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Abstract: In low-voltage distribution networks, distributed energy storage systems (DESSs) are
widely used to manage load uncertainty and voltage stability. Accurate modeling and estimation of
voltage fluctuations are crucial to informed DESS dispatch decisions. However, existing parametric
probabilistic approaches have limitations in handling complex uncertainties, since they always rely on
predefined distributions and complex inference processes. To address this, we integrate the patch time
series Transformer model with the non-parametric Huberized composite quantile regression method
to reliably predict voltage fluctuation without distribution assumptions. Comparative simulations on
the IEEE 33-bus distribution network show that the proposed model reduces the DESS dispatch cost
by 6.23% compared to state-of-the-art parametric models.

Keywords: low-voltage distribution networks; distributed energy storage system; chance-constrained
programming; PatchTST; composite quantile regression; non-parametric probabilistic prediction

1. Introduction

Effective voltage management is essential to ensure the safe and stable operation of
low-voltage distribution networks [1,2]. However, the random nature of electrical loads
presents a significant challenge in maintaining the bus voltage within the nominal range [3].
These uncertainties may result in voltage fluctuations or exceedances, thereby jeopardizing
the stability and reliability of the power grid [4]. In recent decades, the distributed energy
storage system (DESS) has emerged as a vital solution to manage this challenge and
maintain voltage safety [5,6].

The accurate estimation of voltage fluctuation caused by the stochastic characteris-
tics of loads [7] enables the optimal dispatch of DESSs. Existing techniques for handling
uncertainties in distribution networks primarily include scenario-based stochastic pro-
gramming [8,9], robust optimization [10,11], chance-constrained programming [12,13], etc.
Among these, the chance-constrained programming approach is an effective approach that
directly incorporates uncertainties into the optimization model by defining constraints that
must be satisfied with a certain probability [14].

There are existing studies that investigate the formulations and solving methods for
the chance-constrained economic dispatch (CCED) problem. Ref. [15] introduces a new
probabilistic distribution model, called versatile distribution, to represent prediction errors
in wind power. This probabilistic distribution model is incorporated into the CCED prob-
lem that includes wind power, with the aim of reducing the non-linearity and complexity of
the problem. Ref. [16] also utilizes the versatile distribution to model the stochastic output
of wind turbines, thus transforming the probabilistic constraints of wind power in the
proposed decentralized CCED model into deterministic constraints. Although the fitting
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accuracy of the versatile distribution has been shown to outperform the Gussian and Bata
distributions, the parametric probabilistic forecasting method may face limitations when
dealing with complex uncertainties [14]. Therefore, some studies have begun exploring
non-parametric probabilistic forecasting methods to better capture the uncertainties of
renewable energy or electricity load. Ref. [17] combines extreme learning machines and
quantile regression to efficiently produce non-parametric probability forecasts for wind
power generation. Ref. [18] formulates a CCED model for DESS planning in active dis-
tribution networks, utilizing empirical probability density functions without parametric
assumptions and a numerical convolution method to deal with uncertainties of various
distributed energy resources (DERs). These studies validate that non-parametric probabilis-
tic forecasting methods can accurately estimate various quantiles of random variables in
the CCED problem without the need for any prior knowledge, statistical inference, or the
assumption of specific probability distributions. This enables a more accurate and efficient
conversion of the uncertain CCED problem into a linear programming problem.

Furthermore, with the applicability and extensibility of deep learning methods continu-
ously verified [19–21], their capabilities in time series forecasting have received widespread
attention [22–25]. Recently, the channel-independent patch time series Transformer (PatchTST)
model has been proven to exhibit exceptional performance in time series prediction [26]. Its
channel-independent processing, patching processing, and the Transformer architecture to-
gether enhance the model’s deep understanding of both global trends and granularity in
time-series data. Therefore, it is highly suitable to predict voltage fluctuations in distribution
networks affected by random loads.

In this paper, we integrate a non-parametric probabilistic forecasting approach, Huber-
ized Composite Quantile Regression (HuberCQR), into the Transformer-based PatchTST
model, to address the uncertainty of random loads in the DESS CCED problem. Huber-
CQR is an effective technique that combines the robustness of Huber loss [27,28] with the
flexibility of composite quantile regression (CQR) [29], enabling the model to generate
accurate probabilistic forecasts even in the presence of noisy or outlier data. By integrating
CQR into the PatchTST framework, we aim to leverage the Transformer’s ability to capture
complex temporal relationships while enhancing its prediction accuracy and efficiency
across different quantiles. This integration allows for more reliable and robust forecasting
of non-stationary voltage uncertainties, thereby facilitating more efficient and effective
decision-making in the DESS CCED problem.

Overall, the contributions of this paper can be concluded as follows: (1) This paper
leverages the non-parametric HuberCQR method to estimate composite quantiles of the
uncertain voltage fluctuation caused by random loads, which is vital for transforming the
original DESS CCED problem into linear form without complex mathematical derivations
and predefined probabilistic assumptions. (2) The Transformer-based PatchTST forecasting
framework integrated with the HuberCQR loss function is utilized to efficiently learn
the uncertainties of bus voltage fluctuations. (3) The Transformer-based non-parametric
probabilistic prediction framework demonstrates superior performance in providing accu-
rate quantification of the voltage fluctuation range, which facilitates an effective trade-off
between the DESS dispatch cost and the voltage violation risk.

The remainder of this paper is organized as follows. The problem formulation of
the DESS CCED for voltage management in the distribution network is introduced in
Section 2. Section 3 presents the Transformer-based PatchTST forecasting framework
integrated with the HuberCQR loss function for composite quantile predictions of voltage
fluctuation. In Section 4, comprehensive case studies are conducted to verify the effective
and economical dispatch of DESS based on the proposed method. Finally, Section 5
concludes the paper.

2. Problem Formulation

In this section, we formulate a day-ahead DESS CCED problem for voltage manage-
ment in a distribution network considering load uncertainty. Then we demonstrate how to
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transform chance constraints into deterministic constraints by introducing the cumulative
distribution function (CDF) of a random variable and its inverse function: quantile function.

2.1. Linear DistFlow Model

Consider a radial distribution network denoted by (N ,L), where N := {1, · · · , N}
represents the distribution network buses and L ⊂ {N ×N} represents the distribution
lines. Let Li,1 represent the branch on the direct path from bus i to the reference bus,
with i ∈ N\1 denoting the non-reference bus. Define the set of descendants of bus m
as Nm, and each branch between two buses as (n, m). Take the IEEE 33-bus distribution
network (shown in Figure 1) as an illustrative case, where bus #1 is the reference bus with a
voltage magnitude of 1 p.u. The set L25,1 includes direct branches connecting bus #25 to the
reference bus, i.e., {(1, 2), (2, 3), (3, 23), (23, 24), (24, 25)}, and N6 refers to the descendants
of bus #6, i.e., {7, 8, . . . , 18, 26, 27, . . . , 33}.
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Figure 1. IEEE 33-bus radial distribution network [30].

In this paper, we adopt the Linear DistFlow model to describe the power flow in the
distribution network [31,32], and assume a common scenario where the DESS only offers
active power support [18]:

Vi,t = 1 − ∑
nm∈Li,1

(2RnmPnm,t + 2XnmQnm,t), (1)

Pnm,t = ∑
j∈Nm

(Pcha
j,t − Pdis

j,t + P̃L
j,t), (2)

Qnm,t = ∑
j∈Nm

Q̃L
j,t (3)

where Vi,t represents the bus voltage squared, calculated based on the line resistance Rnm
and reactance Xnm, considering the active and reactive power flows Pnm,t and Qnm,t. The ac-
tive power flows Pnm,t and Qnm,t are determined by adding the active power consumption
of DESSs (Pcha

j,t − Pdis
j,t ) and random loads P̃L

j,t on all descendants of the bus m, while reactive

power flow Qnm,t is calculated as the sum of net reactive power consumption Q̃L
j,t. This

linear power flow model illustrates how the spatial distribution and electrical power of
DESSs and random loads influence the bus voltage.

2.2. Objective and Constraints

This section introduces the objectives and constraints of the DESS CCED problem and
presents the deterministic conversion of the chance constraints.

2.2.1. Objective

The objective of the DESS CCED problem in this paper is to minimize the total opera-
tional cost of all DESSs in the distribution network [33] as formulated in Equation (4):

min ∑
i∈NB

T

∑
t=1

λ(1 + η) · (Pcha
i,t + Pdis

i,t )∆t (4)
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where NB is the set of all DESSs in the distribution network, T is the entire dispatch horizon,
λ is the cost per unit of charging and discharging of a DESS ($/MWh), η is the charging
and discharging efficiency (%), Pcha

i,t and Pdis
i,t are the charging and discharging power of

DESS i at time t (MW), and ∆t is the dispatch time interval.
This formulation reflects the wear cost from battery degradation due to the charg-

ing/discharging operation. Under a reasonable depth of discharge, the overall capacity
for charging/discharging of a DESS remains at a certain level. Therefore, the wear cost
can be considered to be nearly proportional to the charging/discharging energy. Moreover,
the term 1 + η considers the energy loss during the charging and discharging process due
to efficiency.

2.2.2. Constraints

The DESS CCED problem should be subject to the following constraints:

0 ≤ Pcha
i,t ≤ Icha

i,t Pcha
i,max (5)

0 ≤ Pdis
i,t ≤ Idis

i,t Pdis
i,max (6)

0 ≤ Icha
i,t + Idis

i,t ≤ 1, (7)

SOCi,t = SOCi,t−1 + (ηPcha
i,t /Eb

i −
1

ηEb
i

Pdis
i,t )∆t (8)

SOCi,min ≤ SOCi,t ≤ SOCi,max (9)

Pr{Vi,t ≤ Vi,min} ≤ ϵ (10)

Pr{Vi,t ≥ Vi,max} ≤ ϵ (11)

where Icha
i,t and Idis

i,t represent the charging and discharging states of DESS i at time t, with
a value of 1 indicating charging/discharging and 0 otherwise; Pcha

i,max and Pdis
i,max mean the

maximum allowable charging/discharging power of DESS; SOC is the state of charge of
the battery, indicating the ratio of the remaining capacity to the total capacity; SOCi,min
and SOCi,max signify the minimum/maximum allowed SOC lower limits of DESS i; Eb

i
represents the DESS capacity; Vi,t is bus voltage at time t calculated by the Equation (1);
Vi,min and Vi,max represent the lower/upper voltage thresholds of bus i; and ϵ symbolizes
the allowed violation probability of the voltage constraint.

Equations (5)–(9) define the operational constraints of the DESS unit. More specifi-
cally, Equations (5) and (6) give the limits of the DESS charging and discharging power.
Equation (7) indicates that DESS cannot be simultaneously in charging and discharging
states. Equations (8) and (9) describe the energy balance and depth of discharge (DOD)
limit of DESS. Equations (10) and (11) assume that the probability of bus voltage violation
remains below a certain level, which is vital for the safe operation of the power system.

2.2.3. Deterministic Conversion of Chance Constraints

To solve the formulated DESS CCED model (4)–(11), the chance constraints (10) and (11)
need to be transformed into deterministic constraints. Then, the optimal solution of
the formulated model can be obtained directly by applying professional solvers to the
resulting mixed-integer linear programming (MILP) problem. Next, the conversion of
chance constraints into deterministic linear constraints will be explained.

To begin with, we substitute Equations (1)–(3) into (10) and obtain:

Pr

1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− ∑
nm∈Li,1

∑
j∈Nm

(2Rnm P̃L
j,t + 2XnmQ̃L

j,t) ≤ Vi,min

 ≤ ϵ (12)
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Then, a new random variable Ξi,t is defined, which indicates the voltage drop caused
by random loads compared with the reference voltage (1 p.u.) at the reference bus:

Ξi,t := ∑
nm∈Li,1

∑
j∈Nm

(2Rnm P̃L
j,t + 2XnmQ̃L

j,t) (13)

Thereafter, Equation (12) can be expressed as Equation (14) by substituting Equation (13).
Equation (15) takes the complement of Equation (14). Next, Equation (16) substitutes the
CDF definition for the probability term in Equation (15), which reflects the probability
that the random variable Ξi,t is less than or equal to a certain value. Finally, Equation (17)
incorporates the inverse CDF term, F−1

Ξ (·), resulting in an equivalent expression of the
original chance constraint but now in a deterministic form:

Pr

Ξi,t ≥ 1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− Vi,min

 ≤ ϵ (14)

⇒ Pr

Ξi,t ≤ 1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− Vi,min

 ≥ 1 − ϵ (15)

⇒ FΞ(1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− Vi,min) ≥ 1 − ϵ (16)

⇒ 1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− Vi,min ≥ F−1
Ξ (1 − ϵ) (17)

A similar transformation can be applied to Equation (11), resulting in:

1 − ∑
nm∈Li,1

∑
j∈Nm

2Rnm(Pcha
j,t − Pdis

j,t )− Vi,max ≤ F−1
Ξ (ϵ) (18)

In Equations (17) and (18), F−1
Ξ (1− ϵ) and F−1

Ξ (ϵ) can be interpreted as the quantiles of
Ξ at level 1 − ϵ and ϵ, according to the inverse relationship between CDF and the quantile
function. For simplicity of notation, we denote F−1

Ξ (1 − ϵ) and F−1
Ξ (ϵ) by qi,t(1 − ϵ) and

qi,t(ϵ), respectively. In other words, the voltage violation probability ϵ is also the probability
level that defines qi,t(ϵ). Thus, the key to transforming the DESS CCED model into a directly
solvable MILP problem is being able to accurately obtain quantiles of Ξi,t.

However, the probability distributions of bus voltage fluctuations are often complex
and unknown, which is due to the network topology and random loads. In addition,
analytical expressions of the quantile function may not be obtainable even though the
distribution is known. Therefore, technique is needed to accurately predict the values of
the voltage fluctuation probability distribution at composite quantiles without relying on
the assumptions of underlying probability distribution and complex numerical derivation.

In Section 3, we will introduce a learning-driven prediction model, which leverages
the strengths of the improved Transformer model for time series forecasting and the robust
CQR method for multi-quantile output. The proposed prediction model can efficiently
capture the bus voltage fluctuation patterns affected by temporal random loads.

3. Transformed-Based Non-Parametric Probabilistic Prediction Model

In this section, we introduce the PatchTST prediction model combined with the
HuberCQR method for the estimation of qi,t(·).

PatchTST is a deep learning model that excels at capturing complex temporal patterns
in time series data. In our problem, we use the PatchTST model to learn the patterns of
voltage fluctuations at each non-reference bus caused by random loads. CQR is a non-
parametric statistical method that can simultaneously estimate composite quantiles of a
variable. It extends traditional quantile regression, which estimates a single quantile at
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a time. HuberCQR is a robust improvement over the CQR method, where it introduces
Huber loss to make CQR predictions less sensitive to outliers.

Specifically, in our framework, we utilize the HuberCQR method to define a loss func-
tion, which measures the difference between real data and predicted composite quantiles.
The training process of the PatchTST model aims to minimize the average of this HuberCQR
loss function over the entire training period. Overall, the integration of the PatchTST model
and HuberCQR loss function forms a powerful framework that can capture temporal fluc-
tuations of voltages at different buses in the distribution network, and generate composite
predictions at specified probability levels.

3.1. PatchTST Prediction Model

This section introduces the framework of the PatchTST prediction model combined
with the HuberCQR loss function, and then outlines its key components.

3.1.1. PatchTST Framework

The framework of the PatchTST prediction model is given in Figure 2. The model’s
inputs are the collection of historical data of Ξi,t, namely, the voltage drop fluctuations at
each non-reference bus, calculated by Equation (13). The outputs are the predictions of Ξi,t
at different quantile levels, i.e., qi,t(·).

Channel      Independence

Input Data

··· ···

 

···    ···

Projection & Position Embedding

Flatten & Linear Head

Transformer Encoder

Instance Norm & Pactching

Add & Norm

Feed forward

Add & Norm
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V

Scaled Dot-Product Attention
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19

Predicted Voltage Quantiles
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Output Data

Figure 2. The framework of PatchTST.

Initially, PatchTST divides the input multi-bus voltage time series into separate chan-
nels. Then, the independent multi-bus voltage time series in each channel is normalized
to ensure consistency across different scales. Following normalization, each time series is
segmented into patches. After that, the projection and position embedding step projects
each patch into a higher-dimensional space and integrates position embedding, to preserve
the sequential context of the original time series. The Transformer Encoder, which is the
essence of the classic Transformer frameworks, then analyzes patches and understands
both overarching trends and fine-grained temporal dynamics in the voltage data. Further,
the Flatten and Linear Head step combines the output of the Transformer Encoder by
flattening it and using a linear transformation to produce accurate voltage predictions at
various quantiles. Once the PatchTST backbone processes the data, the predicted voltage
drops at different quantiles, and qi,t(·) are compared against actual values using the Hu-
berCQR loss function. By minimizing the HuberCQR loss, the model’s parameters are
updated, resulting in a trained PatchTST model. Finally, the well-trained PatchTST model
outputs a concatenation of composite quantiles on different buses.

3.1.2. Core Components of PatchTST Backbone

PatchTST enhances prediction capabilities, mainly benefiting from three core com-
ponents: channel independence process, patching process, and the multi-head attention
mechanism of the Transformer backbone.
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Channel Independence for Precision Analysis: Channel independence refers to the
treatment of separating multivariate time series into individual channels which share
the same embedding and Transformer weights. In the context of our problem, PatchTST
separates the voltage fluctuation time series for each bus (Ξi,t) into distinct channels. This
segregation allows for the generation of customized attention maps for each bus voltage,
ensuring the accuracy of voltage predictions. The channel-independence model has several
advantages over the channel-mixing model: (1) reducing computational complexity and
improving processing speed, as the model can process each channel in parallel and a
faster learning convergence rate can be achieved; (2) reducing risk of over-fitting, due to
the smaller number of parameters for modeling complex interactions between different
channels; and (3) increasing robustness to noise by preventing its propagation across
mixed channels.

Efficient Data Segmentation with Patching: PatchTST employs a patching technique to
effectively manage high-dimensional time series data. This technique divides a time series
x(i) ∈ R1×L into N patches of length P, denoted as x(i)p ∈ RP×N , achieving a reduction in
time and space complexity by a factor of stride: N ≈ L/S. This technique not only captures
the local information within each subsequence but also eases the computational and storage
pressure when processing the entire series, enhancing model performance and efficiency.

Comprehensive Insight with Multi-Head Attention Mechanism: The multi-head at-
tention mechanism in PatchTST is vital for analyzing complex dependencies in the input
patches on various time scales. Specifically, the multi-head attention mechanism operates
through the following steps:

1. Input Transformation: This step transforms each patch as a whole to capture different
aspects of the data. For each attention head i, the entire patches represented by
original queries (Q), keys (K), and values (V) are transformed by multiplying the
respective weight matrices WQ

i , WK
i , and WV

i . This transformation is expressed by
Equation (19):

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i (19)

Here, the transformation is applied at the patch level, treating each patch as an entity
to grasp its unique characteristics and relationships with other patches.

2. Scaled Dot-Product Attention: This step assesses the relevance of each patch in
relation to the others by calculating the similarity between queries and keys at the
patch level. For each head i, the similarity between transformed queries Qi and keys
Ki is determined by dot products and scaling. The similarity scores for each head
QiKT

i√
dk

are then converted into a probability distribution using the softmax function.

A weighted summation is performed on the transformed values Vi based on this
distribution as shown in Equation (20):

headiAttention(Qi, Ki, Vi) = softmax

(
QiKT

i√
dk

)
Vi (20)

This process enables the model to prioritize patches based on their significance in
predicting outcomes, emphasizing the importance of understanding interactions at
the patch level.

3. Output Merging: By integrating insights from all heads, this step provides a com-
prehensive analysis that improves prediction accuracy through various temporal
perspectives. The concatenated outputs of all heads are merged via an additional
linear transformation WO as illustrated by Equation (21):

MultiHead(Q, K, V) = Concat(head1, head2, . . . , headh)WO, (21)
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where WO is the weight matrix designed to combine the insights from individ-
ual patches.

3.2. HuberCQR Loss Function

As illustrated in Section 3.1.1, the loss function is the key to training the PatchTST
model. In Ref. [26], where the PatchTST method was first introduced, the loss function of
mean squared error was used to measure the discrepancy between the predicted values
and actual values, but this design was only suitable for point predictions. In our case, we
aim to obtain composite probabilistic predictions. In addition, it is significant to ensure
the accuracy of the prediction throughout the distribution range for quantile predictions.
Thus, we integrate the Huber loss function to provide a more reliable error metric that is
less sensitive to extreme deviations. Next, we will provide a detailed description of the
HuberCQR loss function.

First, the classic formula for quantile regression is [34]:

min
βϵ

[
T

∑
t=1

ρϵ(yt − q̂t(ϵ))

]
(22)

where t is the total training epochs, ϵ is the quantile level of interest, yt is the true data,
q̂t(ϵ) is the predicted quantile value, and ρϵ(·) is the quantile loss function, defined as:

ρϵ(u) =

{
ϵ · u if u ≥ 0
(ϵ − 1) · u if u < 0

(23)

where u := yt − q̂t(ϵ), which is the difference between the actual value yt and the predicted
quantile value q̂t(ϵ). Note that the quantile loss function applies penalties to residuals
in a way that captures the asymmetry inherent in quantile estimation, giving different
importance to underestimations and overestimations relative to the target quantile level.

However, in the classic quantile regression formula, the objective is to find the model
parameters βϵ that minimize the overall loss. This allows the prediction model to estimate
the single quantile of interest. CQR extends this original loss function by simultaneously
estimating composite quantiles of interest. The loss function of CQR can be written as
follows, which minimizes the average quantile loss [29]:

min
βK

1
KT

K

∑
k=1

T

∑
t=1

ρϵk (yt − q̂t(ϵk)) (24)

where ρϵk (·) measures the quantile loss for the ϵk-th quantile q̂t(ϵk), and βK represents the
optimal parameters set of prediction model.

Although the CQR loss function addresses the concern of estimating composite quan-
tiles simultaneously, it may also face the challenge of obtaining skewed quantile estimates
due to outliers. Therefore, we combine the CQR loss function with the Huber loss function
to tackle this challenge. Huber loss, with its dual approach of applying squared loss for
smaller errors and linear loss for larger errors, can effectively reduce the impact of outliers.

The formula for Huber loss is as follows [28]:

Hδ(d) =

{
1
2 d2 if |d| ≤ δ

δ
(
|d| − 1

2 δ
)

otherwise.
(25)

where δ is a tuning parameter that determines the threshold between utilizing squared loss
or linear loss, which balances the trade-off between robustness to outliers and sensitivity to
small prediction losses; d is the difference between the true value and the prediction.
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Then, the HuberCQR loss is formulated as Equation (26), through replacing the
quantile loss ρϵk (yt − q̂t(ϵk)) in Equation (24) with Huber loss Hδ(yt − q̂t(ϵk)) of predicted
quantiles q̂t(ϵk), k ∈ {1, · · · , K}:

1
KT

K

∑
k=1

T

∑
t=1

Hδ(yt − q̂t(ϵk)) (26)

In addition, the HuberCQR loss in each channel needs to be gathered and averaged to
obtain the overall target loss:

min
β

1
NKT

N

∑
i=1

K

∑
k=1

T

∑
t=1

Hδ(yi,t − q̂i,t(ϵk)) (27)

Through training the PatchTST prediction model by loss function (27) and updating the
model parameters β, we achieve an optimized fit to the historical data, enabling the model to
accurately predict bus voltage fluctuations at multiple quantiles in the distribution network.

4. Case Study

Numerical tests are conducted on the IEEE 33-bus radial distribution network. The
topology of the distribution network is illustrated in Figure 1, where the nominal voltage
and the base power are 12.66 kV and 1 MVA, respectively. The minimum and maximum
voltage thresholds for each non-reference bus Vi,min and Vi,max are set to 0.95 p.u. and
1.05 p.u., respectively. Additional parameters of this network are available in [30]. To simu-
late dynamic loads, we aggregated hourly electricity consumption data from encrypted
smart meters of users provided by the Spanish company GoiEner for each bus. This
dataset [35], which was publicly released in January 2024, includes load data for various
types of users, i.e., industrial, commercial, and residential. We extract the load data from
1 June 2021, 00:00 to 31 May 2022, 23:00, ensuring that the average load level matches the
static load in the original network model for each bus, and the ratio of reactive power to
active power is maintained.

The simulation process and the input/output data at each step are as follows. All
simulations were run on a personal laptop with an Apple M2 CPU and 8 GB RAM.

Step 1: Based on the IEEE 33-bus distribution network parameters and the dynamic
load data of each bus, we can compute the hourly bus voltage drop magnitude Ξi,t caused
by the random loads throughout the year using Equation (13).

Step 2: The calculated Ξi,t from 1 June 2021 00:00 to 25 May 2022 23:00 serves as input
for training the PatchTST model (with the last week of May 2022 as the test set). The hy-
perparameters of the PatchTST model can be found in Table 1. Additionally, the PatchTST
model utilizes two loss functions, one grounded in the Gaussian Mixture Model (GMM) and
the other based on the proposed HuberCQR model, for comparison purposes. GMM is a
powerful parametric model that can simulate arbitrary probability distributions by combining
a finite number of Gaussian components. In the simulations, the tuning parameter δ for the
HuberCQR loss function is set to 0.001, and the number of mixture components for GMM loss
function is set to 3. The parameters N, K and T of Equation (27) are 32, 2, and 24, respectively.

Table 1. Hyperparameters of PatchTST prediction model.

Forecast
Horizon

Autoregressive
Inputs Size Patch Length Stride of Patch Hidden Layer

Size
Number of
Multi-Head Learning Rate

168 24 8 8 64 64 0.005

Step 3: Based on the trained models under the two loss functions, with the probability
of voltage exceeding both upper and lower thresholds set to less than ϵ = 0.1, the voltage
drop values at different quantile levels, i.e., qi,t(0.1) and qi,t(0.9), can be obtained.
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Step 4: We input qi,t(0.1) and qi,t(0.9) obtained in Step 3 into the DESS CCED model
after a deterministic transformation. With the DESS parameters given in Table 2 [36], we
can finally output the optimal DESS scheduling scheme.

Table 2. Operational parameters of DESS.

Pcha
i,max/Pdis

i,max [SOCi,min, SOCi,max] η Eb λ

0.6 p.u. [0.2, 0.9] 90% 4 p.u. 4690 $/MWh

4.1. Comparison of Prediction Accuracy

Take 26 May 2022 as the test/scheduling day, and use the trained PatchTST model to
predict the hourly voltage drop range caused by random loads. The theoretical probability
range is set to 80%, formed by qi,t(0.1) and qi,t(0.9).

The coverage rate (CR) is a metric that measures how well the predicted interval
captures the true values. Specifically, we denote the proportion of true values that fall
within the predicted interval [qi,t(0.1), qi,t(0.9)] by CRactual, and the target coverage rate by
CRtheoretical, which is 80% in this case.

Figure 3 compares the Coverage Rate Deviation Ratio (CRDR) for the PatchTST model
with the HuberCQR loss function and the GMM loss function. The CRDR is defined by
Equation (28). A lower CRDR indicates that the actual coverage rate achieved by the
model is closer to the theoretical 80% target, meaning the model is making more accurate
predictions of the voltage fluctuation range:

CRDiff =
|CRactual − CRtheoretical|

CRtheoretical
(28)

The figure shows that the CRDR for the HuberCQR-based PatchTST model is con-
sistently lower across all non-reference buses compared to the GMM-based model. This
suggests that the HuberCQR-based model performs better in prediction accuracy. This is
crucial for making precise dispatch decisions for DESS, since the predicted qi,t(0.1) and
qi,t(0.9) directly influence the operational limits of DESS through Equations (17) and (18).
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Figure 3. Coverage rate comparison under the two prediction models.

4.2. Comparison of DESS Dispatch Results

After evaluating the accuracy of the coverage rates between two probabilistic pre-
diction models, we utilize the predictions to guide the economic scheduling of DESS and
compare the cost-effectiveness of the resulting schedules. Specifically, the predicted quan-
tiles qi,t(ϵ) and qi,t(1 − ϵ) are substituted into the DESS CCED model, and the chance
constraints for addressing the probabilities of bus voltage violations can be transformed
into solvable deterministic constraints.
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In the simulation, DESS integration bus is set to #18. Figure 4 shows that the more
accurate estimation of bus voltage fluctuations under the HuberCQR-based PatchTST
model leads to a lower DOD for the DESS, implying less degradation. The dispatch-related
operating costs of the DESS further corroborate this point. Specifically, the daily dispatch
cost based on the PatchTST model with the HuberCQR loss function is $1507.2 lower
(a 6.23% reduction) compared to the cost based on the PatchTST model with the GMM loss
function. The reduced operating cost highlights the practical benefits of the HuberCQR-
based PatchTST model in optimizing DESS dispatch under uncertainty.
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Figure 4. DESS SOC dispatch results at bus #18.

4.3. Comparison of Bus Voltage

After obtaining the DESS scheduling results based on the two prediction models, we
can compare the bus voltage conditions by combining the DESS scheduling results and
the actual load data to verify whether the proposed methods have handled the chance
constraints properly. Figure 5 shows the voltage conditions of bus #18 in the cases without
DESS and with DESS dispatched based on the two prediction models. It can be seen
that without DESS, the bus voltage is below the threshold most of the time. In contrast,
with dispatching DESS under the two models, the probability of bus voltage exceeding
the limits is less than setting ϵ = 0.1, which is actually 0.04. This result reflects that both
prediction models can well predict the risk of voltage fluctuation and fully utilize the
capability of DESS in voltage management. Combining the results from the Section 4.2,
it can be seen that the proposed scheduling scheme based on the HuberCQR prediction
results can achieve the same effectiveness of voltage management as the scheme based on
the GMM model, but with lower DESS scheduling costs.
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Figure 5. Voltage at bus #18.

Furthermore, we analyze the 3D surface plots of the voltage levels under the cases
under the HuberCQR-based and GMM-based model at different buses and time steps. It is
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observed from Figure 6 that the surface plot with the HuberCQR model shows a relatively
smooth surface with fewer peaks and valleys, indicating that the predicted voltages are
more stable across different buses and times. In contrast, the plot of the GMM model
exhibits a more rugged surface with more pronounced peaks and valleys, suggesting
that this model has a greater variance in voltage prediction. This result verifies that the
performance of the HuberCQR-based model is consistent with its theoretical design, and it
is more robust in predicting voltage fluctuations, with stronger ability to resist outlier risks.

(a) HuberCQR (b) GMM

Figure 6. Three-dimensional surface plots of the voltage levels under the two prediction models.

5. Conclusions

As the types and scales of loads continue to increase, voltage issues in distribution net-
works become more pronounced. DESS can significantly mitigate the gradually intensifying
voltage violation problems in distribution networks. Due to randomness and uncertainty
of loads, the scheduling of DESS requires accurate prediction of the potential range of
voltage fluctuations caused by random loads. Hence, this paper proposes a framework that
combines deep learning with non-parametric probabilistic prediction method. Specifically,
by utilizing a Transformer-based time series prediction model and an improved composite
quantile regression technique, the DESS CCED problem considering voltage safety can be
simplified into a feasible MILP problem, without the need for preset probability distribu-
tions of random variables and complex computations. Numerical experiments show that
under the same voltage risk management effectiveness, the dispatching cost of DESS based
on the proposed non-parametric probabilistic prediction model is lower than that based on
state-of-the-art parametric models. Overall, this paper provides an efficient and economical
solution for DESS dispatch considering load uncertainty and distribution network voltage
safety. In the future, we hope to explore how prediction accuracy of the proposed model
impacts the DESS scheduling results.
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