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Abstract: In order to avoid potential personnel and financial losses, the evaluation of pre-drilling
safety is of great importance in oil and gas exploration and development. This paper presents a
method of evaluating pre-drilling safety through combining the Analytic Hierarchy Process (AHP)
with the Alternating Condition Expectation (ACE) method. An indicator system with a 9-3-1 structure
was established, incorporating various unrestricted variables to describe the technical factor. Addi-
tionally, nine membership functions and weights were determined in order to build the AHP model
by connecting the independent variables in the basic layer to dependent variables in the middle layer.
Four transformed functions were also formulated to construct the ACE model by linking the middle
variables to the pre-drilling safety value in the final layer. A total of 28 sets of on-site drilling data
from three oilfields were collected for the establishment and verification of the AHP-ACE model.
Average absolute error (AAE) and average absolute relative error (AARE) of the model to predict the
training data are 0.03 and 4.29%, respectively, whereas the AAE and AARE for verification samples
are 0.03 and 4.51%, respectively. The sensitivity ranking of the three potential variables is as follows:
human factor exhibits the highest degree of sensitivity, followed by natural factor and technical factor,
in descending order. The AHP-ACE model for pre-drilling safety assessment faces limitations in
universal applicability and scope, particularly in real-time drilling activities. However, its potential
for improvement lies in integrating insights from past operations and expanding the dataset to
enhance accuracy and broaden safety assessment coverage. This method is not limited by blocks,
which is of great significance to ensure drilling safety.

Keywords: analytic hierarchy process; alternating condition expectation; quantitative analysis; safety
evaluation; drilling engineering

1. Introduction

Drilling engineering is very important for the development of underground fluid
resources, such as oil, natural gas and gas hydrates, and is a systemic engineering consisting
of a long process, complex technology and multiple procedures. As oil and gas exploration
expands to unconventional and more complicated areas, such as shale gas, shale oil, deep
coal mines and hot dry rocks, the risk of drilling safety accidents is on the rise [1,2]. If such
accidents occur, they may result in serious losses, including personal injury, economic
losses and environmental pollution [3,4]. Thus, it is paramount to evaluate the pre-drilling
safety level, identify unsafe factors, prevent accidents and ensure the effective development
of underground resources [5].
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Drilling-related underlying accidents, such as blowouts, lost circulation, sticking, fish
and wellbore instability, can be attributed to several causes, including unexpected geo-
logic variances, improperly executed procedures and unadaptable equipment [5–8]. To
evaluate drilling safety, two steps are usually employed. Firstly, samples are acquired,
and an indicator system is constructed. Secondly, a safety evaluation model is established,
and risk is evaluated. Numerous scholars have conducted research into specific drilling
risk assessment. Mirderikvand et al. [9] proposed a well barrier indicator system, which
identifies policymaking, operational, personal and mechanical factors, to evaluate the
probability of blowout accidents using a DANP method. Caia et al. [10] estimated the
occurrence probability of blowout events by combining Dynamic Event Trees and Deci-
sion Trees. Liang et al. [11] proposed a fuzzy multi-level algorithm based on a Support
Vector Regression Machine (SVR) for predicting drilling leakage events by taking into
account 12 influencing factors. The occurrence probability of leakage events was further
evaluated by establishing an integrated Decision Making Trial and Evaluation Laboratory
(DEMATEL)-Bayesian Network (BN) method [12,13]. The other petroleum drilling risk
assessments such as equipment risk, managed safety accident and operating safety events
were studied by establishing indicator systems and evaluation methods [14–17].

Drilling safety accidents are not merely a sequence of isolated safety events, but rather
a complex and systemic process. On the one hand, a certain type of safety accident may be
caused by a variety of factors, such as abnormal pressure fluctuations, intricate geological
structures or improper implementation of operations. On the other hand, an unforeseen
event may lead to a number of drilling accidents, for instance, improper operation of the
drilling rig may result in equipment damage, personnel injury, kicks or leakage. The key
to reducing drilling accidents lies in the formulation of a standardized and reasonable
drilling plan and workflow. A comprehensive evaluation of drilling safety is the foundation
for creating an effective drilling plan. To this end, several approaches have been utilized
to evaluate the pre-drilling safety level, including Analytic Hierarchy Process (AHP),
Fuzzy Evaluation, Rough Set Theory, Artificial Neural Network (ANN), Bayesian Network,
Machine Learning and Deep-Learning Method [3,4,7,18–22]. Of these methods, AHP is the
basis for constructing an indicator system and is used to connect directly observed factors
(e.g., formation type, temperature and pressure) to a pre-drilling safety level. However, the
single AHP method requires a priori assumption of the function forms (membership
function) relating observed variables and drilling safety. The improper use of membership
functions between the independent and dependent variables may yield incorrect evaluation
of the drilling safety level. Therefore, the AHP method combined with a data-driven model
is usually used to evaluate the drilling safety level. The alternating condition expectation
(ACE) method is a typical data-driven method for multivariate nonparametric regression
and has been used widely since it was proposed in 1985 [23–26]. In our previous study [27],
an AHP-ACE model with a 12-4-1 structure was established to quantitatively estimate
the drilling safety. However, the indicator system of the previous model was established
on the basis of one certain oilfield, which contains several restricted variables, including
bit pressure, drilling rate and drilling fluid density. It is widely acknowledged that the
optimal values of those restricted variables are different with in oil fields, resulting in an
unapplicable utilization of the previous AHP-ACE model in other oilfields. In order to
broaden the application of the AHP-ACE method to estimate the pre-drilling safety level,
the indicator system will be further optimized.

In this paper, several restricted variables (e.g., drilling optimization number and geo-
logical orientation number) are adopted to establish the indicator system and an improved
the AHP-ACE model with a 9-3-1 structure is established to quantitatively evaluate the
drilling safety. Firstly, the basis of the AHP-ACE method is introduced. Then, the AHP-
ACE model is established on the basis of 22 groups of data collected from three oil fields.
Finally, the validity and the defects of the proposed model are discussed.
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2. Methodology

This section primarily introduces the indicator system of the safety prediction model,
presents the principles of the Analytic Hierarchy Process (AHP) and Aggregate Constraint
Evaluation (ACE) models and organizes and analyzes the data collected from three oil-fields.

2.1. Indicator System and AHP Method

The Analytic Hierarchy Process (AHP) is a systemic analytical method that integrates
qualitative analysis and quantitative calculations to derive index weights for multi-layered and
multifaceted evaluation problems. This methodology enables the transformation of complex
and qualitative issues into quantifiable parameters. The AHP method primarily involves
three main steps: identification of independent variables or key control factors, construction
of a discriminant matrix, and determination of weights and membership functions. It has
been widely used to build relationship between independent and dependent variables since
firstly proposed by Satty [27,28]. Therefore, it is selected to establish relationship between
the observed variables and the potential variables of the indicator system for pre-drilling
safety evaluation. The framework of the indicator system is shown in Figure 1. It indicates
that the basic layer variables consist of nine observed parameters including A1-stratum type,
A2-stratum pressure, A3-stratum temperature, A4-sulfurous gas, B5-adjacent well number, B6-
drilling optimization, B7-geological orientation, C8-safe construction and C9-annual training.
In comparison to the previously published research in the literature [27], the restrained
variables (e.g., bit pressure, drilling rate and drilling fluid density) are swapped out for
unrestrained variables (e.g., adjacent well number, B6-drilling optimization, B7-geological
orientation). These unrestrained variables have a consistent impact on the pre-drilling safety
level. As an example, the value of the drilling orientation denotes the number of times the
geological oriented technology has been applied by the drilling contractor before drilling
the target well. The higher the drilling orientation value, the better the drilling safety can be
assured, a principle which is applicable to different oil fields.
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Figure 1. The structure of the indicator system for drilling safety assessment.

The second layer variables contain three potential factors, including natural factor,
technological factor and human factor. The weight and membership function of each
observed variable is determined by using the AHP method. The principle of the AHP
method has been presented in detail in our previous study [27].

2.2. ACE Method

When the relationship between the independent variable and the dependent variable
is nonlinear and unknown in real space, those independent and dependent variables can be
transformed into a virtual space according to the ACE method, and where those two types
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of variables form a linear relationship, their relationship in real space can be determined by
several inverse transformations.

The key to the ACE method is to transform the variables in the actual space into a
virtual space, at which a linear regression between the pseudo-dependent and independent
variables is produced [24]. The formulation of the ACE model can be expressed as:

θ(y) = α+
m

∑
i = 1

φi(xi) + ε (1)

where φi(·) and θ(·) are the functions of pseudo-independent and dependent variables, re-
spectively. A is a constant value, and ε is an error. m represents the number of independent
parameters.

In the ACE model, the primary problem of relating dependent variable with indepen-
dent variables is transformed to establish several functions φi(·) and θ(·). The optimization
aim is to minimize the variance ε2(·) of a linear regression between the pseudo dependent
and independent variables [24,26]. The ε2(·) is formulated as:

ε2(θ,φ1, . . . .φm) = E


[
θ(y)−

m

∑
i = 1

φi(xi)

]2
 (2)

With the constraints: E[θ2(y)] = 1, E[θ(y)] = E[φ1(x1)] = ··· =E[φn(xn)] = 0.
In order to minimize the variance ε2(·), a series of minimizations of univariate function

are conducted followed as:

φi(xi) = E

[
θ(y)−

m

∑
j ̸=1

φj
(
xj
)∣∣∣∣∣xi

]
(3)

θ(y) =
E

[
m

∑
i = 1

φi(xi)

∣∣∣∣∣y
]
/
∥∥∥∥∥E

[
m

∑
i = 1

φi(xi)

∣∣∣∣∣y
]∥∥∥∥∥ (4)

The optimal transformations φi(xi) and θ(y) generated from Equations (3) and (4) are
referred to φi

∗(xi) and θ∗(y), which can be expressed as:

θ∗(y) =
m

∑
i = 1

φ∗
i (xi) + ε∗ (5)

where ε* is the error in the virtual space and hypothetically follow a normal distribution
with zero mean.

2.3. AHP-ACE Model

The AHP method is simple for analyzing independent parameters and constructing an
indicator system. However, this method depends on empirical formulas, and the prediction
accuracy is poor. The ACE method is a data-driven model which can improve the prediction
accuracy of the model. Therefore, the AHP-ACE method is adopted in this research.

The general architecture of the AHP-ACE model consists of three data layers and two
mathematical model layers, as shown in Figure 2. The basic data layer contains nine directly
observed variables. These variables are determined according to the drilling practices and
expert experience. A survey table has been sent to six experienced experts and the most
relevant variables related to drilling safety have been identified. Compared with 12 observed
variables in the previous study [27], the basic data layer in this paper only contains nine
observed variables, where four variables are unchanged, and the remaining seven variables
are replaced by five new ones. The middle data layer is consisted of three potential variables,
including the nature factor, technical factor, and human factor. Those potential variables are
related to the corresponding parameters in the basic data layer by weights and membership
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functions. The final data layer is reflected to the pre-drilling safety value. Values of the
pre-drilling safety are normalized in the range from 0 to 1, which are divided into four stages
according to the frequency of the four types of safety events occurred in drilling engineering.
(i) In the region in which safety value ranges from 0 to 0.1, the drilling safety is associated
with high dangerous. (ii) In the region in which safety value ranges from 0.1 to 0.5, the drilling
safety is associated with danger. (iii) In the region in which safety value ranges from 0.5 to
0.9, the drilling safety is associated with moderate safe. (iv) The remaining stage is associated
with safe. The safety value is related to the three middle variables by using the ACE model.
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2.4. Data Acquirement and Processing
2.4.1. Data Collection

The co-related data of drilling safety are collected from three oil fields, XJ oilfield, XN
oilfield, and TH oilfield, respectively. The data are used for building and verifying the
AHP-ACE model. A total of 28 groups of data including 9 types of basic variables and
the corresponding safety level are obtained, as shown in Table 1. The symbols from A1 to
C9 in Table 1 correspond to different basic variables as shown in Figure 1. According to
Table 1, the collected data are related to multiple stratum types, including Carbonate rock,
Mud shale and Sandy conglomerate. Each column denotes distinct variables associated
with these reservoirs, such as pressure, temperature, presence of sulfurous gas, adjacent
well number, drilling optimization, geological orientation, safe construction parameters,
annual training parameters, and safety levels. The range of each variable’s values varies
across the columns, reflecting the diverse characteristics and conditions observed within
the reservoirs. Values of the variables from A1 to B5 are determined on the basis of the
history data of the adjacent wells. According to unreported material about the requirements
of the safety assessment form for oil and gas extraction enterprises in China, the four safety
levels are classified using the following rules:

• High dangerous: this implies extreme danger of drilling operations, with potential
occurrences such as blowouts and leakage of toxic gases (hydrogen sulfide) that can
result in major safety accidents;

• Dangerous: this implies that the drilling conditions are hazardous with a substantial
probability of accidents and a high risk of personnel injuries;

• Moderate safe: this indicates that the drilling conditions are acceptable, but with
certain indicators leading to a heightened risk of accidents, which are still manageable
and typically result in minor incidents but no casualties;

• Safe: this indicates that the drilling construction is in good condition with a very low
probability of downhole accidents and a minimal potential risk of personnel casualties.
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Table 1. Original data of safety index.

Serial No. A1
(--)

A2
(MPa)

A3
(◦C)

A4
(10−2

mg/L)

B5
(No.)

B6
(No.)

B7
(No.)

C8
(No.)

C9
(No.)

Safety Level
(Dimensionless)

1 Carbonate rock 40 56 0 5 3 0 12 8 High dangerous
2 Mud shale 32 65 0 2 0 0 25 15 High dangerous
3 Carbonate rock 46 58 0 4 2 0 3 8 High dangerous
4 Carbonate rock 42 63 1 5 2 0 26 10 High dangerous
5 Mud shale 36 52 0 4 5 6 13 24 Moderate safe
6 Mud shale 65 72 0 4 6 9 26 8 Dangerous
7 Sandy conglomerate 30 42 2 2 2 5 25 5 High dangerous
8 Carbonate rock 42 53 0 5 4 5 23 10 Dangerous
9 Carbonate rock 46 59 0 6 9 2 36 12 Dangerous
10 Mud shale 25 32 0 4 6 3 18 6 Dangerous
11 Carbonate rock 26 33 0 9 2 4 25 15 Moderate safe
12 Mud shale 29 35 0 4 5 2 13 15 Dangerous
13 Carbonate rock 32 42 0 6 4 5 24 15 Moderate safe
14 Carbonate rock 33 53 0 6 1 9 13 12 Dangerous
15 Mud shale 45 62 0 2 3 0 16 20 High dangerous
16 Carbonate rock 35 39 0 9 6 2 23 24 Moderate safe
17 Sandy conglomerate 42 45 0 4 15 6 42 24 Safe
18 Carbonate rock 41 48 0 6 5 9 36 20 Safe
19 Sandy conglomerate 33 39 0 4 6 5 12 15 Moderate safe
20 Mud shale 86 52 0 1 2 4 8 15 Dangerous
21 Sandy conglomerate 38 46 1 2 7 2 13 24 High dangerous
22 Sandy conglomerate 34 39 0 4 8 3 41 15 Moderate safe
23 Carbonate rock 28 33 0 4 6 2 23 11 Dangerous
24 Sandy conglomerate 42 65 0 6 5 5 41 13 Moderate safe
25 Sandy conglomerate 36 42 0 6 5 6 12 15 Moderate safe
26 Sandy conglomerate 25 38 0 6 2 2 3 6 High dangerous
27 Sandy conglomerate 35 40 0 6 4 5 26 12 Moderate safe
28 Sandy conglomerate 39 39 0 6 5 2 15 24 Moderate safe

2.4.2. Data Processing

Due to differences in the original database from A1 to C9, the data shown in Table 1
are normalization to ensure accuracy of the AHP-ACE model. The process of normalization
is to find suitable member-functions to correlate input variables with values ranging from
0 to 1. The closer the drilling safety value is close to 1, the safer the pre-drilling. On the
contrary, the closer the drilling safety value is to 0, the more dangerous the pre-drilling.
The member-functions of the nine observed variables and the drilling safety level are
established on the basis of the related literature and knowledge of experienced experts, and
are described in detail as follows [18,27]:

• A1—Stratum type: According to the statistical results of actual formation drilling, the
carbonate rock is mostly fracture-cave formations and is prone to drilling accidents,
such as leakage junk and sticking. Shale and sand conglomerate drillings are relatively
safe compared with carbonate drillings. In general, the leakage occurs much more
easily in the sand conglomerate than in the mud shale. Therefore, the output values
corresponding to carbonate, sandy conglomerate and shale are 0.4, 0.7, 0.9, respectively.
The member-function for different types of stratum is described as:

a1(x) =


0.4 carbonate rock

0.7 sandy conglomerate
0.9 mud shale

(6)

• A2—Stratum pressure: When formation pressure is less than 25 MPa, it is correspond-
ing to a controllable safe drilling. When formation pressure is greater than 75 MPa, it
will cause well kick, well collapse and other drilling accidents, and increase the risk of
drilling engineering. When the pressure is larger than 100 MPa, the drilling safety is
much more uncontrollable. Therefore, the form of formation pressure membership
function is as follows:
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a2(x) =


1 x < 25

75−x
50 25 ≤ x ≤ 75

100−x
25 75 < x < 100

0 100 ≤ x

(7)

• A3—Stratum temperature: When the formation temperature is greater than the speci-
fied value (105 ◦C is used), the life of downhole tools will be shortened and the risk
of drilling engineering will be increased. The formation temperature membership
function can be represented by a half-trapezoidal distribution, which is in the form of:

a3(x) =


1 0 < x < 60

105−x
45 60 ≤ x ≤ 105
0 105 < x

(8)

• A4—Sulfurous gas: When the sulfurous gas exceeds a certain value, the risk of drilling
engineering will increase. The membership function of sulfurous gas (gas content,
mg/L) is similar to that of temperature, which is described as:

a4(x) =


1 0 < x < 0.4

1−x
0.6 0.4 ≤ x ≤ 1
0 1 < x

(9)

• B5—Adjacent well;
• B6—Drilling optimization;
• B7—Geological orientation; With the adjacent well number, drilling optimization

and geological orientation number increasing, the drilling safety level will increase,
and there exists a threshold number (10 in this paper). Therefore, the membership
functions of adjacent well, drilling optimization, and geological orientation are the
same, and can be written as:

b5,6,7(x) =

{ x−1
10 x ≤ 10
1 10 < x

(10)

• C8—Safe construction; the membership function of safe construction is:

a8(x) =


0 1 ≤ x < 3

x−3
12 3 ≤ x ≤ 15
1 15 < x

(11)

• C9—Annual training; the membership function of annual training is:

c9(x) =


0 0 < x < 4
x−4
12 4 ≤ x ≤ 16

1 16 < x
(12)

• Drilling safety value; The pre-drilling safety value is divided into four stages, [0.9, 1],
[0.5, 0.9], [0.1, 0.5], and [0, 0.1], respectively. The corresponding pre-drilling safety
level of each stage is introduced in Section 2.3.

On the basis of the above member functions and the scored law of the safety level, the
original data in Table 1 can be transformed into a normalized form, as shown in Table 2.
The transformed law of the nine independent variables is followed as:

{A1,. . .,C9} in Table 2 = {A1,. . .C9} in Table 1 substituted into {a1(x),. . .,c9(x)}.
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Table 2. Normalized data of safety index.

Serial No. A1 A2 A3 A4 B5 B6 B7 C8 C9 Safety Level

1 0.4 0.7 1.0 1.0 0.4 0.2 0.0 0.8 0.3 0.01
2 0.9 0.8 0.9 1.0 0.1 0.0 0.0 1.0 0.9 0.09
3 0.4 1.0 1.0 1.0 0.3 0.1 0.0 0.0 0.3 0.01
4 0.4 0.8 0.9 0.8 0.4 0.1 0.0 1.0 0.5 0.03
5 0.9 0.7 1.0 1.0 0.3 0.3 0.6 0.8 1.0 0.68
6 0.9 0.9 0.7 1.0 0.3 0.3 0.9 1.0 0.3 0.45
7 0.7 0.8 1.0 0.0 0.1 0.1 0.5 1.0 0.1 0.01
8 0.4 0.7 1.0 1.0 0.4 0.2 0.5 1.0 0.5 0.36
9 0.4 0.1 1.0 1.0 0.5 0.5 0.2 1.0 0.7 0.48

10 0.9 0.8 1.0 1.0 0.3 0.3 0.3 1.0 0.2 0.28
11 0.4 0.7 1.0 1.0 0.8 0.1 0.4 1.0 0.9 0.55
12 0.9 0.7 1.0 1.0 0.3 0.3 0.2 0.8 0.9 0.43
13 0.4 0.8 1.0 1.0 0.5 0.2 0.5 1.0 0.9 0.85
14 0.4 0.6 1.0 1.0 0.5 0.1 0.9 0.8 0.7 0.38
15 0.9 0.8 1.0 1.0 0.1 0.2 0.0 1.0 1.0 0.06
16 0.4 0.9 1.0 1.0 0.8 0.3 0.2 1.0 1.0 0.86
17 0.7 0.9 1.0 1.0 0.3 0.8 0.6 1.0 1.0 0.96
18 0.4 1.0 1.0 1.0 0.5 0.3 0.9 1.0 1.0 0.93
19 0.7 1.0 1.0 1.0 0.3 0.3 0.5 0.8 0.9 0.73
20 0.9 0.6 1.0 1.0 0.0 0.1 0.4 0.4 0.9 0.39
21 0.7 0.7 1.0 0.0 0.1 0.4 0.2 0.8 1.0 0.05
22 0.7 0.9 1.0 1.0 0.3 0.4 0.3 1.0 0.9 0.56
23 0.4 0.2 1.0 1.0 0.3 0.3 0.2 1.0 0.6 0.34
24 0.7 0.8 0.9 1.0 0.5 0.3 0.5 1.0 0.8 0.84
25 0.7 0.7 1.0 1.0 0.5 0.3 0.6 0.8 0.9 0.79
26 0.7 0.6 1.0 1.0 0.5 0.1 0.2 0.0 0.2 0.02
27 0.7 0.9 1.0 1.0 0.5 0.2 0.5 1.0 0.7 0.89
28 0.7 0.7 1.0 1.0 0.5 0.3 0.2 1.0 1.0 0.84

3. Results

This section mainly introduces the established AHP-ACE model. First, weights of the
nine observed parameters and values of the three middle variables are determined. Then,
the ACE model is established to evaluate the drilling safety level on the basis of the three
potential variables.

3.1. Weight Determination

According to the AHP method, weights of the observed factors from A1 to A4 are 0.15,
0.06, 0.06, 0.73, respectively, as shown in Table 3. Since the observed variables from B5 to B7
have the same impact on the technological factor, the discrimination matrix of the technical
factor is a third order unit matrix. The three variables from B5 to B7 have an identical
weight, which is calculated as 0.33. Similarly, the discrimination matrix of the human factor
is a two order unit matrix, and the weight of the variables C8 and C9 is the same as 0.5.
The consistency test indicates that the consistency ratio of the natural discrimination matrix
is less than 0.1, and the consistency indicator CI of technical and human factors is 0, which
demonstrates the validity of the proposed AHP model.

Table 3. Discrimination matrix and weights of the nature variables.

Matrix A1 A2 A3 A4 Weight

A1 1 3 3 1/8 0.15
A2 1/3 1 1 1/9 0.06
A3 1/3 1 1 1/9 0.06
A4 8 9 9 1 0.73
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3.2. Establishment of the AHP Model

The AHP model is established based on the weight and the membership function of
each observed variable. Then, the normalized data of the nine basic parameters are related
to three normalized middle variables, as shown in Table 4.

Table 4. Values of for potential variables.

Order Nature Technology Human Safety Value

1 0.89 0.18 0.55 0.01
2 0.97 0.03 0.95 0.09
3 0.91 0.13 0.15 0.01
4 0.77 0.17 0.75 0.03
5 0.96 0.38 0.90 0.68
6 0.97 0.50 0.65 0.45
7 0.21 0.23 0.55 0.01
8 0.89 0.36 0.75 0.36
9 0.86 0.38 0.85 0.48
10 0.98 0.30 0.60 0.28
11 0.89 0.43 0.95 0.55
12 0.96 0.25 0.85 0.43
13 0.90 0.40 0.95 0.85
14 0.89 0.48 0.75 0.38
15 0.97 0.08 1.00 0.06
16 0.90 0.43 1.00 0.86
17 0.95 0.54 1.00 0.96
18 0.91 0.54 1.00 0.93
19 0.96 0.36 0.85 0.73
20 0.96 0.17 0.65 0.39
21 0.20 0.21 0.90 0.05
22 0.95 0.33 0.95 0.56
23 0.86 0.26 0.80 0.34
24 0.94 0.41 0.90 0.84
25 0.93 0.45 0.85 0.79
26 0.93 0.26 0.10 0.02
27 0.95 0.40 0.85 0.89
28 0.94 0.31 1.00 0.84

3.3. Establishment of the ACE Model

In the ACE model, the three middle factors shown in Table 4 are selected as indepen-
dent variables and the pre-drilling safety value is considered to be a dependent variable.
The total 28 group samples are divided into two parts: a training dataset and a verification
dataset. The training dataset including 22 group samples is used to generate the ACE
regression model, and the verification dataset consisted of the remaining 6 group samples
is used to test and verify the accuracy of the regression.

The software named GRACE1.0 [29] is used to build the regression between the pre-
drilling safety value and the input variables (natural factor, technological factor, and human
factor). The optimal transformation of the dependent variable is corresponding to a linear
regression, as plotted in Figure 3d.

The optimal transformations of the independent variables are in different fashions
and can be fitted with polynomial functions as shown in Figure 3a–c. This indicates that
the regressions of the three independent variables can be reflected by cubic polynomial
expression with a universal form as:

φ∗(xi) =
3

∑
k = 1

bkx3−k
i (13)

where bk is the coefficient of optimal transformation function, which is shown in Figure 3.
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It is noted that the lowest accuracy of the polynomial regressions in Figure 3 is
R2 = 0.97, exceeding the threshold of 0.95. Therefore, the proposed polynomial regressions
are reasonable to describe the optimal transformations of the three independent variables.
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Figure 3. Optimal transforms of the independent and dependent variables. (a) Transforma-
tion of natural factor; (b) transformation of technical factor; (c) transformation of human factor;
(d) transformation of safety level.

According to the above discussion, the regression of the dependent variable (Safety
level, SL) can be formulated as:

θ∗(SL) = 3.0961SL − 1.4125 (14)

Substituting Equations (1) and (13) into Equation (14), we can obtain a regression
prediction model of SL with an inverse transformation of Equation (14) into actual space,
the safety level SL is expressed as:

SL =
3

∑
i = 1

Mk

∑
k

ci,kxMk−k+1
i + D (15)
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where Mk is the order of the polynomial for the kth variable, and c(i,k) is the coefficient of
the ith term of the kth variable, which can be determined by the optimal regressions shown
in Figure 3. D is the constant term, which covers the constant terms of all polynomials.

4. Discussion

This section mainly discusses the prediction accuracy, sensitivity, and optimization
direction of the proposed AHP-ACE model.

4.1. Prediction Accuracy

The accuracy of the AHP-ACE model is described using the Average Absolute Error (AAE)
and Average Absolute Relative Error (AARE). The formulae for the two errors are as follows:

AAE =
1
N ∑N

i = 1

∣∣∣SLact
i − SLcal

i

∣∣∣ (16)

AARE =
1
N ∑N

i = 1

∣∣∣∣∣SLact
i − SLcal

i

SLact
i

∣∣∣∣∣ (17)

where SLact
i and SLcal

i are the ith SL value obtained from actual field and model, respectively;
N represents the total number of calculated points.

The relationship between the actual and calculated SL values is shown in Figure 4.
It indicates that calculated value vs. actual value curve is similar to the 45 degree line.
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The proposed model exhibits an average absolute error (AAE) [25,29,30] of 0.03 for
both predicting the training and verification samples. Additionally, the average absolute
relative error (AARE) [25,29,30] is 4.29% and 4.51%, respectively. Therefore, it is evidenced
that the proposed AHP-ACE method is valid to evaluate the pre-drilling safety. In engi-
neering practice, it is conventionally deemed acceptable for model predictions to exhibit a
relative error below 5% [25].

4.2. Sensitivity Analysis

Values of potential variables in the range from 0 to 1 can have a direct impact on the
safety level. A score of 1 denotes full value for the observed factors corresponding to the
potential variable, while 0 represents the lowest score value. When 0.5 is chosen as the
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value for the three potential variables, the drilling safety value calculated by the ACE model
proposed in this paper is 0, resulting in a safety grade of “High dangerous”, indicating
that the safety of the drilling site cannot be assured when the values of the three potential
variables are set to the intermediate value of 0.5.

Table 5 presents three groups of potential variable assignments and their correspond-
ing drilling safety grade values. With technical and human values set at 1 (full score) and
natural value at 0, the calculated safety grade of the well is 0.64, indicating that the safety
of the drilling project can be ensured by improving the technical level and standardizing
the operation behavior of the construction personnel. When natural and human values are
1 and technical value is 0, the safety grade is 0.91, which is classified as “safe”. This indi-
cates that safe drilling can be achieved with minimal downhole complexity and a skilled
construction team, without the need for advanced technology. Conversely, with natural
and technical values set at 1 and human value at 0, the safety grade is 0.09, indicating a
“High dangerous” level. This is in line with the actual situation of the drilling site, where
improper operation by personnel can cause drilling accidents, and even lead to casualties
in extreme cases.

Table 5. Data for sensitivity analysis.

Order Nature Technology Human Safety Value

1 0 1 1 0.64
2 1 0 1 0.91
3 1 1 0 0.09

Analytically, it is evident that the human factor has the greatest impact on drilling safety,
while the natural factor is more influential than the technical factor. Therefore, the order of
sensitivity of the three potential variables from high to low is human factor > natural factor >
technical factor.

4.3. Model Improvement

The AHP-ACE model, as established in this study, is employed for pre-drilling safety
assessment. However, the proposed specific two-step approach may lack universal applica-
bility for safety risk assessment across all drilling scenarios. The safety evaluation scope
of real-time drilling, cementing, and completion activities is not encompassed within the
model. It is crucial to acknowledge that a substantial reservoir of insights is available from
preceding drilling operations, and it is imperative to integrate these lessons when conduct-
ing safety performance assessments. If the basic data of each stage of drilling are collected,
the corresponding safety evaluation indicator system and model can be established to
predicate the safety of each stage of the drilling process.

In addition, the model was constructed using 28 sets of field drilling sample data.
While the dataset is comprehensive in terms of safety levels, the amount of samples is
limited, which may impede the model’s accuracy. Therefore, if more sample data can
be gathered in the future, it is recommended to re-examine and analyze the nonlinear
regression model, then select the optimal regression model to build a new model in order
to enhance the prediction accuracy and extend the prediction range.

5. Conclusions

The proposed AHP-ACE method is established to evaluate the pre-drilling safety level.
The main observations are summarized as follows:

(1) The AHP-ACE model with a 9-3-1 structure has been established, taking into account
unrestricted variables, allowing its application in different oil fields;

(2) The AHP model is composed of a series of membership functions and weights, which
are employed to link the nine variables of the basic layer with the three potential
variables of the middle layer. Additionally, the ACE model consists of a compilation
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of third-order polynomials, which are utilized to associate the three potential variables
to the drilling safety values;

(3) The average absolute error (AAE) and the average absolute relative error (AARE) of
the model to predict the training data are 0.03 and 4.29%, respectively, whereas the
AAE and AARE of the model for verification samples are 0.03 and 4.51%, respectively;

(4) The sensitivity of the three middle variables, in descending order, is human factor >
natural factor > technical factor;

(5) The indicator system constructed in this paper is utilized for pre-drilling safety evalua-
tion. If an index system is created for each stage of the drilling process, then a series of
models can be established, enabling the safety of each stage of drilling to be forecasted;

(6) In the future, it is recommended to analyze and update the nonlinear regression model
with more valid sample data to obtain a more accurate model.
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