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Abstract: Rotating machinery fault diagnosis is of key significance for ensuring safe and efficient
operation of various industrial equipment. However, under nonstationary operating conditions,
the fault–induced characteristic frequencies are often time–varying. Conventional Fourier spectrum
analysis is not suitable for revealing time–varying details, and nonstationary fault feature extrac-
tion methods are still in desperate need. Order spectrum can reveal the rotational–speed–related
time–varying frequency components as spectral peaks in order domain, thus facilitating fault feature
extraction under time–varying speed conditions. However, the speed–unrelated frequency compo-
nents are still nonstationary after angular–domain resampling, thus causing wide–band features and
interferences in the order spectrum. To overcome such a drawback, this work proposes a rotating
machinery fault diagnosis method based on adaptive separation of time–varying components and
order feature extraction. Firstly, the rotational speed is estimated by the multi–order probabilistic ap-
proach (MOPA), thus eliminating the inconvenience of installing measurement equipment. Secondly,
adaptive separation of the time–varying frequency component is achieved through time–varying fil-
tering and surrogate test. It effectively eliminates interference from irrelevant components and noise.
Finally, a high–resolution order spectrum is constructed based on the average amplitude envelope of
each mono–component. It does not involve Fourier transform or angular–domain resampling, thus
avoiding spectral leakage and resampling errors. By identifying the fault–related spectral peaks in
the constructed order spectrum, accurate fault diagnosis can be achieved. The Rényi entropy values
of the proposed order spectrum are significantly lower than those of the traditional order spectrum.
This result verifies the effective energy concentration and high resolution of the proposed order
spectrum. The results of both numerical simulation and lab experiments confirm the effectiveness of
the proposed method in accurately presenting the time–varying frequency components for rotating
machinery diagnosing faults.

Keywords: signal processing; fault diagnosis; nonstationary; order analysis; order structure

1. Introduction

Rotating machineries are prone to fault under harsh environment and complex operat-
ing conditions. Undetected failures may deteriorate the accuracy and/or efficiency of the
equipment, or even cause safety accidents. Thus, rotating machinery fault diagnosis is of
key significance. Fault feature extraction from the measured signals, e.g., vibration, sound,
and current, enables accurate fault detection and diagnosis [1–6], yet most efforts are based
on the assumption of fixed operating conditions. Rotating machinery fault diagnosis under
nonstationary operating conditions still deserves deep research.

In engineering practice, rotating machinery often operates under time–varying speed
and/or load conditions, which are referred to as nonstationary operating conditions. Con-
sequently, the frequency and/or amplitude of vibration signals undergo corresponding
changes with varying operational conditions, disabling effective fault feature extraction
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in the frequency domain. To address this issue, researchers have tried to map the time–
varying frequency details into a constant one [7–10]. Such an approach transforms the
three–dimensional time–frequency features into two–dimensional spectral features, en-
abling more intuitive and convenient identification of nonstationary characteristics. It is
capable of handling time–varying and multicomponent signals; thus, it is promising for
rotating machinery fault diagnosis under nonstationary operating conditions.

Order tracking (OT) realizes this concept by resorting time–domain signals according
to fixed angular increments, effectively converting time–varying frequency into constant
frequency [7]. OT methods can be broadly classified into three categories: hardware order
tracking (HOT), computed order tracking (COT), and tacholess order tracking (TOT) [8,9].
HOT adjusts the sampling frequency proportionally to the rotational speed via hardware
control. It offers real–time angular–domain sampling [10], yet delays and errors may occur
during rapid speed changes [11]. Additionally, the reliance on extra hardware components
increases system complexity and cost. COT resamples the measured time–domain signal
into an angular domain on a digital platform [12], and the order spectrum is generated
by performing Fourier transform on the angular–domain signal. However, the angular–
domain resampling needs to be guided by the precise instantaneous rotational speed.
The acquisition of rotational speed typically relies on an extra tachometer, which can be
available in real applications. To eliminate the need for an external tachometer, researchers
have proposed the TOT method. It aims at estimating the instantaneous speed based on
the signal itself [13]. Researchers have explored various methods for estimating rotational
speed from vibration signals, including Hilbert–transform–based phase demodulation [14],
iterative phase demodulation based on angular resampling [15], and the Teager–Kaiser
energy operator [16]. However, these methods still face challenges, such as the presence of
multiple harmonic modes in the vibration signal, interactions between rotational frequency
harmonics and mechanical structure resonances, and low signal–to–noise ratios, which can
lead to errors in instantaneous speed estimation. To address these issues, the multi–order
probabilistic approach (MOPA) [17] has been proposed for tracking instantaneous speed.
MOPA regards the instantaneous spectrum as a probability density function of instanta-
neous speed and estimates the speed based on the prior continuity of the function. Recent
studies have demonstrated the effectiveness of MOPA in various applications [18–20].

In addition, while order spectrum is effective in identifying time–varying frequency
components related to rotational speed in nonstationary conditions [21,22], components
unrelated to rotational speed, such as resonances and background noise, are still non-
stationary in angular domain. Their energy is not concentrated at a specific order, and
result in wide–band feature. Such a result may lead to the misidentification of meaning-
ful order components, hindering effective fault feature extraction. To address this issue,
various techniques have been proposed, such as Vold–Kalman filtering [23] and phase–
demodulation–based order tracking [24]. However, these methods often rely on prior
knowledge of the targeted instantaneous frequency, and cannot distinguish interferences
caused by speed–unrelated components from the noises.

In addition to OT, alternative approaches have been proposed for achieving order track-
ing objectives. One such method, introduced by Blough and Brown [25], involves modifying
the Fourier transform kernel to extract order domain information directly from time–domain
signals. Borghesani [26] proposed a speed–synchronized discrete Fourier transform, in which
the modified Fourier transform kernel is characterized by instantaneous rotational speed,
eliminating the need for resampling and interpolation steps. While this approach avoids
resampling and interpolation errors associated with COT methods, it still suffers from spec-
tral blurring caused by the nonstationarity of amplitude envelopes. Researchers have also
proposed various techniques aimed at reducing spectral aliasing and spectral leakage [27–30].
However, these methods still do not eliminate spectral blurring fundamentally due to the
nonstationarity of amplitude envelopes in time–varying conditions.
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In this paper, we propose a novel rotating machinery fault diagnosis method, based
on adaptive separation of time–varying components and order spectrum analysis. The
objectives of the proposed method are as follows:

• Avoid the inconvenience and error of speed measurement.

The proposed method introduces MOPA to directly extract instantaneous rotational
speed from the signal without external tachometer.

• Eliminate the interference of irrelevant components and noise.

It effectively separates time–varying components using a combination of time–varying
filtering and surrogate test, eliminating interferences from irrelevant components and
background noise.

• Avoid spectral energy leakage and achieve fine resolution.

The order spectrum is directly constructed by the average amplitude envelope of each
individual order component, thus avoiding spectral energy leakage during Fourier trans-
form and achieving fine resolution. The achieved precise revelation of fault–related order
components enables effective fault diagnosis of rotating machinery under nonstationary
operating conditions.

The remainder of this article is structured as follows. Section 2 details the proposed
fault diagnosis method, including accurate acquisition of instantaneous rotational speed,
adaptive separation of time–varying components, elimination of irrelevant components
and noise, and precise identification of frequency orders. Section 3 demonstrates the
effectiveness of the proposed method through an analysis of time–varying multicomponent
simulation signals. Section 4 further validates the effectiveness of the proposed method in
diagnosing rolling–element–bearing faults via laboratory experiments. Finally, Section 5
concludes the paper.

2. The Proposed Fault Diagnosis Method
2.1. Estimation of Instantaneous Rotational Speed

Under nonstationary operating conditions, the vibration components of critical compo-
nents exhibit time–varying characteristics, and their instantaneous frequencies are closely
related to rotational speed. Therefore, in the process of extracting time–varying compo-
nents, instantaneous rotational speed serves as indispensable prior knowledge, providing
an important basis for subsequent component identification and ridge extraction. The
accurate estimation of instantaneous rotational speed thus becomes a crucial step in the
entire signal processing workflow. In practical engineering applications, the acquisition
of rotational speed typically relies on specific hardware devices, such as tachometers or
encoders. However, the introduction of these devices not only increases additional costs
but also poses various inconveniences during actual installation and use. To effectively
address this issue, researchers have focused on directly extracting instantaneous rota-
tional speed information from the vibration signal itself, eliminating the need for external
measurement instruments.

In this context, methods for extracting rotational speed information by tracking har-
monics in the time–frequency representation of vibration signals have emerged. Among
them, MOPA has been widely used in various signal processing scenarios due to its high
accuracy and excellent robustness in rotational speed identification.

Rotating machinery vibrations are usually dominated by the rotating frequency and
its harmonics. The higher the spectral amplitude at a frequency f of a harmonic order
Hk, the more likely it is that the rotating frequency will be equal to the frequency divided
by the harmonic order f /Hk. Therefore, combining multiple harmonic components can
effectively enhance noise resistance performance. Motivated by this fact, MOPA regards
the instantaneous spectrum at each moment as a probability density function (PDF) of
instantaneous rotational speed and accurately estimates the instantaneous rotational speed
based on the prior continuity of the PDF, as shown in Figure 1. The specific procedure is
as follows.
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Figure 1. Schematic diagram of instantaneous rotational speed estimation. 

Firstly, to mitigate the impact of structural modal responses on the instantaneous 
spectral amplitude of rotational frequency harmonics, construct a whitened time−fre-
quency representation ( , )W t f   and regard each column ( )W f   as the instantaneous 
spectrum at each time instance. 

Then, generate the PDF [ | ]kP O   by scaling the instantaneous spectrum with all 

known harmonic orders kO , maximum speed maxS , and minimum speed minS : 

min max max

min max max

max max
max min

min max max

1 ( ), /

1 ( ), /
[

1

 

| ]

, /

or0, / 

k k
k

k
kk

k

k

k

W O f f S f O

W O f f f O S
P O

f H f S

f

S

S

f
S S

f S S O

ξ

ξ

 < <

 < <= 

 < <

−


<



<

< > >

, (1)

where maxf   is the upper frequency limit and kξ   is a normalization factor. Multiply 
PDFs of all orders to yield a global PDF: 

1
[ ] [ | ]

k

K

kP P O
=

∝ ∏ . (2)

Figure 1. Schematic diagram of instantaneous rotational speed estimation.

Firstly, to mitigate the impact of structural modal responses on the instantaneous
spectral amplitude of rotational frequency harmonics, construct a whitened time–frequency
representation W(t, f ) and regard each column W( f ) as the instantaneous spectrum at each
time instance.

Then, generate the PDF [P|Ok] by scaling the instantaneous spectrum with all known
harmonic orders Ok, maximum speed Smax, and minimum speed Smin:

[P|Ok] =


1
ξk

W(Ok f ), Smin < f < Smax < fmax/Ok
1
ξk

W(Ok f ), Smin < f < fmax/Ok < Smax
1

Smax−Smin
, fmax/Hk < f < Smax

0, f < Smin or f > Smax > fmax/Ok

, (1)

where fmax is the upper frequency limit and ξk is a normalization factor. Multiply PDFs of
all orders to yield a global PDF:

[P] ∝
K

∏
k=1

[P|Ok] . (2)

Next, taking into account the inertia effects of actual mechanical systems, changes in
instantaneous rotational speed should be continuous without any step changes. To ensure
the continuity of the probability density function, a Gaussian function is introduced as
a smoothing process. Perform a priori continuity to smooth the global PDF [P]. For any
time instance n, the PDF can be estimated by convolving a neighboring PDF [Pn+m] with a
centered Gaussian [17]:

[Pn]n+m =
∫ Smax

Smin

[Pn|Pn+m][Pn+m]d f ∝ exp
(
− f 2

2σ2
m

)
∗ [Pn+m], (3)

where σ2
m is a variance and the priori continuity is

[Pn|Pn+m] = N (Pn+m, σm) ∝ exp

[
− ( f − Pn+m)

2

2σ2
m

]
. (4)



Processes 2024, 12, 752 5 of 17

As the variance of the Gaussian function increases, the smoothing effect of convo-
lution also increases accordingly. Multiply PDFs including a priori continuity to yield a
smoothed PDF:

[Pn]total ∝
M

∏
m=−M

[Pn]n+m. (5)

Finally, the frequencies corresponding to the maximum values at each moment are
extracted from the smoothed PDFs. By fitting the relationship between these frequency
values and time, an accurate estimation of instantaneous rotational speed is achieved.

2.2. Adaptive Separation of Time–Varying Components

For nonstationary signals, due to the time–varying nature of their sidebands, frequency
domain overlap often occurs among various components, making effective separation
challenging. As shown in the left figure of Figure 2, there is frequency domain overlap
among the components. If filtering is performed directly, it will result in truncation of the
time–varying frequencies. To address this issue and ensure the integrity of component
extraction, time–varying filtering can be utilized for complete component extraction. The
core idea of the time–varying component extraction method based on time–varying filtering
is as follows.
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According to prior knowledge of instantaneous rotational speed ω(t), the instanta-
neous frequency of the kth order harmonic component yk(t) in the time–frequency domain
is calculated as ωk(t) = kω(t). To achieve complete extraction of components, generalized
demodulation is employed to convert time–varying frequency components into constant
frequency components, as shown in the right figure of Figure 2. Specifically speaking, the
signal y(t) is multiplied with a generalized demodulation function exp[−jwk(t)] to convert
the kth order harmonic component yk(t) into a constant frequency ω0 component

z(t) = y(t) exp[−jwk(t)], (6)

where wk(t) =
∫
[ωk(t)− ω0]dt. In this case, the constant frequency components do not

overlap with other components in the frequency domain, facilitating their separation
through filtering operations.

Then, the component zk(t) of constant frequency ω0 is separated by filtering, and
the component zk(t) is multiplied with the inverse generalized demodulation function
exp[jwk(t)] to restore the original component yk(t) by

yk(t) = zk(t) exp[jwk(t)]. (7)

However, the instantaneous frequencies of the rotational frequency harmonic compo-
nents do not change at the same rate. Specifically, the higher the harmonic order, the greater
the rate of change in its instantaneous frequency. This means that during a single general-
ized demodulation process, only one target component can be converted into a constant
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frequency component, while other target components may still exhibit time–varying char-
acteristics or even overlap in the frequency domain. To overcome this challenge, iterative
application of generalized demodulation is necessary, and demodulation functions must be
designed specifically for each harmonic component to achieve complete extraction of all
rotational frequency harmonic components. The specific procedure involves designing a
generalized demodulation function targeted at a particular harmonic component, followed
by applying generalized demodulation to it. Subsequently, the component is separated
through filtering and is restored via inverse generalized demodulation. The extracted
component is then subtracted from the original signal, and the entire process is repeated for
the next harmonic order until all harmonic components have been successfully separated.
This approach helps maintain the integrity of the components, effectively resolving the
issue of frequency domain overlap.

2.3. Elimination of Pseudo–Components

After processing in the previous section, all time–varying components can be effec-
tively extracted. However, in practical applications, these extracted time–varying com-
ponents are not limited to those generated by the target component but also include
pseudo–components formed by background noise. These pseudo–components can intro-
duce interference and have an impact on the accurate identification of time–varying struc-
tures in rotating machinery. To eliminate the interference caused by pseudo–components
composed of background noise, the entropy difference between the true components and
the pseudo–components formed by noise is considered. By comparing entropy values,
it can be determined whether a component is noise or not. Based on this approach, the
surrogate test [31,32] has emerged as a solution. The core idea of the surrogate test is
to compare the certainty of the target component with its surrogate data. If the target
component is more certain than the surrogate data, it is considered a true component;
otherwise, it is deemed false. The specific procedure is as follows.

Firstly, construct the surrogates by randomizing the phases of the component yk(t):

s(t) =
1

2π

∫
[
∫

yk(t) exp(−jγt)dt] exp[jφ(γ)] exp(jγt)dγ, (8)

where φ(γ) is the random phase.
Subsequently, the authenticity of the target component is determined by comparing

its statistical data with that of the surrogate data. Estimate the amplitude envelope e(t) and
instantaneous frequency i(t) of the surrogate s(t), and then calculate the discriminating
statistics by combining spectral entropies of e(t) and i(t):

T(βa, β f ) = βaL[E(ω)] + β f L[I(ω)], (9)

where E(ω) and I(ω) are the Fourier transform of e(t) and i(t), respectively, and the
spectral entropy:

L[g(x)] = −
∫ |g(x)|2∫

|g(x)|2dx
ln

|g(x)|2∫
|g(x)|2dx

dx. (10)

Finally, select the maximum of T(1, 0), T(0, 1), and T(1, 1) as the significance Ts of the
sth surrogate. T0 is the significance of the candidate component yk(t). Regard the candidate
component as true if the number of surrogates with Ts > T0 is equal to or higher than ηNs.
Ns is the number of surrogates and η is the significance level.

2.4. Accurate Identification of Frequency Orders

The traditional approach to order analysis involves resampling the signal in the angle
domain, followed by performing Fourier transform on the angle–domain signal to construct
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an order spectrum. Before resampling in the angle domain, the reference angle θ(tn) must
be calculated based on the instantaneous rotational speed fr(t) of the signal x(t):

θ(tn) =
n

∑
i=1

2π fr(tn)∆t, (11)

where ∆t represents the time sampling interval. Then, a correspondence is established
between θm = m∆θ (m = 1, 2, . . . , M) and tn, where ∆θ represents the constant angular
sampling interval and M denotes the length of the angle–domain signal. Based on the
assumption that the reference axis has a constant angular acceleration, three consecutive
sampling points are used to construct an equation in [tp−1, tp+1] that describes the rotation
angle of the reference axis:

θ̂(tn) = bp,0 + bp,1tn + bp,2t2
n, (12)

where the parameters bp,0, bp,1, and bp,2 are determined by (tp−1, θp−1), (tp, θp), and
(tp+1, θp+1), and their matrix form is

 θp−1
θp
θp+1

 =

 1 tp−1 t2
p−1

1 tp t2
p

1 tp+1 t2
p+1


 bp,0

bp,1
bp,2

. (13)

Afterwards, the transformation relationship between t̂ ∈ [tp−1, tp+1] and θ̂ ∈ [θp−1, θp+1]
is established:

t̂ =
1

2bp,2

[√
4bp,2(m∆θ − bp,0) + b2

p,1 − bp,1

]
. (14)

Subsequently, based on the calculated time points, interpolation algorithms are applied
to process the signal and determine the amplitude of the vibration signal in the angle
domain corresponding to the sampling time points. By performing Fourier transform on
these amplitudes, the order spectrum can be obtained.

However, this method has significant limitations. When components with constant
instantaneous frequencies undergo angular resampling based on rotational speed, their
energy becomes dispersed in the order domain, interfering with the identification of
harmonic components. Additionally, errors introduced by the interpolation step and the
Fourier transform itself are unavoidable.

To address the aforementioned issues, we explore a novel approach that abandons tradi-
tional angular resampling and Fourier transform steps. The aim is to achieve more accurate
estimations of frequency orders and amplitudes, thereby enabling precise fault diagnosis.

In actuality, order spectrum aims to pinpoint the average amplitude of each rotating
frequency harmonic order in a signal. For a signal of zero mean x(t) = a(t) cos[

∫
ω(t)dt],

suppose that a(t) ≥ 0 changes slowly compared with ω(t), which is usually the case for
rotating machinery vibration signals because of the mechanical system inertia. In this case,
the signal amplitude is equal to the amplitude envelope:

a(t) = |x(t) + jHT[x(t)]| =
∣∣∣∣a(t) cos[

∫
ω(t)dt] + ja(t) sin[

∫
ω(t)dt]

∣∣∣∣ = |a(t)| (15)

Therefore, it is rational to set the spectral magnitude of each order as the average
amplitude envelope of the corresponding mono–component, rather than it being estimated
by Fourier transform.

Inspired by the fact that the spectral magnitude of each order is equal to the average
amplitude envelope of the corresponding mono–component, we consider using the average
amplitude envelope to construct the order spectrum, so as to avoid the spectral blur caused
by Fourier spectrum. During the process of determining harmonic components, the method
comprehensively traverses all possible orders and utilizes surrogate testing to filter out
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true harmonic components. Through this processing, true harmonic components xk(t) are
retained, and their theoretical peak positions in the order spectrum, i.e., the corresponding
frequency orders ωk(t), are precisely located. Subsequently, for the rigorously filtered
true time–varying harmonic components, their average amplitude envelopes are further
calculated. Specifically, the average amplitude envelopes ek(t) of the true time–varying
harmonic components yk(t) that pass the surrogate testing are computed:

ek =
1
T

∫
ek(t)dt, (16)

where T is the time length. Based on the essential meaning of the order spectrum, the
average amplitude envelope ek is regarded as the spectral magnitude at each order, so as to
construct the optimized order spectrum:

IOR(k) = ∑
k

ekδ[ω − ωk(t)]. (17)

Due to the concentration of spectral energy on specific frequency orders, the order
spectrum constructed using the proposed method exhibits high resolution, enabling precise
identification of frequency orders and accurate fault diagnosis.

2.5. Procedure of the Proposed Method

In this section, we propose a novel fault diagnosis method for rotating machinery that
combines adaptive separation of time–varying components with precise extraction of order
characteristics. This approach introduces a new idea that obviates the need for Fourier
transforms and angular resampling steps. Its primary objective is to address the issue of
blurred order spectra caused by spectral leakage and resampling errors. By eliminating
various types of errors and interference, it ensures accurate acquisition of frequency orders
and their corresponding amplitude information, enabling precise representation of the
compositional structure of time–varying harmonic components.

In the initial phase of implementing this method, MOPA is employed to directly
extract instantaneous rotational speed from vibration signals, eliminating the need for
external rotary encoders or tachometers, thereby enhancing the practicality and flexibility
of the approach. Subsequently, a time–varying component extraction method based on
time–varying filtering is applied to separate each harmonic component individually. Dur-
ing this process, the surrogate test is integrated to identify genuinely existing harmonic
components, precisely locate the corresponding order of each component, and eliminate
interference from irrelevant components and background noise. Finally, a high–resolution
order spectrum is constructed based on the mean amplitude envelope of each harmonic
component and its corresponding order. The specific workflow is illustrated in Figure 3.

Step 1: Accurate estimation of instantaneous rotational speed:
(1.1) For the vibration signal x(t), generate its whitened time–frequency representation

A(t, ω). Consider A(t, ω) as a matrix where the column index represents time instances
and the row index denotes frequency positions.

(1.2) Generate the PDF of the instantaneous rotational speed. Each column of the
time–frequency representation is regarded as the instantaneous spectrum A(ω) correspond-
ing to time t. The instantaneous spectrum A(ω) is scaled by multiple potential orders
Hk in the time domain, and the values A(Hkω) corresponding to the highest Ωmax and
lowest rotational speeds Ωmin are considered as the PDF [Ω|Hk] . Multiply the PDFs of all
considered orders to generate the global PDF Ω.

(1.3) Apply a priori continuity to the PDF. Around the nth time instance, combine all
PDFs within a given time interval to obtain a smoothed PDF [Ωn]s, thereby incorporating a
priori continuity.

(1.4) Extract the instantaneous rotational speed from the smoothed PDF. At the nth
time instance, extract the frequency corresponding to the maximum value of the smoothed
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PDF as the instantaneous rotational speed. Fit the instantaneous rotational speed ω(n)
with respect to time t to obtain the global instantaneous rotational speed ω(t).
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Step 2: Time–varying filtering for separation of mono–component:
(2.1) Based on the instantaneous rotational speed ω(t), the instantaneous frequency of the

kth order rotational frequency harmonic component can be calculated using ωk(t) = kω(t).
(2.2) Multiply the signal x(t) with the generalized demodulation function exp[−jυk(t)]

to convert the kth order rotational frequency harmonic component xk(t) into a constant
frequency component uk(t), where υk(t) =

∫
[ωk(t)− ω0]dt.

(2.3) Filter the constant frequency component uk(t) using a zero–phase filter. Set the
center frequency to ω0 and the bandwidth to the minimum frequency spacing between
adjacent components in the time–frequency representation.

(2.4) Multiply the mono–component uk(t) with the inverse generalized demodulation
function exp[jυk(t)] to reconstruct the original component xk(t).

(2.5) Check if all target rotational frequency harmonics have been separated. If so,
proceed to Step 3; otherwise, repeat Step 2.
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Step 3: Surrogate test to remove pseudo–components:
(3.1) For each separated component xk(t), first perform a Fourier transform, then

randomize its phase, and finally conduct an inverse Fourier transform to construct surro-
gate data.

(3.2) Calculate the amplitude envelope a(t) and instantaneous frequency f (t) of both
the target component and the surrogate data. Jointly construct a discrimination statistic
using the spectral entropy values of these two sets of data.

(3.3) Determine the authenticity of the separated mono–component xk(t) by comparing
the statistical data of the target component with its surrogate data. If it is true, retain it;
otherwise, discard it.

Step 4: Accurate identification of frequency order structure and fault diagnosis:
(4.1) For the real time–varying harmonic component xk(t), calculate their average

amplitude envelope ak. Consider the average amplitude envelopes of each order as the
corresponding order amplitudes to construct an adaptive high–resolution order spectrum.

(4.2) Identify the fault characteristic frequencies based on the frequency structure
displayed in the order spectrum to achieve accurate fault diagnosis.

The proposed method eliminates the need for external measuring instruments, ef-
fectively addressing interference from irrelevant components, spectral leakage, and error
issues. It achieves precise representation of nonstationary multicomponent signal structure
and successfully diagnoses faults.

3. Performance Evaluation by Numerical Simulation Analysis

In this section, the effectiveness of the proposed method is evaluated through the
analysis of simulated signals. The simulation includes three amplitude and frequency mod-
ulated components to mimic harmonic constituents, along with two gradually enhancing
constant–frequency components to simulate potential interferences. This design aims to
closely replicate the actual vibration conditions encountered in rotating machinery during
acceleration, where the proportional relationship between amplitude and the square of
frequency further enhances the realism of the simulation:

x(t) =
3

∑
k=1

ak[ck fr(t)]
2 cos

{
2πck

∫
fr(t)dt

}
+ Aeβt cos(2π fn1t) + Aeβt cos(2π fn2t) + n(t) (18)

where ak = 0.012, 0.003, 0.001, ck = 1, 1.5, 2, A = 0.2, fn1 = 10 Hz, fn2 = 40 Hz, β = 0.2π, and
rotational speed fr(t) = −2t2 + 7t + 20. n(t) denotes Gaussian white noise characterized
by a 2 dB signal–to–noise ratio. The duration of the signal is 1.5 s, and it is sampled at a
frequency of 2 kHz.

The waveform and Fourier spectrum of the simulated signal are depicted in Figure 4a,b,
respectively. Figure 5a illustrates the short–time Fourier transform spectrogram of the
simulated signal, revealing the presence of three time–varying harmonic components and
two constant frequency components. These frequency components exhibit significant
overlap and even crossover in the frequency domain. Additionally, the interference from
background noise and limitations in time–frequency resolution further complicate the
identification process, making it challenging to determine the frequency structure of the
signal. Given the rotational frequency, the signal is resampled in the angular domain
according to fr(t), as shown in Figure 4c. Subsequently, a Fourier transform is applied to
the angular domain resampled signal to obtain the traditional order spectrum, presented
in Figure 4d. While three order components can be roughly identified in the figure, their
energy is not concentrated at their respective frequency orders but, rather, spreads around
them, leading to spectral aliasing between adjacent frequency orders. This is due to the
nonstationary nature of the amplitude envelopes in the angular domain, even after equal–
angle resampling, resulting in spectral leakage issues in the order spectrum.
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To address the above challenges, the proposed method is employed for the identifica-
tion of frequency components in the signal structure. Initially, the multi–order probabilistic
approach is utilized to accurately extract the instantaneous rotational speed from the raw
signal, providing a crucial input for subsequent instantaneous frequency calculation. The
time–frequency ridge is extracted from the probability density function, and an accurate
estimate of the instantaneous rotational speed is obtained through fitting. A comparison of
the instantaneous ridge, estimated rotational speed, and actual rotational speed is presented
in Figure 5b. The results demonstrate a high degree of agreement between the instanta-
neous rotational frequency fr(t) extracted using the multi–order probabilistic approach
and the true rotational frequency. This validates the superiority of the proposed method in
facilitating effective and efficient estimation of the instantaneous rotational speed without
relying on additional rotary encoders or tachometers.

Based on the estimated instantaneous rotational frequency fr(t), components can be
effectively separated through time–varying filtering. The validity of each separated mono–



Processes 2024, 12, 752 12 of 17

component is verified through the surrogate test, and the corresponding harmonic orders
are determined. Using the obtained rotational frequency fr(t), an exhaustive calculation of
the instantaneous frequencies k fr(t) for each harmonic order is performed, and they are fully
extracted using time–varying filtering. For each component, the generalized demodulation
function and inverse demodulation function are denoted as exp

{
−j2π[

∫
k fr(t)dt + f0t]

}
and

exp
{

j2π[
∫

k fr(t)dt + f0t]
}

, respectively, where f0 is set to one–quarter of the sampling fre-
quency. Through iterative applications of generalized demodulation, zero–phase filtering,
and inverse generalized demodulation steps, multiple order components are successfully
separated. However, not all of these separated components represent true rotational fre-
quency harmonics, as some may be spurious components arising from background noise.
To accurately identify the true components and eliminate noise interference, the surrogate
test is conducted on the separated components. As shown in Figure 6, among these compo-
nents, only those with instantaneous frequencies of fr(t), 1.5 fr(t), and 2 fr(t) exhibit lower
significance values compared to their surrogate data, indicating that they pass the test and
are identified as true components. The other components are recognized as spurious, aris-
ing from noise, which aligns perfectly with the actual simulation scenario. Therefore, it can
be concluded that the proposed method can adaptively identify and extract true rotational
frequency harmonic components while effectively eliminating irrelevant components and
background noise interference.
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After extracting the rotational frequency harmonic components, the mean values of
their amplitude envelopes are further calculated. By assigning the mean amplitude enve-
lope values and corresponding orders to each component, an optimized order spectrum is
constructed, as illustrated in Figure 7. Compared to the conventional order spectrum in
Figure 4b, the optimized version exhibits a higher concentration of energy at respective fre-
quency orders, boasting superior resolution. It clearly reveals the frequency order structure
along with the corresponding amplitude information.
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4. Experimental Validations for Rolling Element Bearing Fault Diagnosis

In this section, the proposed method is applied to the amplitude envelopes of bearing
vibration signals for the purpose of extracting fault characteristics and facilitating fault
diagnosis. This approach serves to validate the effectiveness of the proposed method in
accurately identifying and diagnosing faults.

4.1. Experiment Settings

Figure 8 shows a rolling element bearing test rig at the University of Ottawa. Table 1
lists the structural parameters of the bearings. Given the gearbox configuration parameters,
the characteristic frequency can be calculated. In the experiment, a defect occurs on
outer race of the experimental bearing. An accelerometer is mounted at the top of the
experimental bearing, to collect vibration signals at a sampling frequency of 200 kHz for a
duration of 7 s.
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Table 1. Bearing configuration.

Bearing Parameters Characteristic Frequency

Pitch Diameter Ball Diameter Number of Balls BPFI BPFO

38.52 mm 7.94 mm 9 5.43f r 3.57f r

4.2. Signal Analysis

Figure 9a,b present the waveform and Fourier spectrum, respectively. Upon exami-
nation of the short–time Fourier transform spectrogram in Figure 10a, the nonstationary
nature of the signal, along with noise interference components, becomes evident.
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Figure 10. Fault diagnosis of rolling element bearing signal.

To accurately identify these components, we employed the proposed method. Initially,
MOPA was utilized to precisely extract the instantaneous rotational speed information
of the main shaft, which is directly connected to the motor, from the intricate raw signal.
Subsequently, extraction of the time–frequency ridge lines from the probability density
function was conducted, followed by an accurate fitting process to derive the precise
instantaneous speed curve, as illustrated in Figure 10b.
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Leveraging this instantaneous speed information, we further conducted a compre-
hensive traversal calculation of the instantaneous frequencies corresponding to various
harmonic components. Through an iterative application of sophisticated steps including
generalized demodulation, zero–phase filtering, and inverse generalized demodulation, we
successfully achieved complete separation of the multi–order components. The surrogate
test confirmed the authenticity of the components presented in Figure 10c–e. Subsequently,
we calculated the mean amplitude envelopes of these components and combined them with
their corresponding order information to construct an optimized order spectrum. Com-
pared to the traditional order spectrogram shown in Figure 10f, the proposed spectrogram
depicted in Figure 10g not only reveals the frequency order details with remarkable clarity
but also effectively eliminates noise and irrelevant component interference, ensuring purity
and accuracy in the analysis results. Within the order features, we distinctly identified the
presence of the shaft rotation frequency and its harmonics (1, 2) fr, along with the outer
race fault frequency fo. This discovery aligns perfectly with the actual fault condition of
the bearing outer race, providing a robust foundation for fault diagnosis.

Based on the analysis results of simulation signals and experiment signals, Rényi
entropy calculations were performed for both the traditional order spectrum and the
proposed order spectrum. The comparison results are presented in Figure 11. Rényi
entropy represents the degree of energy concentration in the spectrum, where a smaller
entropy value indicates a higher degree of concentration. As shown in the figure, the
proposed order spectrum exhibits lower entropy values in both simulation and actual
signal applications. This significant result demonstrates the excellent performance of the
proposed method in revealing frequency structures, with high resolution, strong readability,
and effective energy concentration.
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The comparison between the proposed method and the traditional order analysis
method is shown in Table 2. The proposed method effectively avoids energy leakage
caused by irrelevant components and nonstationarity, and prevents errors introduced by
resampling. Compared with the traditional order spectrum, it exhibits more concentrated
energy and higher resolution.

Table 2. Comparison of our study with existing work.

Traditional Order Spectrum Proposed Order Spectrum

Is rotational speed data required? Yes No
Does energy leakage exist due to irrelevant components? Yes No
Does energy leakage exist due to nonstationarity? Yes No
Does error exist due to resampling? Yes No
Spectral energy concentration Low High
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5. Conclusions

Order spectrum analysis is widely applied in rotating machinery fault diagnosis un-
der time–varying operating conditions. However, it faces the challenges of inconvenient
instantaneous speed measurement, interference from irrelevant components, angular re-
sampling errors, and spectral leakage. To address these issues, a novel method based
on adaptive separation of time–varying components and order spectrum construction
is proposed. Compared with available methods, no tachometer is required, the interfer-
ences from speed–unrelated components are eliminated, and fine spectral resolution is
achieved. Results of the numerical simulation prove the correctness of the constructed
order spectrum based on adaptive component identification and time–varying amplitude
envelope. The outer race fault on a real–world rolling element bearing is successfully
diagnosed under time–varying speed conditions, by identifying twice the fault frequency
on the constructed order spectrum. In summary, the proposed method is validated to be
capable of characterizing time–varying multicomponent signals with high accuracy and
little interference, thus supporting rotating machinery fault diagnosis under time–varying
speed conditions. However, it should be noted that the proposed method has its limitations.
The process involved is relatively complex, requiring multiple steps and computations.
Additionally, the method demands a significant amount of computational power, which
may pose challenges in real–time applications or when dealing with large datasets. Despite
these limitations, the method still offers valuable insights into rotating machinery fault
diagnosis under time–varying speed conditions.
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