
Processes 2014, 2, 218-237; doi:10.3390/pr2010218 
 

processes 
ISSN 2227-9717 

www.mdpi.com/journal/processes 

Article 

Interpretation of Cellular Imaging and AQP4 Quantification 
Data in a Single Cell Simulator 

Seon B. Kim, Ying Hsu and Andreas A. Linninger * 

Laboratory for Product and Process Design, Department of Bioengineering,  

University of Illinois at Chicago, 851 South Morgan St. 218 SEO, Chicago, IL 60607, USA;  

E-Mails: sbkim@uic.edu (S.B.K.); ying.hsu.bioengr@gmail.com (Y.H.) 

* Author to whom correspondence should be addressed; E-Mail: linninge@uic.edu;  

Tel.: +1-312-413-7743; Fax: +1-312-996-5921. 

Received: 22 July 2013; in revised form: 21 January 2014 / Accepted: 22 January 2014 /  

Published: 4 March 2014 

 

Abstract: The goal of the present study is to integrate different datasets in cell biology to 

derive additional quantitative information about a gene or protein of interest within a single 

cell using computational simulations. We propose a novel prototype cell simulator as a 

quantitative tool to integrate datasets including dynamic information about transcript and 

protein levels and the spatial information on protein trafficking in a complex cellular 

geometry. In order to represent the stochastic nature of transcription and gene expression, 

our cell simulator uses event-based stochastic simulations to capture transcription, 

translation, and dynamic trafficking events. In a reconstructed cellular geometry, a realistic 

microtubule structure is generated with a novel growth algorithm for simulating vesicular 

transport and trafficking events. In a case study, we investigate the change in quantitative 

expression levels of a water channel-aquaporin 4-in a single astrocyte cell, upon 

pharmacological treatment. Gillespie based discrete time approximation method results in 

stochastic fluctuation of mRNA and protein levels. In addition, we compute the dynamic 

trafficking of aquaporin-4 on microtubules in this reconstructed astrocyte. Computational 

predictions are validated with experimental data. The demonstrated cell simulator facilitates 

the analysis and prediction of protein expression dynamics.  
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Nomenclature: kb, DNA activation rate; kub, DNA inactivation rate; ktc, mRNA transcription rate;  

ktl, AQP4 translation rate; kdr, mRNA decay rate; kda, AQP4 decay rate; DNA*, activated DNA molecule. 

1. Introduction 

Advancements in optical imaging, microscopy, and quantitative techniques in molecular biology 

allow the measurement of protein expression levels, localization, and dynamic trafficking events in a 

single cell or a population of cells. The entire “life-story” of a protein including the transcriptional 

activation of its gene, mRNA generation and processing, translation, transport of the mature protein to its 

subcellular destination and its eventual degradation dynamics can be measured with different molecular 

biology techniques. For example, the temporal evolution of protein expression after exposure to a 

pharmacological agent is commonly detected by techniques like western blotting. Quantitative methods 

like proteomics profiling or pulse-chase radioisotope labeling can measure the kinetic rates of 

transcription, translation and degradation. The dynamics of protein trafficking and transport are captured 

by using immunofluorescence labeling techniques or through the use of fusion proteins, where the target 

protein is tagged with a fluorescent molecule for visualization [1,2]. 

With fluorescent tags like quantum dots [3], single molecule tracking of surface proteins [4,5], motor 

proteins [6,7], and intracellular protein trafficking [8] can reveal spatial trajectories of proteins of 

interest within a live cell or on the cellular membrane. If these datasets on gene activation, protein 

expression and dynamic spatial localization can be integrated, it could lead to the prediction of cellular 

behavior under different conditions. However, the joint interpretation of quantitative data collected at 

discrete time points (such as western blotting and quantitative PCR) with imaging data that describes 

protein localization and transport (such as immunofluorescence) requires a model that contains 

subcellular to account for the discrete nature of intracellular events occurring in signaling and control of 

cellular domains, including the cytoskeleton which serves as the backbone for trafficking events. The 

successful integration of cellular data with spatial information and temporal quantitative measurements 

by means of a mathematical, mechanistic model of the whole cell can enable the precise prediction of 

expression level changes in the cellular system.  

For the prototype cell simulator, we use stochastic simulations transcription and translation [9,10]. 

Our methodology further incorporates imaging data of cellular morphology and allows the delineation of 

subcellular organelles, compatible with image sets derived from confocal microscopy or electron 

microscopy. The model receives different types of biological data as input, in the forms of absolute 

concentrations, relative concentrations, or kinetic rates. This computational model also enables 

derivation of rates of transcription, protein synthesis, and degradation from a combination of indirect 

measurements that do not contain rate information (such as expression level changes of protein and 

transcripts). Hence, the simulator can function to extract additional information about a system from 

existing data points by the simultaneous interpretation of various datasets.  

By incorporating kinetic data of protein synthesis and transport rates into the cell simulator, we can 

(1) predict the spatiotemporal distribution of a protein in response to a pharmacological stimulus;  

(2) quantify how a drug can alter the expression levels of a protein to better understand the mechanism 

behind its dynamic response; and (3) discover hidden kinetic rates that are difficult to measure 

experimentally using inversion methods.  
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In this study, we use the cell simulator to capture the transcriptional and translational mechanisms 

behind dynamic changes of aquaporin 4 (AQP4) expression in a single astrocyte. The aquaporin family 

proteins play a central role in homeostasis. Among the discovered 13 aquaporin families [11], AQP4 is 

the most abundant water channels in the brain, and they are primarily expressed in astrocytes. Located 

on astrocytic endfeet opposing the vascular and fluid barriers [12], the regulation and localization of 

AQP4 in a cell have implications for modulating brain water balance in brain disorders. A beneficial 

effect of AQP4 down-regulation has been observed in cellular edema [13], and its upregulation improves 

survival in vasogenic edema [14]. Among several inducers of AQP4, sulforaphane (SFN), an 

isothiocyanate naturally-derived from cruciferous vegetables, is known to activate a neuroprotective 

transcription factor (TF)-nuclear factor (erythroid-derived 2)-like 2 (Nrf2) [15–17]. Nrf2 is a putative TF 

of the AQP4 gene and SFN has been found to effectively upregulate AQP4 in vivo [18,19]. We use the 

cell simulator to investigate the transcriptional mechanisms behind the upregulation of AQP4 upon SFN 

stimulation in our case study, utilizing temporal expression data from western blotting, spatial 

localization information from immunofluorescence imaging, and incorporating existing measurements 

of AQP4 half-life and mRNA stability. In our cell simulator, we are able to reproduce the dynamic 

upregulation of AQP4 proteins, and derive additional insights about the kinetics of aquaporin 4 gene 

activation, the generation of its transcripts, and trafficking events of newly synthesized AQP4 after 

exposure to SFN.  

The mathematical modeling of the life-cycle of AQP4 proteins from gene activation to membrane 

expression is composed of sequential kinetic reaction processes for gene transcription, translation, and 

the transport of AQP4 proteins in vesicles towards the astrocytic endfeet. Event-based stochastic 

simulation mimics the random fluctuations of gene activation in a single cell. The kinetic rate constants are 

estimated from deterministic representation. Alternatively, kinetic rates can be determined by inversion of 

stochastic differential equation models [20]. The predicted AQP4 upregulation agree well with 

experimental results. This case study demonstrates the potential of the single cell simulator to integrate 

datasets on protein and transcript levels with cellular imaging to generate important quantitative 

information about dynamic processes in a cell, and to predict cellular behavior.  

2. Method and Experimental Section  

2.1. Prototype Cell Simulator 

Powerful cellular simulators exist that can describe dynamic cellular activities with deterministic or 

stochastic mathematical formulations. For example, MesoRD is one of the representative simulation 

tools including diffusion and reaction using the exact Markov process [21]. Mcell is a modeling tool for 

3d realistic sub-cellular dynamics using Monte Carlo algorithms [22]. However, these programs have 

not incorporated the hybrid algorithm for integrating stochastic and deterministic models with a shared 

spatial and temporal domain. Virtual cell (Vcell) is a comprehensive cell simulation tool integrating 

theoretical and experimental cellular information. Vcell is capable of spatial deterministic as well as 

non-spatial deterministic and stochastic simulations [23]. E-cell 3d also provides intuitive visualization 

of highly complex biological systems [24].  
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One of the advantages of modeling cellular events with a single cell simulator as opposed to using 

partial differential equations that describe an entire cell population is the ability to portray the trafficking 

and polarized protein distribution in the cell in a way that is comparable to microscopic images. Protein 

trafficking through vesicular transport on the cytoskeleton is a key event that brings it to its functional 

destination. Birbaumer and Schweitzer have simulated the dynamics of vesicle fusion and transport as 

stochastic transitions with the Langevin equation [25]. Their approach captures realistic size distribution 

of vesicles, as well as spatial patterns that could be matched by experimental observations. De Heras 

Ciechomski et al. developed ZigCell3D that employs a particle-based model which includes the directed 

movement of molecules on the microtubule [26]. Using a novel growth algorithm to stochastically 

generate a microtubule network that originates from the centrosome, our cell simulator captures the 

motion of AQP4-containing vesicles on the microtubules leading to the polarized expression of AQP4 

on the endfeet. The comparison of existing cell simulators and our simulator is tabulated in Table 1. 

Table 1. Overview of cell simulators. 

Author, year 
Cell 

simulator 

Simulation event Mathematical model Transport on 

cytoskeleton 

Natural cell 

structure 

3d  

VisualizationDiffusion Reaction Deterministic Stochastic

Kim, 2013 This work ■ ■ ■ ■ ■ ■ ■ 

Loew, 2001 [23] VCell ■ ■ ■ ■  ■ ■ 

Tomita, 1999 [24] ECell  ■ ■ ■    

Hattne, 2005 [21] MesoRD ■ ■ ■ ■   ■ 

Raymond, 2003 [27] JSim ■  ■     

Ander, 2004 [28] SmartCell ■ ■  ■   ■ 

Stiles, 1996 [22] MCell ■ ■  ■  ■ ■ 

Plimpton, 2003 [29] ChemCell ■ ■ ■ ■   ■ 

Andrews, 2004 [30] Smoldyn ■ ■  ■   ■ 

Boulianne, 2008 [31] GridCell    ■   ■ 

Le Novère, 2001 [32] StochSim  ■  ■    

For simulating AQP4 upregulation and its endfeet polarization, our model needs to compute gene 

transcription, translation and protein transport in a spatially distributed system at the single cell level. 

For proteins that are expressed in a specific cellular location in order to carry out their physiological 

functions, the trafficking and polarized expression of these proteins after translation becomes very 

important in understanding the temporal dynamics of cellular response to a stimuli. In our particular case 

study, the directed transport of mature AQP4 on the microtubules toward the endfoot membrane requires 

an accurate mathematical representation of the packaging of AQP4 into vesicles, association with motor 

proteins, and realistic transport kinetics along the cytoskeleton. A major portion of protein trafficking 

events occurs through active transport by motor proteins along the microtubules. Taking advantage of 

the discrete population-based stochastic algorithm, our simulator will be able to capture the transport and 

reaction events of molecules in a single cell, and track the localization of each molecule at any moment 

in time.  

The rationale of our simulator is to integrate experimental observations of cell morphology  

(confocal microscopy), transcription factor activation (immunofluorescence), and induced target protein 
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expression (western blot) using a cell simulator based on stochastic simulations, and predict future 

behavior of the cell based on existing experimental data.  

Realistic cell geometry was reconstructed from confocal microscopic images of a single astrocyte 

including detailed intracellular organelles such as nucleus, endoplasmic reticular, microtubules, etc. Our 

proposed simulator will be compared with experimental measurements of AQP4 upregulation for 

validation of the simulation outcomes. The detailed stepwise procedures for generating a cell-specific 

model will be described in the following sections. 

2.2. Geometry Reconstruction of the Astrocyte Model 

Cultured primary astrocytes were loaded with calcein-AM and a single stellate astrocyte was scanned 

with confocal microscopy using a BioRad microscope (Biorad, Hercules, CA, USA) with a Z-plane 

resolution of 0.5 microns. The model was then reconstructed from the stack of confocal images using an 

image reconstruction software, MIMICS (Materialize, Leuven, Belgium), as shown in Figure 1. The 

reconstructed model containing the astrocyte soma, processes and nucleus was discretized into 

tetrahedral volumes for computer simulations. The volume mesh with intracellular compartments is 

generated with Ansys ICEM-CFD. 

Figure 1. Reconstruction of a single astrocyte cell in 3d. A series of confocal microscopic 

images (a) were reconstructed to build the 3d model of a single astrocyte (b). The 

computational mesh of the stellate astrocyte has 11,390 tetrahedron volume elements. 

(a) (b)

 

2.3. Implementation of Cell Compartments 

To complete the cell model, intracellular compartments and cell organelles including the nucleus, 

endoplasmic reticula (ER), Golgi apparatus (GA), and microtubules (MTs) were added. These cell 

compartments were integrated with the volumetric mesh of the astrocyte body. The nucleus surrounded 

by the ER was placed with mesh tools offered by Mimics as in Figure 2a and MTs originating from the 

centrosome and terminating at the cellular membrane were generated using an artificial growth 

algorithm as shown in Figure 2b. All microtubules start at the microtubule organizing center (MTOC) 

and terminate mainly at the endfeet of the astrocytic processes.  
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Figure 2. Implementation of nucleus (a) and microtubules (b) into the reconstructed 3d cell model. 

(a)                                              (b)

 

For the growth of the microtubule cytoskeleton, we developed the smooth and shortest path finding 

algorithm, which aims at finding the smoothest and the shortest path in the presence of obstacles. This 

algorithm begins with a random directional growth of MT segment from the MTOC to the neighboring 

mesh. Then, it uses the directional information from the target vector, A(t), which is a unit vector 

connecting a current point to the selected end point. To keep the smooth curvature, it also takes the 

information of the tangent vector, T(t), from the current growing point. In each growth step, the next 

point will be determined by the summation vector, D(t), of both vectors with a small variation generated 

by a random vector. 
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The pseudocode for implementing Smooth and Shortest path finding algorithm to model the 

microtubular cytoskeleton is described as follows: 

• Step 1. Select a starting mesh of MT growth (the MTOC) and a target mesh located at  

the endfoot.  

• Step 2. Generate the first growth step with a random direction, with the length of the segment 

equal to the distance to the connecting mesh.  

• Step 3. Grow a segment to the neighboring mesh adjusting its direction and length with the 

information of tangent vector and target vector (direction to the final destination). 

• Step 4. Repeat step 3 until it encounters the boundary of the endfoot process.  

• Step 5. If the growth does not encounter the boundary of an endfoot process, the growth will be 

terminated and a new MT growth will start from step 1. Otherwise, the MT segment grows 

into the process which contains a target mesh selected in step 1. 

• Step 6. Grow a segment to the neighboring mesh adjusting its direction and length with the 

information of tangent vector, target vector, and distance to the normal surface. 

• Step 7. Repeat step 6 until it comes into contact with the endfoot boundary. 
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• Step 8.Upon reaching a member of the mesh at the endfoot boundary, the smooth and shortest 

path finding algorithm will stop and finalize the trajectory to the target mesh selected in  

step 1. 

• Step 9. The defined end criterion for the total number of MTs will terminate the algorithm.  

At each growth step, the position can be recorded as the mesh id number or as the absolute position. 

Each step of growth will have a slight directional and longitudinal variation to avoid running into an 

obstacle or the boundary of the cell. The combined consideration for path smoothness using the tangent 

vector and for shorter path using the distance to the closest surface from the current point will gradually 

modify the direction of growth. 

2.4. Stochastic Model and Simulation of Biochemical Kinetics and Transport 

The synthesis of AQP4 water channels involves the transcription and translation mechanisms.  

In our mathematical model, the transcription and translation of AQP4 under normal conditions (steady 

state) will be established first. In addition, we will specifically explore the transcriptional upregulation of 

AQP4 in response to the inducer SFN. SFN stimulates transcriptional activation of the AQP4  

gene [18]. This transcriptional activation of the AQP4 gene likely occurs through the nuclear 

translocation of the transcription factor Nrf2, and the binding of Nrf2 to the promoter regions containing 

the antioxidant-responsive element (ARE) motif of the gene [19]. As a result, the transcription of mRNA 

occurs with higher frequency when the concentration of Nrf2 in the nucleus is elevated compared to the 

basal transcription rate of the AQP4 gene. In our mathematical formulations, the Nrf2 bound gene turns 

into the “active” state and begins the transcription of AQP4 mRNA. The entire transcriptional and 

translational mechanism postulated in this model is shown in Figure 3. Note that there is still a basal 

amount of Nrf2 within the nucleus without SFN stimulation. However, SFN increases the amount of 

Nrf2 in the nucleus, as well as Nrf2-promoter binding. To reduce the complexity of the model, we omit 

concentrations of additional enzymes such as RNA polymerase or ribosomes, and lump their 

concentrations within the transcription and translation rates.  

Figure 3. The modeling of AQP4 transcription and translation reaction mechanisms. Nrf2 

activation by SFN treatment upregulates AQP4 expression in the astrocyte cell. 
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SFN administration increases Nrf2 translocation into nucleus and Nrf2 binding to the aquaporin  

4 gene promoter. As a result, the transcription rate is increased until the level of nuclear Nrf2 returns to 

normal due to Nrf2 nuclear export. In this model, translation kinetics is assumed to be a first  

order reaction in respect to mRNA concentration and all degradation kinetics are set to follow first  

order reaction.  

Gene transcription is a stochastic process and the levels of transcription show great variability 

between single cells in a population [33]. Transcriptional events involve only a small number of 

molecules, so that continuous kinetic models are invalid. Stochastic formulation of gene transcription 

can be represented in the form of chemical master equation (CME) [34–37] and it can be 

computationally simulated by the Gillespie algorithm [38] which considers only one scenario of each 

reaction event based on the Monte Carlo scheme. Using Gillespie algorithm with random sampling from 

Poisson distribution, we can track a discrete population of molecules undergoing discrete number of 

reaction and translocation events during a given time period.  

In addition to transcriptional and translational reaction mechanisms, we also incorporate the transport 

phenomenon in the model. Two different transport mechanisms have been applied to describe movement 

in the cytoplasm; passive pure diffusion and active motor-protein driven convective transport. For the 

stochastic simulation of pure diffusion, we used fractional Gillespie multi-particle algorithm (fGMP) 

which is an approximation of the Gillespie method [38] with discrete time interval. This method is also 

based on the Gillespie multi-particle (GMP) method proposed by Rodriguez et al. [39], which is a 

discrete population-based spatial stochastic method to simulate biochemical networks. 

An information flow diagram for the stochastic simulation of reactions and intracellular transport is 

shown in Figure 4. In each iteration, we compute (i) reaction events; (ii) microtubular transport; and  

(iii) random diffusion events. Gillespie algorithm gives the number of molecules reacted in each 

reaction. For the microtubular transport, we compute each molecule’s positional change along a 

microtubule for a given time period. Finally, the fractional Gillespie multi-particle method determines 

the number of molecules and directional change inside the cellular domain for the given time step.  

i. Reaction events. In implementing reaction mechanisms, we incorporated reaction propensity 

functions to calculate an integer number of reaction events per each simulation time step, in which the 

propensity functions, a, are updated with the population of each species in the current state, j. These 

propensity functions are shown in Equations (3) to (5) for the synthesis of AQP4 and Equations (6) to (8) 

for the inactivation of the DNA or the degradation of the species. mRNA0 and AQP40 denote the 

degradation of each species in those propensity functions. Discrete numbers of all reaction events  

(R1–R6) are then sampled by Poisson distribution. The Poisson random number sampling is 

advantageous because it always gives rise to positive integers; however, it sometimes overestimates the 

total number of events when the simulation time step is too large. In this study, there are less than 15 

events occurring for each individual species during 1 s, therefore Δt = 1 s provides reasonable  

time-step for the current system.  

R1. *( , ) [ ] [ ]j b j ja DNA k DNA TFτ =  (3)

R2. *( , ) [ ]j tc ja mRNA k DNAτ =  (4)

R3. ( , 4) [ ]j tl ja AQP k mRNAτ =  (5)
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R4. *( , ) [ ]j ub ja DNA k DNAτ =  (6)

R5. 0( , ) [ ]j dr ja mRNA k mRNAτ =  (7)

R6. 0( , 4 ) [ 4]j da ja AQP k AQPτ =  (8)

Figure 4. Flowchart of the cell simulator.  

 

Tau leaping method is an approximation method that leaps over many reaction events to approximate 

the exact stochastic simulation, while maintaining reasonable computing performance. Our discrete time 

approximation method uses a constant time interval for simulation, regardless of the number of events 

during each interval. The advantage of this method is that user-defined fixed time steps can be 

implemented. In discrete time approximation method, all events pertaining to the time interval are 

implemented before updating the values of the propensity function. The time step is adjusted according 

to the system complexity.  

ii. Pure diffusion events. Assuming that the diffusivity of the molecules in the cell is homogeneous 

and isotropic, all diffusion probabilities are described with traveling times given in Equation (9), which 

are inversely proportional to the diffusion coefficient [39]. We assumed slow diffusion with,  

Ds = 0.125 μm2/s. It also depends on the mean distance to the neighboring subvolumes as expressed by 

the grid spacing parameter, λ, which has units length. d is the system dimensionality, where d = 3 in our 

current system. 
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The event times for all volumes in the cellular domain are initially computed and simulation follows 

the increasing order of the least traveling time, τmin. Accordingly, all volumes have directional diffusion 

depending on the ratio to the volume which has τmin. If the traveling time is shorter, the fraction of 

diffusing molecules is greater and vice versa. This fGMP method computes also fractional diffusion in a 

single volume proportional to the distances to the neighboring subvolumes from current tetrahedron 

volume with a normal distribution, N(μi,σ). μi is the probability obtained by calculating the  

Equation (10) with Li, the distance from current volume to neighboring subvolume i.  
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iii. Microtubular transport events. The active transport by motor proteins along the microtubule is 

composed of three steps: (i) association to the microtubules; (ii) dissociation from the microtubules; and 

(iii) convective transport along the microtubules. For the purpose of simplicity, we only consider 

anteriograde transport by kinesin in the positive direction to the cell membrane. The association rate 

constant of the motor-protein with the microtubules is high in comparison to the dissociation constant. 

Transport of AQP4 alongside microtubules was interpreted with convective movement with the speed of 

0.4–0.6 μm/s [40–42]. The directional transport along the microtubule is modeled deterministically 

whereas the association and dissociation reaction events are modeled stochastically.  

In order to integrate the spatial coordinates of the cytoskeletal network and that of the cellular 

subvolumes where diffusion and reactions occur, these two meshes exchange coordinate information in 

our cell simulator. One mesh serves as the domain for diffusion and reaction, and the other mesh serves 

to compute convective transport along the microtubules. In our algorithm, the mesh for the convective 

transport contains the microtubule structural identity and shares the mesh information with the 

volumetric cell mesh such as sub-volume id and absolute geometric information of all microtubule 

tracks. Therefore, a molecule associated with the microtubule track is allowed to propagate along the 

microtubule, updating its position along the microtubule. When the dissociation from the microtubule 

occurs, it communicates with the cell mesh to move that vesicle into that neighboring sub-volume.  

2.5. Comparison with Deterministic Kinetic Model 

To better characterize intracellular dynamics, the stochastic simulation for AQP4 synthesis was 

compared to a deterministic model. Averages of cell states obtained from repeated stochastic simulations 

were used for the side-by-side comparison with the continuous simulation results. The mathematical 

model for the intracellular kinetics using ordinary differential equations is described in Equations (11) to (14) 

*[ ]
[ ][ ] [ ]b ub

d DNA
k DNA TF k DNA

dt
= − +  (11)

*
*[ ]

[ ] [ ][ ]ub b

d DNA
k DNA k DNA TF

dt
= − +  (12)
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*[ ]

[ ] [ ]tc dr

d mRNA
k DNA k mRNA

dt
= −  (13)

[ 4]
[ ] [ 4]tl da

d AQP
k mRNA k AQP

dt
= −  (14)

where kb denotes DNA activation, kub for reverse inactivation, ktc for transcription, and ktl for translation. 

kdr and kda are degradation rates of mRNA and AQP4, respectively. DNA* stands for the activated state 

of the aquaporin 4 gene due to the binding of Nrf2 at the promoter region.  

The kinetic rates of our steady state model are determined from published AQP4 protein half-life. 

Since data on the stabilities of AQP4 transcripts are not available, we employ averaged properties of 

mRNA transcripts measured from more than four thousand mammalian genes [43]. In this model, we 

used relative expression levels obtained from our western blot data to compare the concentrations 

between initial steady state and SFN-induced dynamic state.  

We performed two sets of experiments in astrocyte cell culture; (i) the first set was used to determine 

the kinetic parameters for Nrf2 nuclear translocation in response to SFN treatment and (ii) the second set 

served as a validation of AQP4 upregulation caused by SFN treatment using western blotting. The model 

was used to analyze the status of gene activation, and the kinetics of transcription. The experimental 

results of Nrf2 translocation and AQP4 protein levels after SFN exposure are presented in Sections 0 and 

0, respectively. In addition, the detailed description of experimental procedures can be found in 

appendices A and B. 

3. Results and Discussion 

3.1. Kinetic Rates for the Steady State System  

The steady state of the system describing AQP4 synthesis and transport was matched with existing 

data. AQP4 proteins have a known half-life of 24 h in the cell [44], providing information about its 

degradation kinetics. The precise number of transcripts and AQP4 proteins per cell is not known, so only 

relative expression levels can be matched. For this case study, we ensure that the number of AQP4 

mRNA and proteins per cell falls within the range of four thousand genes measured in mammalian  

cells [43].  

Kinetic parameters shown in Equations (11) to (14) were determined to arrive at physiological AQP4 

protein and transcript levels. These levels agree with known data that on average approximately  

2 copies of mRNA are synthesized per hour and 900 proteins from each mRNA are translated per  

hour [43]. SFN treatment increased mRNA transcription to 8 copies per hour. The degradation rate of 

AQP4 is set to have a 24 h half-life and its corresponding AQP4 mRNA is assumed to have a half-life of 

~4.8 h due to the fact that on average mRNAs are 5 times less stable than the corresponding  

proteins [43]. This information is converted to kinetic rate constants as in Table 2. These kinetic rates are 

derived based on specific data on AQP4 along with data on general mammalian transcripts when 

AQP4-specific data is unavailable. The accuracy of the estimated kinetic rates is therefore constrained 

by data availability and it can be improved by using data on AQP4 transcripts instead of data  

on averaged mammalian transcripts. Using these rates, we obtained the number of AQP4 protein as  

3.59 × 105 at steady state. 
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Table 2. Kinetic rates of AQP4 synthesis. 

Parameters Values (s−1) 

Transcription rate with no SFN treatment 5.55 × 10−4 
Transcription rate with SFN treatment 2.08 × 10−3 

Translation rate 0.25 
Degradation rate of mRNA 4.01 × 10−5 
Degradation rate of AQP4 8.02 × 10−6 

3.2. Increased Transcription upon Sulforaphane Stimulation 

Upon sulforaphane (SFN) administration, the transcription factor Nrf2 becomes phosphorylated and 

translocates into the nucleus, and the transcription of the AQP4 gene is activated by Nrf2 in this model. 

The degree of induced gene activation in the cell model is derived from experimentally measured Nrf2 

translocation in normal and SFN treated cells, see appendix for detailed procedures. Briefly, to 

determine the level of Nrf2 activation, levels of phosphorylated Nrf2 (pNrf2) within the nucleus were 

quantified with immunofluorescence images obtained under controlled staining and imaging conditions. 

After continuous SFN treatment, the fluorescence levels of pNrf2 increased by about 63% compared to 

control at 15 min, and returned to normal levels by the 9-h time point. 

Our observation of rapid Nrf2 nuclear translocation is in agreement with findings by Jain et al. stating 

that Nrf2 translocation occurs as early as 15 min [45]. The time point of pNrf2 normalization after 

treatment is in agreement with observations by Jain et al. reporting that after nuclear translocation, Nrf2 

starts to exit the nucleus between 1 and 4 h and achieves normal levels at 8 h [45]. Based on this 

experimental finding, the cell model is adjusted to generate a 63% increase in transcription, and dynamic 

changes of AQP4 transcripts and proteins are predicted and validated with western blot data.  

3.3. Dynamic Behavior of the System  

The dynamics of the SFN-induced AQP4 upregulation is predicted with the cell simulator. A discrete 

event simulation was performed with the approximated Gillespie method, using a discretized time step 

of ∆t = 1 s. Stochastic simulations were repeated for 100 times and we confirmed that the average of 100 

realizations converged to the deterministic simulation as shown in Figure 5.  

Figure 5 shows that simulated AQP4 expression levels increased by 47.5% after 9 h and 68.0% after 

18 h. The proportion of time that the aquaporin-4 gene is in the activated state rises after SFN treatment 

and returns to normal after 8 h due to the Nrf2 export out of the nucleus. Interestingly, even though the 

AQP4 protein has a sustained period of upregulation, we predict that the mRNA level reaches a peak 

around 8 h and begins to drop thereafter. Computational results show that the AQP4 protein level reaches 

its peak at 17 h and returns to normal level after 9 days. Even though the stochastic model generates 

absolute number of molecules as shown in Figure 5, the current study only uses the relative expression 

levels for experimental validation of the model since the absolute number of AQP4 channels per cell is 

not known.  
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Figure 5. Stochastic simulation results of AQP4 transcripts and proteins after sulforaphane 

exposure. Each red solid line represents one stochastic realization and dotted black line is the 

solution of the deterministic simulation. The upregulation of AQP4 normalized to control 

was 1.48 ± 0.11 at 9 h and 1.68 ± 0.20 at 18 h.  

 

3.4. Spatial Translocation of Aquaporin 4  

In brain astrocytes, AQP4 channels are highly expressed in the endfeet [46]. After the translation of 

the protein, AQP4 proteins are packed into vesicles and transported towards the endfeet via the 

cytoskeleton [47]. The modeling of the AQP4 packing mechanism into the vesicle is initiated by the 

generation of a random number from 1 to 50. Initially, the diffusivity of the vesicle is assumed to be zero, 

while the “packing” of AQP4 occurs. Once the number of AQP4 proteins reaches the selected  

random number, the vesicle now assumes a non-zero diffusivity and goes into diffusion followed by 

directed transport.  

Finally, we demonstrate a qualitative comparison of the spatial AQP4 distribution in a single 

astrocyte cell with our simulated results as shown in Figure 6. Immunofluorescence image of a single 

astrocyte stained with anti-AQP4 antibody in Figure 6a shows AQP4-immunopositive vesicles inside 

the cell body as well as within astrocytic processes. Concentrated AQP4 immunoreactivity is observed 

in the endfeet processes. The simulated result of spatiotemporal intracellular trafficking of AQP4 in 

transport vesicles (blue spheres) on the microtubule cytoskeleton (red) of an astrocyte is shown in Figure 

6b. In the cell simulator, AQP4 molecules are concentrated at the endfeet of the processes, in agreement 

with the physiological expression of AQP4. We compared the spatial distribution of AQP4 in our cell 

simulator with observed patterns of AQP4 expression as shown in Figure 6a.  

However, the number of AQP4 containing vesicles or AQP4 tetramers concentrated at a single 

endfoot cannot be quantified with the immunofluorescence technique that was employed in this study 

due to limitations in resolution. In future studies, a quantitative validation of AQP4 spatial polarization 

at the astrocytic endfeet in the model could be performed with techniques such as freeze  

fracture electron microscopy [48] to quantify the number of AQP4 tetramers concentrated at a given 

endfoot membrane.  
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Figure 6. AQP4 trafficking in primary cultured astrocytes (a) and in the cell simulator (b). 

In (a), AQP4 proteins are seen in vesicles in the cell body as well as along astrocytic 

processes during their transport towards the endfeet. In (b), microtubules (red) and 

associated transport vesicles containing AQP4 (blue) in the reconstructed astrocyte  

cell are visualized.  

10μm

(a) (b)
 

3.5. Validation of the Model 

Western blot (WB) was performed to quantify the upregulation of AQP4 by 13 µM of SFN. For 

SDS-PAGE gel electrophoresis, cell lysates were prepared after 9 and 18 h of continuous SFN exposure. 

The results show that AQP4 expression was 1.48 and 1.68 fold higher than control after 9 and 18 h of 

SFN exposure as shown in Figure 7. The data confirmed that SFN induces upregulation of AQP4 in 

astrocyte cells, in agreement with previous findings that SFN injection induces AQP4 upregulation in 

the brain. Zhao et al. found a 65% upregulation of AQP4 24 h after SFN administration in an in vivo 

model of traumatic brain injury [18].  

The comparison between measurement and simulated AQP4 upregulation is shown in Figure 7b. A 

close agreement is observed between the measured AQP4 levels and simulations. By employing data on 

transcription factor translocation and the resultant change in protein levels, the model derives interesting 

insights on the frequency of “on” and “off” states of the gene, the dynamic increase and drop of its 

transcripts, and the intracellular trafficking of proteins during the SFN-induced upregulation. 

Figure 7. Western blotting shows that SFN induced a 48% upregulation of AQP4 after  

9 h of continuous exposure, and 68% upregulation after 18 h compared to control (a); Cell 

simulator results agree with measured expression levels of AQP4 (b).  
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4. Conclusions 

Many different molecular biological assays and biochemical techniques can be used to investigate 

intracellular process encompassing events starting at gene activation to the final expression of its encoded 

protein. These datasets provide time profiles of gene activation, transcripts, or protein levels and its spatial 

distribution pattern in a cell or in a population of cells. In order to derive a complete understanding of the 

dynamics of protein expression in a particular system, however, it is difficult to quantitatively measure every 

species involved in the biogenesis of a protein at every step in a time-dependent fashion due to limitations 

in time and resources. Oftentimes, data on relative expression levels allows the postulation of 

transcription and translation dynamics of the system, but these hidden kinetics cannot be extracted 

without using quantitative tools. Furthermore, time-dependent protein localization in specific cellular 

domains observed by fluorescence microscopy can be incorporated to derive the kinetics of trafficking 

and expression, after the transcription and translation step. Our case study derived additional insights 

about the unknown aspects of the chosen system: gene activation status and dynamic transcript levels, 

based on experimental observations on the transcription factor translocation and the target  

protein upregulation.  

The single cell simulator provides a platform for performing quantitative analysis of cellular events 

using and integrating biological data from various common molecular biology techniques. To simulate 

trafficking events, the microtubule cytoskeleton was generated by a novel growth algorithm. In addition, 

the event-based stochastic simulation technique allows the tracking of individual molecules at any point 

in time. The approximated Gillespie algorithm reduced the computational cost and captured the discrete 

and stochastic nature of transcriptional and translational events inside a single cell. Conversely, the 

average of repeated stochastic simulations is suitable for representing the behavior of an entire cell 

population. Finally, we used a deterministic model to validate the averaged trajectories from our 

stochastic computations with good agreement. The analysis of cellular events in silico incorporating 

experimental data acquired with various modalities can reveal hidden kinetics and facilitate the efficient 

design of future experiments in systems biology by making robust predictions of cellular response.  
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Appendix 

A. Nuclear Translocation of Nrf2  

Nrf2 is a putative TF of the AQP4 gene [18,19]. To see the activation level of Nrf2 by SFN, the 

nuclear translocation of Nrf2 phosphorylated at the serine 40 position (pNrf2) was quantified by 

immunofluorescence. It has been shown that the phosphorylation of Nrf2 at this site is required for Nrf2 
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translocation [49]. Cells grown in 12-well plates were treated with media containing 13 µM of SFN for 

15 min, 30 min, 1.5, 3, 9, and 18 h. Since SFN was dissolved in DMSO prior to dilution in media, cells 

treated with DMSO-vehicle for these time points were used as controls. At the end of the exposure 

period, cells were fixed in 4% paraformaldehyde, permeabilized with acetone, and blocked in 1% bovine 

serum albumin. Primary antibody specific for Nrf2 phosphorylated at serine 40 site was purchased from 

Biorbyt and primary antibody incubation was carried out overnight. On the next day, samples were 

incubated with secondary anti-rabbit antibody conjugated to Alexa594 (Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) and subsequently stained with DAPI. Samples were imaged with Zeiss 

AxioScope fluorescence microscope (Carl Zeiss Microscopy, Göttingen, Germany). For the purpose of 

quantifying fluorescence intensity inside the nuclear region, all parameters were held constant during the 

staining procedure and fluorescence images were acquired with a fixed exposure time. The fluorescence 

intensity of pNrf2 inside the nucleus was quantified with ImageJ [50], and the mean intensity was 

derived by averaging 20 cells per treatment group. 

B. Quantification of AQP4 Expression 

Rat primary cortical astrocytes were purchased from Lonza. Cells were grown at 37 degrees Celsius 

with 5% CO2. Astrocyte growth media (Gibco, Madison, WI, USA) contains 10% FBS supplemented 

with 1% penicillin/streptomycin and 1:500 amphotericin B. Growth media was changed twice a week 

and cells were passaged when confluent.  

To quantify AQP4 upregulation by SFN, cell lysates were prepared by lysing with RIPA buffer after  

9 h and 18 h of continuous SFN treatment at 13 µM. Bradford assay was performed to ensure equal 

loading of proteins. SDS-PAGE gel electrophoresis was performed on a TetraCell Mini system (BioRad, 

Hercules, CA, USA) using AnykD polyacrylamide gels (Biorad, Hercules, CA, USA). After transfer and 

blocking in bovine serum albumin, membrane was incubated with mouse anti-AQP4 primary antibody 

(Abcam, Cambridge, MA, USA) overnight. On the next day, secondary antibody (anti-mouse tagged 

with HRP) was applied for 1.5 h followed by washing steps. Membrane was imaged with BioRad 

Chemiluminescence detection system (BioRad, Hercules, CA, USA). Large molecular weight aggregates 

were excluded from the quantitative analysis. Densitometry was performed with Image J [50]. 

C. Determination of Diffusivity  

Diffusion of GFP-tagged fusion proteins inside distinct cellular compartments (ER, Golgi, 

cytoplasm) have been measured, and there is a wide range of diffusion rates depending on the size of the 

molecule and the specific cellular compartment. For example, diffusion of GFP (which is very small in 

size) inside the cytoplasm is 25 µm2/s [51]. On the other hand, diffusion of GFP-tagged E-cadherin on 

the plasma membrane is 0.03–0.04 µm2/s [52]. Inside the nucleoplasm, diffusion of GFP fusion proteins 

has the diffusivity of 0.24–0.53 µm2/s [53]. For simplicity, we have implemented a diffusion coefficient 

D = 0.125 µm2/s in our model, which is a reasonable estimate for computing the diffusion of molecules 

with a larger size. 
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