined by a radius r0 and n − 1 angles
θ = {θ1, θ2, . . . , θn−1}.

x1 = r0∏n−1
s=1 cos(θs) , xi = r0 sin(θi−1)∏n−1

s=1 cos(θs), i = 2, 3, . . . , n (24)

Step 3: Calculate the new direction. The angle θi between the previous and new
directions follows a Gaussian distribution, governing both left and right turns, respectively.

P(Xi = θi, vi = µi) =
1

σi
√

2π
exp

[
− (θi − vi)

2σ2
i

]2

(25)

P(Xi = θi, vi = −µi) =
1

σi
√

2π
exp

[
− (θi − vi)

2σ2
i

]2

(26)

where θi ∈ [0, 180◦]. The expectation value µi, variance σi, and correlation time τC are
determined by the formulation:

µi = 62◦
(
1 − exp

(
−τCτpr

))
σi = 26◦

(
1 − exp

(
−τCτpr

))
(27)
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where τpr is the duration of the previous step.
Step 4: Calculate the new locations xnew1 and xnew2. The new locations are calculated

through the following equations:

xnew1 = xpre + v · τ (28)

xnew2 = xpre − 2 × U(0, 1)×
(
xpre − xcen

)
(29)

xcen =
1

Nba

Nba

∑
i=1

xi (30)

where U(0, 1) is a random number governed by the uniform distribution.
Step 5: Determine the new location xnew. By comparing xnew1 with xnew2, all bacteria

choose the better one as their new locations. Terminate iteration when the change in the
objective function value is less than the target precision ξ; otherwise, proceed to Step 2.

4.2. Solution Method for the Bi-Level Inverse Robust Model

To calculate the OIRI for the outer level optimization problem, the hypersphere can
be used to quantify maximum uncertainty. This involves partitioning the hyperspherical
surface to facilitate the outward expansion of each small arc face. This results in a more
accurate irregular super-enclosed surface characterized by the radial distance r and polar
angle θ = [θ1, θ2, . . . , θn−1]. Its maximum radius corresponds to the OIRI. Applying the
boundary principle, we replace the discussion of changes across the entire domain with an
examination of variations in domain boundary points.

Let x be equivalent to Pw
t . Assume x is a non-dominated solution obtained from

the inner level problem. Consider a spherical neighborhood, denoted as O(x), around
x = [x1, x2, . . . , xn], with a radius denoted as r0. Every point on the boundary of O(x),
denoted as ∂O(x), can be expressed using parametric equations. Let x0 = [x01, x02, . . . , x0n]
and x0 ∈ ∂O(x), so we have

x01 = x1 + r0 cos θ1
x02 = x2 + r0 sin θ1 cos θ2
· · ·
x0n = xn + r0 sin θ1 sin θ2 · · · cos θn−1

(31)

where θ1, θ2, . . . , θn−2 ∈ [0, π], θn−1 ∈ [0, 2π]. We adopt a uniform sampling method
to sample points on the boundary ∂O(x). The boundary ∂O(x) is divided into
M parts, where M =λ1·λ2, . . . , λn−1 (λi ∈ N+, i = 1, 2, . . . , n − 1). Define a set B ={

x0 = xq1q2 ...qn−1

∣∣1 ≤ qi ≤ λi, qi ∈ N+, i = 1,2, ..,n − 1
}

, so we have

xq1q2 ...qn−1 =


x1 + r0 cos

(
π

λn−1
η1

)
,

x2 + r0 sin
(

π
λn−1

η1

)
cos
(

π
λn−2

η2

)
, . . . ,

xn + r0 sin
(

π
λn−1

η1

)
. . . cos

(
π
λ2

ηn−2

)
cos
(

2π
λ1

ηn−1

)


T

(32)

After defining

D(x) = [∥ f1(x)− f1(x0)∥2, ∥ f2(x)− f2(x0)∥2, . . . , ∥ fm(x)− fm(x0)∥2]
T (33)

the bisection method can be applied to approximate a larger hyperregion, ensuring that
when decision variables are perturbed within this region, the function values are con-
strained within a certain range. In other words, adjusting each point x0 ∈ B ensures that
x0 satisfies ∥D(x0)∥∞ ∈ [ε − δε, ε + δε], and δε is a predefined convergence accuracy. The
specific steps of the bisection method are as follows.

Step 1: Initializing set B.
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(1) If there is a point x0 ∈ B that satisfies ∥D(x0)∥∞ ∈ [ε − δε, ε + δε], then the values
of f(x0) and ⟨r0, θ⟩ are stored, and the process proceeds to Step 2.

(2) If there are two points x1, x2 ∈ B and x1 ̸= x2 that satisfy ∥D(x1)∥∞ < ε − δε and
∥D(x2)∥∞ > ε + δε, the process proceeds to Step 2. Otherwise, adjust the radial radius
through the bisection method.

(3) If for any x0 ∈ B that satisfies ∥D(x1)∥∞ > ε − δε, then r1 = 2r0 and r2 = r0 +
0.5(r1 − r0). If for any x0 ∈ B that satisfies ∥D(x2)∥∞ < ε + δε, then r1 = 0.5r0 and
r2 = r0 + 0.5(r1 − r0). Calculate the size of ∥D(x0)∥∞ in the set B based on radial radius r1
and r2.

Step 2: Update the points in set B.
Define B1 = {x0|∥D(x0)∥∞ < ε − δε or ∥D(x0)∥∞ > ε + δε}. As in the procedure in

Step 1, scale the radial radius of all x0 ∈ B1 until ∥D(x0)∥∞ ∈ [ε − δε, ε + δε] is satisfied.
Record the angular and radial information of x0.

Step 3: Calculate OIRI = maxx0∈Br0 and all angles and radial directions ⟨r0, θ⟩.
In traditional multi-objective optimization models, points within the decision space

often exhibit better robustness, whereas feasible solutions near the boundaries of the
decision space tend to have poorer robustness. When non-dominated solutions are located
on or near the boundary, the perturbation of objective function values cannot extend beyond
the super-neighborhood, and the corresponding perturbation of decision space vectors
cannot expand outward. Here, an adaptive reduction of perturbation space is employed,
limiting the range of perturbations of decision vectors within the feasible domain. This
approach avoids redundant evaluations and reduces computational burden.

We integrate the grid multi-objective bacterial colony chemotaxis algorithm and the
bisection method to solve the proposed model. Figure 2 illustrates the calculation process.
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Step 1: System parameter initialization. It involves setting parameters, such as calcula-
tion precision, bacteria migration rate, initial positions of the bacterial colony, ideal error
constraints, error precision, and the number of boundary samples, among others.

Step 2: Update the speed and location of bacteria. According to the conventional bac-
terial colony chemotaxis algorithm [20,21], a bacterium will make a decision by comparing
xnew1 with xnew2 and choose the better one as its new location xnew.
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Step 3: Update the external Pareto set and perform grid processing. Guide the mutation
of bacteria using non-dominance-based variation. Select non-dominated solutions from the
new generation population and incorporate them into the Pareto set while simultaneously
removing inferior solutions from the Pareto set.

Step 4: If the OIRI has been updated, proceed to Step 5. Otherwise, go to Step 6.
Step 5: Terminate the program if the convergence accuracy or the maximum number

of iterations is reached. Otherwise, go back to Step 2.
Step 6: Save the Pareto frontier and update the radius of the bacteria’s neighborhood.
Step 7: Divide neighborhood boundaries and record point set B.
Step 8: If all points in set B have converged, go to Step 9. Otherwise, go to Step 6.
Step 9: Update the OIRI and identify points in B as new bacteria. Define the crowd

distance of xnew1/xnew2 as CD1/CD2.
The OIRI and f have been defined by (7) and (8). The new location can be calculated

as follows:
(1) If two out of the three conditions f(xnew1) ≺ f(xnew2), OIRI(xnew1) > OIRI(xnew2),

and CD1 > CD2 are satisfied, then let xnew = xnew1;
(2) If two out of the three conditions f(xnew1) ≻ f(xnew2), OIRI(xnew1) < OIRI(xnew2),

and CD1 < CD2 are satisfied, then let xnew = xnew2;
(3) Otherwise, maintain the original position unchanged, xnew = x.
Go to Step 2.

5. Case Study
5.1. Modified 42-Bus Power System

In the modified 42-bus power system, the participating generating units include eight
thermal power plants consisting of twenty-two units with capacities of 540 MW (four units),
315 MW (five units), 300 MW (five units), 270 MW (three units), and 180 MW (five units),
with a total installed capacity of 6945 MW. There are two wind farms with a total capacity
of 1080 MW, and the system wind power penetration rate ranges from approximately 12%
to 20%. There are also two pumped storage power stations, each with a capacity of 270 MW.
The maximum and minimum reservoir capacities are 2.0015 × 106 m3 and 4.8388 × 105 m3,
respectively. The network topology is illustrated in Figure 3. The numbers in the Figure 3
represent the bus numbers.
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Figure 3. Schematic diagram of network topology.

The ramping rates for thermal power units are 5% of their rated capacity. The start-up
and shut-down cost for each PSH is USD 585. The penalty factor for deviation from the
planned output for PSHs is 0.5. The fuel cost Ci,t(Pi,t) of the thermal unit i can be expressed
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as a quadratic function, and its cost coefficients for thermal power units are provided in
Table 1.

Table 1. Cost coefficient of thermal power units.

Rated Power/MW Pmax/MW Pmin/MW ai bi ci

540 540 270 0.00037 18.315 807.11
315 315 157.5 0.00051 17.435 843.80
297 297 148.5 0.00053 19.241 710.68
270 270 135 0.00063 22.789 521.00
180 180 90 0.00066 22.181 634.71

In Table 1, the units for ai, bi, and ci are USD/MW2h, USD/MWh, and USD/h,
respectively. Based on the pre-scheduled plan, one PSH will pump water at its rated
power during the low-load period, which is from 00:00 to 06:30. Additionally, during the
high-demand periods from 09:00 to 11:45 and 16:15 to 18:30, one PSH produces electricity
at rated power. The operational time horizon is 24 h, and it is divided into 96 periods, with
each period lasting 15 min.

5.2. Inverse Robust Optimization Results Analysis

The daily power load and wind power output are depicted in Figures 4 and 5, respec-
tively. It is observed that the predicted wind power exceeds the actual wind power, leading
to wind curtailment during practical operation. The primary reason for wind curtailment
is that during certain periods, such as from 00:00 to 06:30, the load demand is relatively
low, and the power systems’ capacity to accommodate wind power is insufficient.
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Figure 4. The predicted power load and actual power load.

Due to the requirement for PSHs to operate at rated power during pumping mode,
only one or two PSHs can be in operation from 00:00 to 06:30. In light of these constraints,
two scenarios are considered, and the inverse robust optimization approach is employed to
find optimal solutions for them.

Scenario 1: Schedule one PSH to operate at full capacity during the specified time
period (00:00 to 06:30). During other time intervals, the PSH can transition to power
generation mode based on the specific optimization conditions.

Scenario 2: Flexibly schedule one or two PSHs to operate at full capacity based on the
actual optimization conditions during the specified time period (00:00 to 06:30). During
other time intervals, the PSHs can transition to power generation mode based on the
specific optimization conditions.
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As shown in Figures 6 and 7, a comparison is provided between Scenario 1 and
Scenario 2 in terms of the total generation cost and the OIRI with the ideal disturbance
coefficients ε = 0.05 and ε = 0.10, respectively. Each set includes 50 Pareto optimal
solutions. When the ideal disturbance coefficient is set to 0.05, the non-dominated front
obtained by Scenario 2 outperforms that of Scenario 1. It indicates that when the ideal
disturbance coefficient is set to 0.10, its relatively loose constraints on the objective function
enhance the solution set’s robustness, thereby validating the rationality of the inverse
robust optimization model proposed in this paper. The following analysis focuses solely on
cases where the ideal disturbance coefficient is restricted to 0.10.
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In Table 2, the maximum wind power fluctuation that the system can withstand is
OIRI (max), and the minimum total power generation cost is f (min). The results show the
constraint relationships between the wind power accommodation and the total generation
cost. In Scenario 1, when the ideal disturbance coefficient is 0.1, the wind power can
be completely consumed as long as the error of wind power prediction is lower than
17.48%. The total generation cost under the maximum wind power forecasting deviation is
USD 247.82 × 104. In Scenario 2, wind power can be fully consumed when its prediction
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deviation is within 20.01%. Additionally, at the maximum wind power prediction deviation,
the total generation cost is USD 232.59 × 104.
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Table 2. Comparison of optimum of OIRI and cost.

OIRI (max) f /104 USD OIRI f (min)/104 USD

Scenario 1 17.48% 247.82 0.018% 164.09
Scenario 2 20.01% 232.59 0.027% 147.20

The results of the optimization indicate that the maximum wind power prediction error
that the system can tolerate can be determined based on the OIRI value, when operators
have specific requirements for the total operating cost. If the wind power prediction error
is large and the requirement for the total cost is low, the system may not be able to fully
integrate wind power. For instance, when the wind prediction error is 0.15, both Scenario
1 and Scenario 2 require operating costs of around USD 225 × 104 to achieve complete
wind power absorption. On the other hand, lower operating costs can be achieved when
the wind power prediction deviation is smaller. If the wind power prediction deviation
is 0.05, the minimum operating cost is USD 180 × 104. It is clear that if the grid follows
Scenario 2 in scheduling, it will achieve complete integration of wind power with lower
overall generation costs.

Figure 8 illustrates the daily working state curves of the PSHs under both scenarios. It
is evident that the proposed inverse robust scheduling optimization strategy ensures the
complete consumption of wind power. Additionally, Scenario 2 is more cost-effective than
Scenario 1. The primary reason is that in Scenario 2, the PSHs absorb more wind power
during the pumping stage, providing more flexibility in selecting output plans during the
power generation periods.
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5.3. Indictor Comparison Analysis

The WCSR is often used to represent the maximum hypersphere radius that ensures
the robustness of the non-dominated solution set. The comparison between WCSR and
OIRI is employed below to illustrate that compared to conventional interval quantification
methods for robustness, OIRI can achieve better economy when addressing optimization
scheduling problems affected by wind power uncertainties. WCSR can be calculated as
follows:

WCSR = min
T

∑
t=1

∥∥Pw
t − Pw0

t
∥∥

2 (34)

Based on the data presented in Table 3, the OIRI method achieves full integration of
wind power regardless of whether Scheme 1 or Scheme 2 is adopted. When the WCSR
method is employed under Scheme 1, full integration of wind power cannot be achieved,
and the total generation costs are higher. Under Scheme 2, although the WCSR method can
fully integrate wind power, its total generation costs are higher compared to the results
obtained using the OIRI method. Traditional scheduling methods do not take into account
uncertainty and usually need less computation time compared to the algorithm considered
in OIRI. However, the proposed algorithm has the ability to identify schedules that are
lower in cost and can integrate more wind power. Moreover, its computation time is less
than 5 min, which is within an acceptable range.

Table 3. Comparison between OIRI and WCSR methods.

Classification Conventional Method
Scenario 1 Scenario 2

OIRI WCSR OIRI WCSR

the total cost/104 USD 276.41 225.60 229.04 192.11 203.91
coal consumption cost/104 USD 233.15 193.74 220.62 185.94 197.45

wind power penalty cost/104 USD 31.94 0 5.04 0 0
pumped storage start–stop cost/104 USD 11.32 2.9 2.9 5.76 5.76

pumped storage penalty cost/104 USD 0 0.29 0.48 0.41 0.69
wind curtailment/MWh 4487.16 0 708.45 0 0

CPU time (s) 153.1 219.9 253.9 228.4 261.7

5.4. Large-Scale System Testing

The proposed method was compared with some commonly used heuristic methods,
such as the non-dominated sorting genetic algorithm (NSGA) [22], multi-objective particle
swarm optimization (MOPSO) [23], niched Pareto genetic algorithm (NPGA) [24], and
strength Pareto evolutionary algorithm (SPEA) [25]. These methods have been successfully
applied to optimize economic dispatch. Their performances were evaluated by testing
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a modified IEEE 118-bus system whose detailed parameters are available online at http:
//motor.ece.iit.edu/data (accessed on 1 January 2023). The system consists of 118 buses,
33 generators, and 186 transmission lines. Based on the original IEEE 118-bus system,
two wind farms and two pumped storage power stations were added at bus 12 and 61,
respectively. Each pumped storage power station has a capacity of 270 MW. The forecasted
wind power can be found in reference [14].

The results of the simulation are summarized in Table 4. To ensure a fair comparison
between the different approaches, ten optimization runs were conducted, and the average
values are shown. It was found that the proposed method has the lowest total cost and
the shortest computation time. All of the methods tested were able to fully integrate wind
power using PSHs and the OIRI index. Compared to the previous 42-bus test system, the
number of thermal units in the modified IEEE 118-bus system increased from 22 to 33,
and finding the optimal economic dispatch plan is a critical factor in reducing costs. The
proposed algorithms were able to find better scheduling schemes for both thermal units
and PSHs when wind power was fully integrated. This resulted in reduced coal generation
costs of thermal units and start–stop costs of PSHs.

Table 4. Comparison between different heuristic methods and OIRI index.

Proposed Method NSGA MOPSO NPGA SPEA

the total cost/104 USD 309.21 352.62 316.19 316.42 315.81
coal consumption cost/104 USD 299.28 319.24 306.03 306.21 306.61

wind power penalty cost/104 USD 0 0 0 0 0
pumped storage start–stop cost/104 USD 9.27 31.92 8.97 8.95 8.97

pumped storage penalty cost/104 USD 0.66 1.46 1.19 1.26 0.23
wind curtailment/MWh 0 0 0 0 0

CPU time (s) 542.4 549.8 590.7 560.1 571.3

6. Conclusions

To integrate wind power efficiently and minimize electricity generation costs, we
propose a bi-level inverse robust wind power–PSHs optimization scheduling model. The
model is solved using a combination of the grid multi-objective bacterial colony chemotaxis
algorithm and the bisection method. This paper introduces an inverse robust indicator,
which not only addresses the limitations of pumped storage in mitigating wind power
fluctuations but also establishes the relationship between the maximum forecast deviation
and the minimum generation cost associated with each non-dominated solution in the
optimal load allocation. Case studies on operational data from a specific regional power grid
validate the proposed method. Two optimization scenarios are developed and compared
with the actual operation data. The case studies indicate that optimizing the pumping and
generation operation of PSHs addresses the limitations of accommodating wind power.
The proposed method enhances both economic efficiency and wind power consumption. It
provides a clear relationship between the objective function and decision vectors, offering
valuable insights for developing robust scheduling plans.
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Nomenclature

J Number of inequality constraints
K Number of equality constraints
T Number of dispatch time intervals
∆T Dispatch time interval
ε m-dimensional vector consisting of ideal disturbance coefficients
Nc Number of thermal units
Nw Number of wind farms
Np Number of pumped storage hydropower
Pw

j,t Output power of wind farm j in the inner level at period t
Pprw

j,t Forecasted power of wind farm j in the inner level at period t
Pw0

j,t Output power of wind farm j in the outer level at period t
Pps

j,t Output power of PSH j in the inner level at period t
Pprps

j,t Forecasted power of PSH j in the inner level at period t
φj/ϕk Penalty coefficients
hi,t Binary variable; it equals 1/0 if equipment i is ON/OFF at period t
Sps

k,t/Dps
k,t Start-up/shut-down cost of the PSH k

Pi/Pi Lower/upper limits of thermal unit i
Pw

j /Pw
j Lower/upper output limits of wind farm j

rpd
i,t/rpu

i,t Maximum upward/downward ramping rates of thermal unit i

Pspin
i,t /Pspin

i,t Minimum/maximum feasible outputs of thermal unit i at period t
SPup

t /SPdn
t Upward/downward requirement of power systems at period t

βc/βw Spinning reserve rates of thermal unit and wind farm
TPl/TPl Lower/upper power flow limits of line l
TFl,i Power transfer distribution factors from unit i to line l
Ton

i,t−1/Toff
i,t−1 Start-up/shut-down time of thermal unit i at period t−1

Mon
i /Moff

i Minimum start-up/shut-down time of the thermal power unit i
ηk Energy conversion efficiency of PSH k
THk Maximum daily start–stop times of PSH k
δε Predefined convergence accuracy
Ci,t
(

Pi,t
)

Cost function of thermal unit i at period t
SCk,t

(
hi,t
)

Sum of start-up and shut-down costs
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