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Abstract: In response to the limitations of existing evaluation methods for gas well types in tight
sandstone gas reservoirs, characterized by low indicator dimensions and a reliance on traditional
methods with low prediction accuracy, therefore, a novel approach based on a two-dimensional
convolutional neural network (2D-CNN) is proposed for predicting gas well types. First, gas well
features are hierarchically selected using variance filtering, correlation coefficients, and the XGBoost
algorithm. Then, gas well types are determined via spectral clustering, with each gas well labeled
accordingly. Finally, the selected features are inputted, and classification labels are outputted into
the 2D-CNN, where convolutional layers extract features of gas well indicators, and the pooling
layer, which, trained by the backpropagation of CNN, performs secondary dimensionality reduction.
A 2D-CNN gas well classification prediction model is constructed, and the softmax function is
employed to determine well classifications. This methodology is applied to a specific tight gas
reservoir. The study findings indicate the following: (1) Via two rounds of feature selection using
the new algorithm, the number of gas well indicator dimensions is reduced from 29 to 15, thereby
reducing the computational complexity of the model. (2) Gas wells are categorized into high, medium,
and low types, addressing a deep learning multi-class prediction problem. (3) The new method
achieves an accuracy of 0.99 and a loss value of 0.03, outperforming BP neural networks, XGBoost,
LightGBM, long short-term memory networks (LSTMs), and one-dimensional convolutional neural
networks (1D-CNNs). Overall, this innovative approach demonstrates superior efficacy in predicting
gas well types, which is particularly valuable for tight sandstone gas reservoirs.

Keywords: type of gas well; gas well development indicators; deep learning; two-dimensional
convolutional neural network; multi-class prediction

1. Introduction

The global demand for unconventional resources is rising, driven by the develop-
ment of oil drilling and production technology. On one hand, with the development of
technology, it has become feasible in theory and practice to excavate the hydrocarbons
stored in some unconventional resources (such as shale/tight reservoirs) [1]. On the other
hand, conventional natural gas reserves have reduced while the global demand for energy
continues to increase, emphasizing the need to explore unconventional gas sources [2].

Tight gas sand is one of the most common unconventional natural gas resources in
the world, but its low productivity and low permeability increase the difficulty of oil
extraction [3]. The standard industry definition of tight gas is a reservoir system with low
permeability (usually less than 0.1 mD) and low porosity (usually less than 10%), which
usually occurs in sandstone formations, shale formations, and coal seams [4]. In addition,
the definition introduces the importance of increasing reservoir production via hydraulic
fracturing in modern tight gas.
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Tight sandstone gas reservoirs have low porosity, low permeability, strong heterogene-
ity, poor physical properties, and poor connectivity. During exploitation, the formation
pressure decreases quickly, resulting in low production and thus low recovery. Even in the
same study area, different gas wells have significant reservoir differences and are exploited
in different ways, so it is necessary to classify gas wells in this study area with relatively
high accuracy.

With the continuous development of artificial intelligence technology, the advantages
of machine learning and deep learning algorithms to improve business decision-making
and operational efficiency have always attracted attention within the industry. Machine
learning models are trained to predict or classify problems. Deep learning belongs to
a branch of machine learning, which is a learning method that uses a deeper network
structure to extract more feature information to achieve prediction or classification. The
existing traditional machine learning classification methods mainly include K-nearest
neighbors, logistic regression, and Fisher discriminant, but the classification effect is good
in the case of low-dimensional data, and the effect of solving high-dimensional problems is
poor. Therefore, the current mainstream high-dimensional data classification methods are
mainly deep learning algorithms, including the single model of 1D-CNN, 2D-CNN, LSTM,
or the hybrid model of CNN-LSTM.

The problem of gas well class prediction in tight sandstone gas reservoirs can be
mainly divided into two categories, namely binary class prediction and multi-class predic-
tion problems. The problem of class prediction has also been solved in different areas, such
as medicine, finance, and sentiment analysis. In addition, there have been studies using
2D-CNN models for binary class prediction in the financial and medical industries. For
example, Weina Qin proposed a financial risk early warning method based on a convolu-
tional neural network and compared it with three other models, finding that the prediction
accuracy of the new model was 97.1%, which was significantly higher than that of other
models [5] li Ghulam et al. proposed a new method based on deep learning to improve
the prediction of the dichotomous classification of anticancer peptides. They extracted
important features via the deviation between the dipeptide and the expected average (DDE).
Meanwhile, they utilize the 2D-CNN model to train and predict the data set. The accuracy
of the model on the test set is 75%. The experimental results show that this method achieves
the best performance and can predict ACPs more accurately than the existing methods in
all the articles [6]. In addition, speech emotion recognition has also employed multi-class
prediction. For example, Jianfeng Zhao et al. used the 1D-CNN-LSTM network and 2D-
CNN-LSTM network to learn deep emotion features to recognize speech emotion. Their
performance is superior to the traditional methods of deep belief network (DBN) and CNN
in the selected database. The 2D-CNN-LSTM network has achieved 95.33% and 95.89%
recognition accuracy based on speaker experiment and independent speaker experiment,
respectively; which are excellent performances in speech emotion recognition [7].

Because little research has been conducted for the identification of gas well types in
tight sandstone gas reservoirs, in this paper, research has been conducted on the identi-
fication of oil and gas reservoirs to the drilling safety risks. As for the binary prediction
model, Shaowei Pan et al. synthesised the features and advantages of CNN and LSTM, and
built a combined model containing CNN and LSTM to more accurately mine the internal
correlations in the oil well production data, thus improving the prediction accuracy [8].
In order to further improve the efficiency of the model and reduce the dependence on
parameters, some drilling parameters closely related to overflow were selected. The experi-
ments show that the network structure using CNN-LSTM is superior to the single CNN
and the single LSTM structure, and the prediction accuracy can reach 89.55% [9]. For the
multi-class prediction problem, HU Wanjun et al. used the method of combining the convo-
lution neural network and BP neural network to deeply and effectively identify the safety
risk characteristics in gas drilling, and they obtained that the identification accuracy of
various potential risks in gas drilling is about 90% [10]. In addition, in order to improve the
identification accuracy of high-quality reservoirs in the reservoir, Linqi Zhu et al. proposed
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a method combining the over-sampling method based on logging data and the random
forest algorithm, which remarkably improved the accuracy of reservoir identification from
44% to 78% compared with other machine learning algorithms [11]. But, the prediction
accuracy of oil and gas reservoir identification and drilling safety risk identification is still
lower than 90%. Since the accuracy of the 2D-CNN-LSTM model in multi-class prediction
of speech emotion recognition has reached more than 95%, this model can also be applied
to multi-class prediction of gas well types in tight sandstone.

This article used a new method based on a two-dimensional convolutional neural
network (2D-CNN) in deep learning. Utilizing the significant characteristics of the gas
well excavated by the convolution layer, the calculation depth of the network is surged
by increasing the convolution operation, thus improving the prediction accuracy of the
model. So, in this paper, the 2D-CNN model is first applied to the classified prediction of
tight sandstone gas wells, realizing the identification of gas well types and then effectively
evaluating the field operation of the gas field.

2. Materials and Methods
2.1. XGBoost Algorithm

XGBoost version 1.4.2 is an effective decision tree algorithm [12]. As a common
machine learning algorithm, a decision tree is often used for classification problems. Due
to its low computational complexity, easy interpretation of output results, insensitivity to
missing intermediate values, and ability to deal with irrelevant feature variables, it has
been widely used in data analysis and data mining [13]. However, the potential of decision
tree models is limited by problems such as poor stability, sensitivity to data distribution,
propensity to fit, and unreliable generalization performance. With the development of
artificial intelligence technology, the XGBoost algorithm has shown good performance on
classification problems [14]. It integrates multiple weak learners via combinatorial learning
to build a strong learner to eliminate these limitations and improve its performance.

Due to its high performance in dealing with classification problems, it has been widely
used in the field of data mining and intelligent prediction. The objective function of the
XGBoost model includes a loss function and a regularization term. The regularization
term controls the complexity of the tree model to achieve optimization and prevent the
overfitting problem, which also provides a fast and reliable model for many engineering
simulations. The formula for data prediction using the XGBoost model is as follows:

obj(t) =
n

∑
i=1

L(yi, ŷ(t)i ) +
t

∑
k=1

Ω( ft) (1)

where yi—real value, ŷ(t)i —the prediction at the t-th round, L(yi, ŷ(t)i )—loss function, ft—a
term denoting the structure of the decision tree, and Ω( ft)—regularization term given by
the following formula:

Ω( ft) = γT +
1
2

λ∥w∥2 (2)

where γ and λ are penalty coefficients, T—number of leaves, and w—weight of leaves.

2.2. Spectral Clustering

Compared with the traditional K-means clustering, spectral clustering (SC) [15] is
more adaptable to data, which has a more ideal clustering effect, and it is easy to implement,
so it has been widely used. SC is based on graph theory, and its core idea is to treat each
sample in the data set as a vertex in the space, and these vertices can be connected by edges.
The edge weight is given by quantifying the similarity between variables. The higher the
similarity, the greater the weight and the closer the distance between the variables. For a
graph G, it is described by the set C of points and the set E of edges, namely m, as shown
in Figure 1.
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Figure 1. Spectral clustering. The dashed line refers to the optimal split line.

The goal of SC is to maximize the sum of weights within subgraphs and minimize the
sum of weights between subgraphs via graph cutting.

In order to quantify the similarity of gas well development indicators, vectors
Q = [q1, q2,· · · , qn] and O = [o1, o2, · · · , on] are set, and the Pearson correlation coeffi-
cient between them is

pQO =

n
∑

i=1
(qi − q)(oi − o)√

n
∑

i=1
(qi − q)2

√
n
∑

i=1
(oi − o)2

(3)

where q is the average value of vector Q, and o is the average of vector O.
Pearson’s correlation coefficient of gas well development index is calculated. Then,

the spatial distance d between gas layers is calculated to form the distance matrix D, and
the two matrices are linearly weighted as the similarity measurement matrix W.

W = αD + βP (4)

where P is a Pearson matrix, α and β are the weights, and α + β = 1. Different clustering
results can be obtained by adjusting the weights.

2.3. Convolutional Neural Network

The convolutional neural network (CNN) [16] is a kind of feedforward neural network,
which has been successfully applied in the classification task with the time series data and
the image data by its powerful feature extraction and recognition ability. Its basic structure
consists of the input layer, convolution layer, pooling layer, fully connected layer (FC),
and output layer. The convolution layer and pooling layer are specially designed data
processing layers, which are used to filter input data and extract useful information. Pooling
layer screens features, extracts the most representative features, reduces the dimensions
of the features, and makes the features robust to noises [17]. The fully connected layer
summarizes the learned features and maps them into two-dimensional feature output.

In convolutional neural networks, the biggest advantage that distinguishes them from
other neural networks are local receptive fields and weight sharing. Via these two methods,
the invariance of the network to the displacement, scaling, and distortion of the input are
realized. Local receptive fields can extract local and primary features. Weight sharing
can make the network have fewer free parameters, reduce the complexity of the network
model, reduce the overfitting, and improve the generalization ability. Moreover, the
BN layer standardizes the activation of each batch of convolutional layers and improves
the performance and stability of deep networks. The transformation applied by batch
normalization keeps the mean activation close to 0 and the activation standard deviation
close to 1 [7]. The RELU function is used as the activation function to define the output
of the BN layer. The nonlinear features can be obtained via the activation function to
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enhance the feature expression ability of the model. Therefore, the convergence process
of convolutional neural networks can be accelerated, and the recognition accuracy can
be improved.

There are two main forms of CNN models, which can be divided into a one-dimensional
convolutional neural network (1D-CNN) and a two-dimensional convolutional neural
network (2D-CNN) according to the different moving directions of the convolutional kernel
in CNN. Compared with the unidirectional movement mode of the former convolution
kernel, the bidirectional movement mode of the 2D-CNN convolution kernel can better
extract the features so as to improve the prediction accuracy of the classification. Therefore,
the input form of 1D-CNN is improved; that is, the time series data in the one-dimensional
form are transformed into the image data in the two-dimensional form, and the 2D-CNN
model is obtained. Due to the different dimensions of input variables, the corresponding
operation modes of the convolution layer and pooling layer are also different. The following
part describes the convolution operation and pooling operation of the convolution layer
and pooling layer from 1D-CNN and 2D-CNN, respectively.

2.3.1. Convolution Layer

One-dimensional convolutional neural networks can be well applied to process the
basic features of specific data of different time periods and sequence types, so they have
great application space in the field of natural language processing, such as speech recogni-
tion and speech synthesis. The connection mode between neurons in the 1D-CNN model is
a local connection, which changes the full connection mode of the traditional BP neural
network into the local connection mode of the convolutional neural network and has the
feature of shared weight. The convolution kernel is introduced into the one-dimensional
convolutional neural network, and the matrix features are extracted via the convolution
operation of the convolution kernel and input variables. The output value is composed of
multiple feature surfaces, each value of the feature face represents a neuron, and the value
of each neuron in the feature surface is calculated by the convolution kernel.

However, the two-dimensional convolutional neural network is considered to be the
most widely used and technologically mature convolutional neural network at present,
mainly applied in computer vision and image processing. Different from the horizontal
sliding mode of the convolution kernel in the 1D-CNN model, the 2D-CNN model is
divided into two dimensions for convolution operation. The movement direction of the
convolution kernel is to extract the horizontal gas well development features first and then
extract the vertical time features. This bidirectional movement method can more completely
extract the development features that affect the prediction of gas well types. Thus, the
classification accuracy of gas well type prediction can be improved. The convolution
operations of the convolution layer of the 1D-CNN and 2D-CNN models are shown in
Figure 2.

Figure 2. Diagrams of 1D convolution and 2D convolution: the first represents the 1D convolution
with a kernel of size 4 and stride 1, and the second represents the 2D convolution with a kernel of
size 2 × 2 and stride 1 × 1. The gray arrow at the top of the left figure indicates that the convolution
kernel slides in one direction.
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If the input variable is time series data in one-dimensional form, the data are passed
into the convolution layer. It will be convolved with the convolution kernels across the
width and height of the input volume. Then, the feature map is produced by calculating the
product between the entries of the kernel and the input, and the output of the j-th neuron
in the convolution layer in 1D-CNN is obtained as follows:

yj = f

(
k

∑
i=1

wixj−i+k + bk

)
(5)

where wi represents the shared weight of convolution kernel among neurons, k denotes the
number of convolution kernels, bk represents the offset of the k-th convolution check in the
hidden layer, and f is the relu activation function.

If the input variable is two-dimensional image data, it will also be convolved with the
convolution kernel in terms of the width and height of the input volume. The difference is
that the convolution kernel and input data structure of the 1D-CNN model in Equation (11)
need to be improved to transform one-dimensional data into two-dimensional data. Assum-
ing the dimension of the convolution kernel of the 1D-CNN model and the dimension of
the convolution kernel of the 2D-CNN model, the formula for calculating the convolution
layer of the 2D-CNN model is

yk,j = f

(
M

∑
s=1

M

∑
t=1

wk,s,txs,j+t−1 + bk

)
(6)

where yk,j represents the output value of the j-th neuron of the k-th feature surface, wk,s,t
represents the weights corresponding to row s and column t in the k-th convolution kernel,
and bk is the offset value of the k-th convolution check in the convolutional layer.

2.3.2. Max-Pooling Layer

In order to extract significant features from the gas well development time series and
retain more information, a pooling operation is performed after the convolution layer,
which is a process of secondary extraction of data features. The pooling layer is mainly
operated by the pooling function, which is a form of downward sampling, also known as
the subsampling layer in a neural network. Similarly, the 1D-CNN model is a unidirectional
pooling operation while the 2D-CNN model is a bidirectional pooling operation. The gas
well development features of the feature dimension are extracted first, and then the time
features of the time dimension are extracted. The pooling operation of 1D-CNN and
2D-CNN model pooling is shown in Figure 3.

Figure 3. Diagrams of 1D and 2D pooling: the first represents 1D max pooling with a kernel of size 3
and stride 3, and the second represents 2D max pooling with a kernel of size 2 × 2 and stride 2 × 2.
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There are two common pooling operations: mean pooling and maximum pooling.
Mean pooling takes the mean value of neurons in the perception domain as the output
value, while maximum pooling takes the maximum value of neurons in the perception
domain as the output. In practice, the maximum pooling function is generally used to
take the maximum value of the feature region as the value of the new abstract region,
thus reducing the size of the data space. The number of parameters and the amount of
computation will also be reduced, reducing the number and complexity of full connections
and avoiding overfitting to a certain extent [18]. The mathematical expression of the
maximum pooling function is shown as Equation (7):

zi,j = max
(j−1)L+1≤m≤jL

{
yk,m

}
(7)

where yk,m is the output value of the m-th neuron on the k-th feature surface. zi,j is the
output value after the pooling of the j-th neuron on the i-th feature surface. L is the width
of the pooled window.

3. Results
3.1. Data Source

Based on the previous investigation, the original sample data of a tight sandstone gas
reservoir in Sichuan Province were collected, with a total of 29 development indicators,
which are mainly divided into the geological factors (14) and engineering factors (15).
The geological factors are the internal characteristics of the gas reservoir itself, while the
engineering factors are the external characteristics affecting the evaluation of gas well types
of tight gas reservoirs. Geological factors affecting the evaluation of gas well types in
tight gas reservoirs include uncontrollable factors such as porosity, permeability, initial gas
saturation, and reservoir thickness, while engineering factors affecting the evaluation of
gas wells include controllable factors such as casing inner diameter, tubing inner diameter,
tubing outer diameter, and perforation thickness. Therefore, the prediction accuracy of gas
production by adjusting the scope of engineering factors in this article can be improved,
and a scientifically reasonable gas well evaluation is conducted. The specific indicators of
geological factors and engineering factors effecting the evaluation of gas wells are shown
in Table 1.

Table 1. Original sample data (geological and engineering factors).

Number Geological Factors Engineering Factors

1 The middle of the interval (m) Well type
2 Initial formation pressure (MPa) Casing inner diameter (mm)
3 Original formation temperature (◦C) Tubing outer diameter (mm)
4 Effective porosity (%) Tubing depth (m)
5 Permeability (10−3 µm2) Thickness of perforation (m)
6 Initial gas saturation (%) Fracturing fluid flowback rate (%)

7 Gas relative density Total amount of sand added in
fracturing (m3)

8 Salinity of formation water (mg/L) Casing depth (m)
9 Shaliness (%) Cumulative days of production
10 Skin factor
11 Effective fracture half-length (m)

3.2. Selection of Main Control Factors

In order to improve the classification accuracy of the model and reduce the calculation
time of the model, the original sample data should be pre-processed before evaluating the
gas well type. The main methods are the variance filtering method, correlation coefficient
method, and XGBoost algorithm.

Firstly, the feature with a variance of 0 is eliminated. When the variance of a group of
data is 0, it means that there is basically no difference in the value of this group of data, so
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it is not suitable for data analysis and should be eliminated. According to this principle,
among the 15 original sample data, the variance of the development indicators of fracturing
and horizontal section length is 0, so these two indicators are eliminated.

Secondly, the Pearson correlation coefficient method is used to eliminate the features
with a correlation coefficient greater than 0.8. The correlation coefficient reflects the degree
and direction of correlation between the two factors, ranging from −1 to 1. If the absolute
correlation coefficient of two features is bigger, the correlation between two features is
stronger. The classification effect of the model can be improved by deleting features with
high correlation. The correlation coefficient method is used to calculate the correlation coef-
ficient between the two indicators and draw the corresponding thermodynamic diagram of
the two indicators (see Figure 4). Since the empirical formulas corresponding to the gas
deviation factor, gas volume coefficient, the absolute density of formation water, and rock
compressibility coefficient are highly correlated, these four indicators should be eliminated.
Finally, seven indicators deleted by the correlation coefficient method are reservoir thick-
ness, reservoir depth, gas deviation factor, gas volume coefficient, the absolute density of
formation water, and rock compressibility coefficient.

Figure 4. Thermodynamic diagram of correlation coefficient between indicators.

Finally, the XGBoost algorithm in feature selection is used to calculate the importance
of features. The XGBoost model is constructed by taking the characteristics obtained by
the variance filtering method and correlation coefficient method as independent variables
and the open flow rate as dependent variables to calculate the characteristic importance of
gas well development indicators (see Figure 5). We take 0.04 as the critical value of feature
importance and retain the indicators whose importance is greater than 0.04.
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Figure 5. Characteristics and Importance of Gas Well Development Indexes. The red dotted line is
the critical value of feature importance. (The critical value is obtained by machine learning algorithm
and expert experience method).

The final retained gas well development indicators are effective porosity, effective
fracture half-length, gas relative density, casing depth, total fracturing sand volume, original
formation temperature, initial gas saturation, skin factor, fracturing fluid flowback rate,
formation water salinity, permeability, and perforation thickness. At the same time, in
combination with the background knowledge of gas reservoir development, considering
that the initial formation pressure will affect the evaluation of gas well types, the index of
initial formation pressure is retained as the influencing factor of classification evaluation.

3.3. Evaluation of Gas Well Types

Since the spectral clustering algorithm is an unsupervised learning algorithm, 15 gas
well development indicators such as initial formation pressure, original formation tempera-
ture, effective porosity, and open flow rate are used as the input of the spectral clustering
algorithm, and then the clustering results of gas well types are obtained according to the
following five steps. In addition, according to the productivity of gas wells, gas wells are
divided into three types: inferior wells, medium-productive wells, and high-productive
wells. This can be seen in Figure 6.

Figure 6. Spectral clustering flowchart.

STEP1: Determine the number of clusters m = 3, input the gas well development data
of dimension 186 × 15, and construct the similarity matrix W.
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W =



1 , 0 , 0 , · · · , 0 , 0 , 0
0 , 1 , 0 , · · · , 0 , 0 , 0
0 , 0 , 1 , · · · , 0 , 0 , 0
...

. . .
...

0 , 0 , 0 , · · · , 1 , 1 , 0
0 , 0 , 0 , · · · , 1 , 1 , 0
0 , 0 , 0 , · · · , 0 , 0 , 1


186×186

(8)

STEP2: Calculate the degree matrix H. The degree matrix is a diagonal matrix, where
the diagonal elements are the sum of the elements in the row.

H =



8 , 0 , 0 , · · · , 0 , 0 , 0
0 , 8 , 0 , · · · , 0 , 0 , 0
0 , 0 , 8 , · · · , 0 , 0 , 0
...

. . .
...

0 , 0 , 0 , · · · , 8 , 0 , 0
0 , 0 , 0 , · · · , 0 , 8 , 0
0 , 0 , 0 , · · · , 0 , 0 , 8


186×186

(9)

STEP3: Construct the Laplace matrix L and standardize it.

L = H − W

=



0.875 , 0 , 0 , · · · , 0 , 0 , 0
0 , 0.875 , 0 , · · · , 0 , 0 , 0
0 , 0 , 0.875 , · · · , 0 , 0 , 0
...

. . .
...

0 , 0 , 0 , · · · , 0.875 ,−0.125 , 0
0 , 0 , 0 , · · · ,−0.125 , 0.875 , 0
0 , 0 , 0 , · · · , 0 , 0 , 0.875


186×186

L′ = H−0.5LH−0.5

(10)

STEP4: Take the first three minimum eigenvalues of L′ and the corresponding eigen-
vector, normalize the eigenvector, and construct a new matrix U.

STEP5: K-means clustering is applied to the row vector of matrix U, which corresponds
to the original data to obtain the partition C1, C2, C3 of three clusters. Then, take the open
flow capacity as the x-axis, the flowback rate of fracturing fluid as the y-axis, and the
prime stratum temperature as the z-axis to draw a three-dimensional effect map of spectral
clustering so as to show the classification effect of inferior wells, medium-productive wells,
and high-productive wells, such as Figure 7.

Figure 7. Three-dimensional classification rendering of spectral clustering.
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4. Application
4.1. Model Thinking

In the research on prediction of gas well types in tight gas reservoirs, although the
basic theory of traditional machine learning algorithm has been relatively perfect and
the method is simple and feasible, there are some problems in the prediction of gas well
types using multidimensional gas well development data, such as low prediction accuracy,
complex basic theoretical formula, and long algorithm running time. As a commonly
used model for processing multidimensional data, deep learning can just overcome these
shortcomings. It also provides a new idea for gas well type prediction of multidimensional
gas well development data. Due to the low computational depth of the 1D-CNN model,
the prediction accuracy of the classification model needs to be improved. Therefore, in
order to improve the prediction effect of the classification model, the 2D-CNN model is
applied to the classification prediction of gas well types so as to realize the productivity
evaluation of tight sandstone gas reservoirs.

The construction idea of the prediction model of gas well types based on 2D-CNN
is as follows: firstly, the variance filtering method, correlation coefficient method, and
XGBoost algorithm are used to select the features of dimension reduction for the original
gas well sample data of a tight sandstone gas reservoir, and then the spectral clustering
method is used to classify to determine the three types of gas wells, namely the low-quality
well, the medium well, and the high-yield well. Then, the new gas well development
index after feature selection is used as the input of the 2D-CNN model via the convolution
operation of the convolution layer and the secondary dimension reduction operation of
the pooling layer. Finally, the predicted gas well types will be output so as to solve the
multidimensional prediction problem of gas well types.

4.2. Model Building Steps

In order to solve the problem of multi-class prediction of multidimensional gas well
development data, a new gas well type prediction model based on the 2D-CNN depth
learning algorithm is proposed. The prediction process of the model is mainly divided into
the following three steps: feature selection of original data, classification of gas well types,
and building a 2D-CNN model to predict gas well types. The specific structure of the gas
well type prediction model is shown in Figure 8.

Figure 8. Specific process for predicting gas well types using 2D-CNN model.

• Feature selection of original data

By collecting the original sample data of a gas well in the tight gas reservoir, the
original gas well development index and gas well type are determined. Firstly, the feature
with a variance of 0 is deleted by the variance filtering method. Secondly, the correlation
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coefficient method is used to delete the features with a strong correlation. Finally, the
XGBoost algorithm is used to sort the original gas well development indicators according
to their importance, and new development indicators with feature importance greater
than 0.04 are retained to reduce the dimensions of the original data once so as to ensure
the effectiveness and accuracy of the subsequent modeling process. At the same time,
considering that the initial formation pressure will affect the gas production of gas wells in
tight sandstone gas reservoirs, the development index of gas wells with initial formation
pressure is retained.

• Classification of gas well types

The spectral clustering algorithm is used to classify the original gas well types. First,
according to the productivity of gas wells, the number of clusters is determined to be 3 so as
to build a similarity matrix. Secondly, the degree matrix is calculated, and then the Laplace
matrix is constructed and standardized. Thirdly, the first three minimum eigenvalues
and corresponding eigenvectors are taken, the eigenvectors are normalized, and a new
matrix is built. Finally, K-means clustering is applied to the row vectors of the new matrix,
corresponding to the original data, and the classification results of three gas well types
are obtained.

• Building a 2D-CNN model to predict gas well types

The vector of gas well development indicators after feature selection is expanded, and
the vector of new development indicators is matrix processed. The convolution kernel is
introduced into the 2D-CNN model, and the new development index matrix is used as the
input of the 2D-CNN depth learning model. The characteristics of the gas well development
index are extracted via the convolution kernel, and then the classified prediction results of
the gas well types are finally output via the secondary dimension reduction of the pooling
layer and the calculation of the full connecting layer.

5. Discussion
5.1. Evaluation Performance of The Model

In the field of deep learning, the accuracy, precision, recall, and F1 score [19] are used
to evaluate the gas well type, which can objectively and scientifically evaluate the overall
performance of the 2D-CNN model. Among them, the accuracy rate is the most intuitive
evaluation indicator, but it is not suitable for classification problems with unbalanced
categories. Its range is [0, 1]. The higher the value, the stronger the model’s ability to
distinguish negative samples. The recall rate represents the ability of the classifier to find all
positive samples, with the range of [0, 1]. The higher the number, the stronger the model’s
ability to recognize positive samples. The F1 score is a comprehensive expression of both.
The range is [0, 1]. The higher the value, the more robust the model [20].

Accuracy = TP+TN
TP+FP+TN+FN

√
a2 + b2

Precision = TP
TP+FP

Recall = TP
TP+FN

F1 = 2×P×R
P+R = 2TP

2TP+FP+FN

(11)

where TP represents the number of positive samples and correct predictions, TN represents
the number of negative samples and correct predictions, FP represents the number of
positive samples and prediction errors, and FN represents the number of negative samples
and prediction errors.
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h(xi) =
exi

n
∑

i=1
exi

Loss =− 1
n

n
∑

i=1
[yi log h(xi) + (1 − yi) log(1 − h(xi))]

(12)

where Loss is the cross-entropy loss function, and xi is the output value of the fully con-
nected layer. yi is the real gas well type obtained by spectral clustering, indicating a
high-production well, medium-productive well, and inferior well, respectively. h(xi) is the
value after the regression of so f tmax function.

In addition, in order to prove the effectiveness of the 2D-CNN model classification,
the classification performance is also illustrated via the confusion matrix. Among them, the
confusion matrix is an error matrix used to indicate whether the test results belong to the
real category.

5.2. Parameter Setting and Prediction Process of 2D-CNN Model

The 2D-CNN model adopts the supervised learning training method, and the training
process is divided into forward training and reverse training. Firstly, determining the struc-
ture of the two-dimensional convolutional neural network, that is, setting the parameters
of each layer in the initial network structure, including the size of the convolution kernel,
the size of the pooled kernel, step size, activation function, etc. Then, the two-dimensional
characteristic matrix after the structure reconstruction is used as the input of the model,
and forward training is carried out. The real and predicted gas well types in the training
samples of the model are compared using evaluation indicators to obtain the accuracy and
the loss value of the model. Finally, backpropagation is carried out, and the weight matrix
is updated continuously using the optimization algorithm to obtain optimal accuracy.

The prediction model of gas well type based on 2D-CNN is mainly composed of two
layers of convolution, two pools, and two full connecting layers. In front of the first layer of
the two-dimensional convolution layer, there is also a full connection layer whose activation
function is Relu, which can add nonlinearity to the deep learning network [21]. For the
first convolution layer, the number of convolution kernels is 4, the size of convolution
kernels is 2 × 2, and the step size is 2 × 2. In order to prevent gradient loss during model
training, a batch normalization layer is usually added behind the convolution layer. The
maximum pooling layer follows: the size of pooling kernels is 2 × 2, and the step size is
1 × 1. Next is the second convolution layer. The number of convolution kernels is 2, the
size of convolution kernels is 4 × 4, and the step size is 2 × 2. For the second pooled layer,
the size of the pooled kernel is 1 × 1, and the above filling methods are all full filling (same).
To prevent the model from overfitting, a dropout layer is added, and the p value is set to
0.5; 50% of the information is discarded. Finally, two full connection layers are connected
to output the classification results of three gas well types.

When the 2D-CNN model is trained, the input variable is a 15-dimensional gas well
development index, and the output is a one-dimensional gas well type. Overall, 186 sample
data sets are divided into training sets and testing machines according to a ratio of 7:3. In
the training process, the number of iterations is set to 100, the size of the training batch to
4, and the learning rate to 0.001. The activation function in the full connection layer uses
the Relu function, and the output layer uses the softmax function and cross-entropy loss
function. The optimization algorithm is the Adam algorithm. The parameters of the model
are continuously adjusted via gradient descent, and finally, the optimal model parameters
are obtained. Among them, the parameters for initializing the model, including convolution
kernel size, pooling kernel size, step size, activation function, number of convolution layers,
and number of features, are set empirically. The specific structures and parameters of the
convoluted layer and pooling layer of the 2D-CNN prediction model are shown in Table 2.



Processes 2024, 12, 878 14 of 19

Table 2. Specific structure and parameter setting of convoluted layer and pooling layer of 2D-CNN
prediction model.

Layers Layer Type Parameter Output Size

1 input layer - (None, 16)
2 dense the activation function is relu (None, 256)
3 reshape - (None, 16, 16, 1)

4 conv2D
four convolution kernels with the
size of 2 × 2, step size is 2 × 2, the

filling method is same
(None, 8, 8, 4)

5 batch_normalization - (None, 8, 8, 4)

6 max_pooling2D pooling kernel size is 2 × 2, step size
is 1 × 1, the filling method is same (None, 8, 8, 4)

7 conv2D_1
two convolution kernels with the
size of 4 × 4, step size is 2 × 2, the

filling method is same
(None, 4, 4, 2)

8 batch_normalization_1 - (None, 4, 4, 2)

9 max_pooling2D_1 Pooling kernel size is 1 × 1, the
filling method is same (None, 4, 4, 2)

10 dropout p = 0.5 (None, 4, 4, 2)
11 flatten - (None, 32)
12 dense_1 the activation function is relu (None, 16)
13 dense_2 the activation function is softmax (None, 3)

The 2D-CNN model is used to predict the types of gas wells. The prediction model is
mainly composed of the input layer, convolution layer, pooling layer, and full connecting
layer. The prediction process of the model is shown in Figure 9. The specific process of the
multidimensional gas well type prediction model based on 2D-CNN is as follows:

1. The variance filtering method and the correlation coefficient method are used to select
the preliminary features, and then the XGBoost algorithm is used to determine the
new gas well development indicators whose feature importance is greater than 0.04.
Then, the input data are divided into a training set and a test set, and one_hot code is
used to digitize the gas well type of the test set.

2. The training set trains the neural network, extracts information via the convolution
layer of the 2D-CNN model, learns the characteristics of gas well development, and
uses the BPTT algorithm to backpropagate the training error and continuously update
the model parameters.

3. The Softmax function is used to obtain the classification probability of three types of
gas wells. In order to avoid over fitting of the model, the parameters of the model are
constantly adjusted through gradient descent to obtain the optimal parameters of the
prediction model.

4. Judge whether the network epoch reaches the preset 100 times. If yes, run the next
step; otherwise repeat step 2.

5. The test set verifies the performance of the trained model, calculates the evaluation
indexes, and outputs the prediction results of gas well types.

5.3. Predictive Results of Gas Layers Using 2D-CNN Model

The 2D-CNN model is used in this article to predict the type of gas well, and the
inputs are the gas well development indicators after feature selection. After the operation
of the convolution layer, pooling layer, and full connecting layer in the convolution neural
network, the probability of each sample corresponding to the type of gas well is obtained
via the softmax function. The category with higher probability is taken as the gas well
type, and finally, the prediction result of the multi-category gas well type is output. The
loss value and accuracy of the training set and test set are used to measure the effect of
multi-class prediction. The change curve of loss value and accuracy of the prediction model
is shown in Figure 10.
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Figure 9. Flow chart of gas well type prediction of 2D-CNN model.

Figure 10. Loss and accuracy of the 2D-CNN prediction model in the training set and test set. (a) The
accuracy of the 2D-CNN model on the training set and test set, (b) The loss value of the 2D-CNN
model on the training set and test set.

The 2D-CNN model is used to classify gas well types. When the number of iterations
reaches 100, the curve of loss value and accuracy rate tends to be stable, the accuracy rate
of test set reaches 0.99, and the loss value is 0.03, which indicates that the 2D-CNN model
shows a good prediction effect in the multi-class prediction of gas well types. The confusion
matrix corresponding to the sample number of gas well type classification results obtained
from the 2D-CNN prediction model is shown in Figure 11.
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Figure 11. Confusion matrix of gas well type: The elements on the diagonal line represent the number
of samples with the same predicted gas well type as the true gas well type. The darker the color of
the confusion matrix, the more samples representing the type of gas well.

The average accuracy of the 2D-CNN multi-category prediction model is 0.99, the
average recall rate is 0.99, and the average F1 score is 0.99, as can be seen in Table 3. It can
be seen that the model has a strong ability to distinguish between negative samples and
positive samples, and the model is relatively robust.

Table 3. The precise value, recall value, and F1 score of the gas well type predicted by the 2D-
CNN model.

Type of Gas Well Precision Recall F1 Score

High productive wells 1.00 0.98 0.99
Inferior wells 1.00 1.00 1.00

Medium productive wells 0.96 1.00 0.98
Average value 0.99 0.99 0.99

5.4. Comparison with Other Classification Prediction Algorithms

In order to further verify the effectiveness of the multi-class prediction model based on
2D-CNN gas well type, the author compares it with the BP neural network model, XGBoost
model, LightGBM (Light Gradient Boosting Machine) model, LSTM model, and 1D-CNN
model. The keras module of Python software version 3.7.0 is used to modify the input
layer of the model and adjust the parameters of the convolution neural network without
changing the basic structure of the model so that it is suitable for the multi-class problem of
gas well type prediction. Different models are used to predict the types of gas wells, and
the accuracy, loss value, accuracy, recall rate, and F1 value are used as evaluation indicators
to measure the prediction effect of the model. As the number of iterations increases, the
comparison of accuracy and loss values of different models is shown in Figure 12, and the
comparison of evaluation indicators of different models is shown in Table 4.
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Figure 12. Accuracy and loss value of different models. (a) The accuracy of different models. (b) The
loss value of different models.

Table 4. Comparison of evaluation indicators of different models.

Evaluating Indicator BP XGBoost LightGBM LSTM 1D-CNN 2D-CNN

Accuracy 0.89 0.92 0.92 0.61 0.86 0.99
Value of loss 0.61 0.20 0.28 0.97 0.37 0.03

Average precision 0.87 0.93 0.92 0.39 0.83 0.99
Average recall 0.94 0.89 0.91 0.53 0.83 0.99

Average F1 score 0.89 0.91 0.91 0.29 1.14 0.99

Note: The evaluating indicator of the best prediction model is indicated in boldface.

As the loss value of the 1D-CNN model is significantly lower than that of the BP
neural network model and LSTM model and slightly higher than the XGBoost model and
LightGBM model, the accuracy of the 2D-CNN model is significantly higher than that of
the BP neural network model, XGBoost model, LightGBM model and LSTM model, which
indicates that the convolution kernel in convolution neural network can better learn the
characteristics of gas well development indicators, extract more significant indicators for
prediction, and thus improve the accuracy of gas well type prediction results. According
to the experimental results in Table 4, the accuracy rate of the gas well type prediction
model built by the author based on the 2D-CNN depth learning method is 0.99, the average
accuracy rate is 0.99, the average recall rate is 0.99, and the average F1 value is 0.99,
which is better than the prediction effect of the BP neural network model, XGBoost model,
LightGBM model, LSTM model, and 1D-CNN model. The minimum accuracy rate on the
test set is 0.03.

6. Conclusions

A prediction model based on the 2D-CNN deep learning algorithm is applied in this
article, which solves the multi-class problem of gas well type prediction. The prediction
results have a strong influence on the evaluation of gas well type. Based on the results of
this study, the following conclusions are drawn, and relevant suggestions are provided:

1. The spectral clustering algorithm is used to classify various gas well types in tight
sandstone gas reservoirs, and three gas well types are obtained. Then, the variance
filtering method, correlation coefficient method, and XGBoost algorithm are used
to select the characteristics of gas well development indicators and determine new
gas well development indicators that affect gas well types. A reasonable selection of
development indicators is conducive to improving the multi-class prediction effect of
gas well types.

2. The double-layer 2D-CNN depth learning method is applied to the multi-class predic-
tion of gas well types. The accuracy of the model is 0.99, and the loss value is 0.03,
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which is superior to the prediction effect of the BP neural network, XGBoost model,
LightGBM model, LSTM model, and 1D-CNN model. Because the 2D-CNN model
has a deeper calculation depth, which improves the prediction accuracy of the model,
the 2D-CNN model is applicable to the research of gas well type prediction.

3. According to the multi-class problem of gas well types, a deep learning model based on
2D-CNN model is proposed. The prediction of gas well types with small sample size
has good accuracy and effectiveness, and the accuracy will be significantly improved
in the prediction problem with large sample size. Therefore, this method provides a
new idea for the prediction research of gas well types with large sample size.
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