
Processes 2015, 3, 50-70; doi:10.3390/pr3010050 
 

processes 
ISSN 2227-9717 

www.mdpi.com/journal/processes 

Article 

Modeling the Dynamics of Acute Phase Protein Expression in 
Human Hepatoma Cells Stimulated by IL-6 

Zhaobin Xu 1, Jens O. M. Karlsson 2 and Zuyi Huang 1,3,4,* 

1 Department of Chemical Engineering, Villanova University, Villanova, PA 19085, USA;  

E-Mail: zxu2@villanova.edu 
2 Department of Mechanical Engineering, Villanova University, Villanova, PA 19085, USA;  

E-Mail: jens.karlsson@villanova.edu  
3 The Center for Nonlinear Dynamics& Control (CENDAC), Villanova University, Villanova,  

PA 19085, USA 
4 The Villanova Center for the Advancement of Sustainability in Engineering (VCASE),  

Villanova University, Villanova, PA 19085, USA 

* Author to whom correspondence should be addressed; E-Mail: zuyi.huang@villanova.edu;  

Tel.: +1-610-519-4848; Fax: +1-610-519-7354. 

Academic Editor: Juergen Hahn 

Received: 22 August 2014 / Accepted: 9 December 2014 / Published: 14 January 2015 

 

Abstract: Interleukin-6 (IL-6) is a systemic inflammatory mediator that triggers the human 

body’s acute phase response to trauma or inflammation. Although mathematical models for 

IL-6 signaling pathways have previously been developed, reactions that describe the 

expression of acute phase proteins were not included. To address this deficiency, a recent 

model of IL-6 signaling was extended to predict the dynamics of acute phase protein 

expression in IL-6-stimulated HepG2 cells (a human hepatoma cell line). This included 

reactions that describe the regulation of haptoglobin, fibrinogen, and albumin secretion by 

nuclear transcription factors STAT3 dimer and C/EBPβ. This new extended model was 

validated against two different sets of experimental data. Using the validated model,  

a sensitivity analysis was performed to identify seven potential drug targets to regulate  

the secretion of haptoglobin, fibrinogen, and albumin. The drug-target binding kinetics for 

these seven targets was then integrated with the IL-6 kinetic model to rank them based 

upon the influence of their pairing with drugs on acute phase protein dynamics. It was 

found that gp80, JAK, and gp130 were the three most promising drug targets and that it 
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was possible to reduce the therapeutic dosage by combining drugs aimed at the top three 

targets in a cocktail. These findings suggest hypotheses for further experimental investigation. 

Keywords: systems engineering; cellular biology and engineering; kinetics; mathematical 

modeling; parameter estimation; sensitivity analysis 

 

1. Introduction 

Interleukin-6 (IL-6) has been identified as one of the major systemic mediators that orchestrate 

acute phase response (APR) in the human body, as evidenced by the fact that IL-6 can stimulate the 

synthesis of most acute phase proteins in liver cells [1]. The mediation of APR by IL-6 begins with the 

release of IL-6 by leukocytes at the injury site. IL-6 then translocates to the liver, via the blood stream, 

where it stimulates hepatocytes and activates a cascade of intracellular signal transduction pathways. 

This leads to the activation of transcription factors, such as nuclear STAT3 dimer and C/EBPβ. These 

transcription factors, in turn, regulate the expression of acute phase proteins, such as haptoglobin, 

fibrinogen and albumin. The IL-6 signal transduction pathway has been extensively studied and  

the two major signaling pathways have been determined to be the JAK-STAT pathway and the  

MAPK-C/EBPβ pathway [2]. Nuclear STAT3 dimer and C/EBPβ have been identified as the 

transcription factors involved in these two signaling pathways, respectively [3,4]. Mathematical models 

have been developed for the JAK-STAT pathway [5] and the MAPK pathway [6–8]. Singh et al. (2006) 

presented the first comprehensive mathematical model for the IL-6 signal transduction pathway by 

integrating models for both the JAK-STAT and the MAPK pathways [9]. Moya et al. (2011) further 

extended the model of the MAPK pathway to predict the activation dynamics of transcription factor 

C/EBPβ [10]. However, acute phase proteins, which represent the end products of the IL-6 signal 

transduction pathway and participate in the human body’s response to trauma or inflammation, were 

not included in these existing mathematical models. Ryll et al. (2011) presented the first attempt to 

incorporate expression of acute phase proteins (e.g., C-reactive protein, α2-macroglobulin, and 

fibrinogen) in a model of the IL-6 signaling network [11]. However, this was a qualitative logic model 

in which the detailed intermediate reactions for acute phase protein activation were neglected. To 

address this deficiency, the model presented by Moya et al. (2011) [10] will be extended in this work 

to predict the dynamics of acute phase protein expression in HepG2 cells. Haptoglobin, fibrinogen, and 

albumin were selected as the representative acute phase proteins in this work for model development. 

These were chosen because they represent both positive (i.e., haptoglobin and fibrinogen) and negative 

(i.e., albumin) acute phase proteins and quantitative experimental data for the expression dynamics of 

these three proteins in HepG2 cells stimulated by IL-6 were available in the literature [12]. 

Mathematical models have previously been developed, and used, to identify potential drug targets to 

treat human diseases. For example, Araujo et al. (2005) presented a modeling approach to study the 

effect of multiple drugs on EGFR signaling [13]. Yang et al. (2008) further extended Araujo’s 

approach to determine multiple-target optimal intervention in the arachidonic acid metabolic network [14]. 

Such model-based approaches require that equations describing the signaling kinetics be integrated 

with models of target-drug binding kinetics. Since there is a lack of models of acute phase protein 
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expression and limited information about relevant target-drug binding kinetics in the IL-6 pathway, 

model-based approaches have not previously been applied to the identification of drug targets for 

regulating the dynamics of acute phase proteins stimulated by IL-6. In order to address this,  

our extended IL-6 model will be used in a sensitivity analysis to identify potential drug targets for 

regulating the expression dynamics of albumin, haptoglobin, and fibrinogen. Targeting JAK kinases 

could be useful in the treatment of a variety of diseases, including rheumatoid arthritis (RA) [15], 

myeloproliferative disorders [16] and cancers [17]. The approved pan-JAK inhibitor, tofacitinib, has 

undergone extensive evaluation for RA and has demonstrated efficacy in various clinical trials, likely 

due to its suppression of the IL-6 and cytokine pathways [18]. Along with tofacitinib, a series of JAK 

inhibitors have been proposed recently using a novel fused triazolo-pyrrolopyridine scaffold [18]. 

Among them is imidazo-pyrrolopyridine. Since limited information is available for drugs that  

bind to targets other than JAK kinases in IL-6 signaling, this work focuses on JAK inhibitors only.  

Imidazo-pyrrolopyridine is used as the model drug to illustrate the approach developed to integrate the 

extended IL-6 model with target-drug binding kinetics for studying the effectiveness of single/multiple 

drug treatment in regulating the secretion of acute phase response proteins. 

This paper is structured as follows: A recent model of IL-6 signaling [10] is extended, in Section 2, 

to predict the dynamics of acute phase protein expression. Experimental data presented in [12] are used 

to estimate the unknown model parameters, and the extended model is then validated against 

independent experimental data reported by [12] and [1]. Based upon the model developed in Section 2, 

sensitivity analysis is conducted, in Section 3, to identify reactions that play an important role in the 

regulation of the dynamics of haptoglobin, fibrinogen, and albumin. Molecular components involved 

in these reactions are regarded as potential drug targets. A model-based approach for virtual drug 

target screening is presented in Section 4 to evaluate the influence of the interaction between potential 

drugs and targets on the secretion rate of acute phase proteins. Discussion and concluding remarks 

related to the obtained results are given in Sections 5 and 6 respectively. 

2. Model Development for the Kinetics of Acute Phase Proteins in IL-6 Stimulated Hepatocytes 

2.1. IL-6 Signal Transduction Model 

The starting point for the model used in this work is the IL-6 signal transduction model developed 

by one of the co-authors (ZH) as described in a previous study [10]. This model can be represented by 

a set of nonlinear ordinary differential equations (Equation (1)): 

),,( uf
dt

d
px

x =
 

(1)

where x is a vector of the state variables of the model, p is a vector of the parameters, and u is the input 

to the system. The model consists of 68 ordinary differential equations representing the mass balances 

of the individual proteins and protein complexes, 117 parameters describing reaction constants, and 

one input given by the extracellular IL-6 concentration. 

A simplified diagram of the proteins involved in the model is shown in Figure 1. Extracellular 

cytokine IL-6 initiates the APR by attaching to its receptor at the cell membrane and forming  

(IL6-gp80-gp130-JAK)2 complex. This phosphorylated dimer serves as the starting point for both the 
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JAK-STAT and the MAPK pathways. In the JAK-STAT signaling, the phosphorylated dimer recruits 

the transcription factor STAT3, which is also tyrosine phosphorylated. The phosphorylated STAT3 

dissociates from the receptor complex (IL6-gp80-gp130-JAK)2 and undergoes dimerization. The 

dimerized STAT3 complex translocates to the nucleus and functions as a transcription factor for the 

expression of SOCS3, which in turn binds to the receptor gp130 and blocks the activation of JAK, thus 

inhibiting both STAT3 activation and MAPK activation. In the MAPK signaling, phosphorylated gp130 

recruits SHP2 which subsequently undergoes phosphorylation. The phosphorylated SHP2 interacts with 

Grb2 and SOS. The binding of Grb2 and SOS to the receptor complex leads to the activation of RAS, 

which further leads to the activation of the MAPK cascade up to transcription factor C/EBPβ. 

 

Figure 1. Implemented reaction network for Interleukin-6 (IL-6) induced signal 

transduction in hepatocytes. Adapted with permission from [10]. Copyright 2011, IET. 

In this work, the model reported by [10] is extended to predict the expression dynamics of 

haptoglobin, fibrinogen, and albumin in HepG2 cells stimulated by IL-6. Reactions for the synthesis of 

haptoglobin, fibrinogen, and albumin are first added into Moya’s model. The unknown parameters in 

the extended model are estimated from the experimental data measured in HepG2 cells under constant 

exposure to 2 nM IL-6 for seven days [12]. The extended model is then validated by the two data sets: 

the first one is for HepG2 cells under a pulse-chase stimulation of IL-6 [12], while the second one is 

for steady state values of dose-dependent secretion rates of fibrinogen and albumin in IL-6-stimulated 

HepG2 cultures reported by [1]. 

2.2. Extended Model of Acute Phase Protein Expression Dynamics 

The model reported by [10] does not include reactions for the synthesis of haptoglobin, fibrinogen, 

and albumin. In this subsection, reactions describing the transcription of mRNA encoding haptoglobin, 

fibrinogen, and albumin, as well as reactions responsible for the translation and secretion of these three 

acute phase proteins, were added into the existing model of IL-6 signal transduction. Nuclear STAT3 

dimer and C/EBPβ, whose activation levels can be regulated by IL-6 signaling, are the two major 

transcription factors for initiating the expression of acute phase proteins in the liver. In particular, 

C/EBPβ, nuclear STAT3 dimer, and C/EBPα are the transcription factors regulating the transcription 
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of haptoglobin [19], fibrinogen [20], and albumin [19,21], respectively. The transcription factor 

C/EBPβ affects the expression dynamics of albumin by inhibiting the expression of C/EBPα [21], and 

thus C/EBPβ indirectly down-regulates the expression of albumin. Based on these observations, 

reactions shown in Equations (2) through (9) were added into the IL-6 model reported by [10] such 

that the secretion rates of extracellular haptoglobin, fibrinogen, and albumin (denoted as Ex-haptoglobin, 

Ex-fibrinogen, and Ex-albumin, respectively) can be predicted from the extended model. 

_ _,

C / EBPβ mRNA haptoglobin
m h m hV K

→ −  (2)

_

mRNA haptoglobin Ex haptoglobin
t hk

− → −  (3)

_ _,
* *STAT3N STAT3N mRNA fibrinogen

m f m fV K

− → −  (4)

_

mRNA fibrinogen Ex fibrinogen
t fk

− → −  (5)

_

C / EBPβ αC / EBP
i ak

→  (6)

_

C / EBPα degradation
d ak

→  (7)

_ _,

C / EBPα mRNA albumin
m a m aV K

→ −  (8)

_

mRNA albumin Ex albumin
t ak

− → −  (9)

In Equations (2)–(9), the species mRNA-haptoglobin, mRNA-fibrinogen and mRNA-albumin refer to 

the mRNA encoding for the corresponding protein. Equation (2) describes the transcription process of 

haptoglobin, which is regulated by C/EBPβ [19] (the corresponding Michaelis-Menten coefficients are 

_m hV  and _ m hK ). Equation (3) lumps the translation of the haptoglobin mRNA with the secretion process 

of synthesized haptoglobin. Lumping was performed to reduce the number of unknown parameters in the 

model, and is justifiable since one of the two sequential processes is rate-limiting. Thus, a mass action 
kinetic model with an effective rate constant _t hk  was used to describe the lumped translation and 

secretion processes for haptoglobin expression. Similarly, Equations (4) and (5) describe the transcription, 

translation, and secretion processes of fibrinogen. Compared to these two positive acute phase proteins, 

the regulation of the expression of albumin, given by Equations (6) to (9), is more complicated. C/EBPβ 

inhibits the activation of C/EBPα as given in Equation (6). This down-regulates the expression of 

albumin, because C/EBPα is required to initiate the transcription of albumin (as shown in Equation (8)). 

Equation (7) describes the degradation process of C/EBPα in HepG2 cells due to the cell growth, while 

Equation (9) represents the lumped translation and secretion of albumin. A one-day delay has been added 

in the albumin transcription process as suggested by the data presented in [12]. Figure 2 shows the 

schematic diagram of the extended IL-6 signal transduction pathway. 

The ordinary differential equations describing the rates of newly added components involved  

in Equations (2) through (9) are developed based on mass balance, mass action kinetics and  

Michaelis-Menten kinetics. The resulting seven equations, Equations (A1)–(A7) (given in the Appendix), 

were integrated into our existing IL-6 model [10] to yield an extended IL-6 model with 75 ordinary 
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differential equations and 128 parameters, to predict the secretion rates of extracellular haptoglobin, 

fibrinogen, and albumin. 

 

Figure 2. Extension of an existing Interleukin-6 (IL-6) signal transduction model [10] to 

include reactions describing the expression dynamics of haptoglobin, fibrinogen, and albumin. 

The two dashed lines represent the JAK-STAT and MAPK-C/EBPβ pathways (see Figure 1). 

Adapted with permission from [10]. Copyright 2011, IET. 

2.3. Estimation of Unknown Parameters in the Extended Model  

There are 11 unknown parameters in Equations (2) through (9). Fisher information matrixes (FIM) 

were used to perform identifiability analysis. All these parameters are identifiable. An experimental 

data set for HepG2 cultures under a seven-day exposure to 2 nM IL-6 [12] was used to estimate these 

unknown parameters. Parameter estimation was conducted with standard nonlinear least squares 

optimization routines, such as lsqnonlin, available from MATLAB (The Math Works: Natick, MA, 

USA). The estimated values of the 11 unknown parameters, as well as their bounds with a 95% 

confidence level, were listed in the Appendix. A comparison between the model output and the 

experimental data was shown in Figure 3. In addition to performing comparison by visual inspection, 

the relative errors (Err) were computed according to the Equation (10); 

%100
ˆ

ˆ
×=

Y

Y-Y
Err

 
(10)

where Ŷ is a vector of the experimentally measured outputs at different points in time, i.e., 
[ ])(ˆ)(ˆ)(ˆ 21 ntytyty  , and Y is a vector of the outputs calculated by the model at corresponding 

time points, i.e., [ ])()()( 21 ntytyty  . The norm is the Euclidean (ℓ2) norm. The values of Err for 

the secretion rates of haptoglobin, fibrinogen, and albumin were found to be 14.41%, 12.16%, and 

7.17%, respectively. All of relative errors were below 15%, which indicates that the prediction was 

reasonably good in comparison to the magnitude of the error bars in the experimental data. 
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(A) (B) 

(C) 

Figure 3. Comparison of model-predicted secretion rates of haptoglobin, fibrinogen, and 

albumin to experimental data obtained from the HepG2 cultures stimulated daily by 2 nM 

Interleukin-6 (IL-6): (A) the secretion rate of haptoglobin; (B) the secretion rate of 

fibrinogen; (C) the secretion rate of albumin. 

2.4. Validation of the Developed Model 

Validation of the developed model is a crucial step before it is used to generate potential biological 

hypotheses that are used for biological experiment design. In this subsection, two independent 

experimental data sets were used to verify the developed model. 

2.4.1. Relaxation Kinetics of Albumin, Fibrinogen, and Haptoglobin in HepG2 Cultures under a  

Pulse-Chase Stimulation of IL-6 

The developed model was used to predict the dynamics of the three acute phase proteins for a  

pulse-chase condition where HepG2 cultures were subjected to IL-6 stimulation for three days and 

thereafter maintained without IL-6 stimulation [12]. Figure 4 showed the comparison between the 

model prediction and the experimental data. The values of Err for the prediction of secretion rates of 

haptoglobin, fibrinogen, and albumin were 14.78%, 31.09%, and 5.15%, respectively. It can be seen 

from Figure 4A that the model predicted the relaxation kinetics of haptoglobin well. A large value of 

Err existed in the prediction of relaxation kinetics of fibrinogen. This is mainly due to the mismatch 

between the model prediction and experimental data in Day two described in Figure 4B, for which the 

error bar, i.e., the variability of experimental measurements, was quite large. Corresponding 

explanation for this large error bar has been given in the original report by [12]. Other than Day two, 

the model prediction for fibrinogen secretion rate matched the experimental data well. The predicted 
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albumin secretion kinetics agreed well with the experimental data, as shown in Figure 4C, although it 

was necessary to incorporate a 24 h time-delay in the albumin expression model in order to accurately 

describe the observed lag between changes in IL-6 concentration and the resulting albumin secretion rate. 

 
(A) (B) 

(C) 

Figure 4. Comparison of model prediction to experimental secretion rates of haptoglobin, 

fibrinogen, and albumin for HepG2 cells under a pulse-chase stimulation of 2 nM 

Interleukin-6 (IL-6): (A) secretion rate of haptoglobin; (B) secretion rate of fibrinogen;  

(C) secretion rate of albumin. 

2.4.2. Steady State Values of Dose-Dependent Secretion Rates of Fibrinogen and Albumin in IL-6 

Stimulated HepG2 Cultures 

In this subsection, the data published in [1], which includes the steady state secretion rates of 

fibrinogen and albumin obtained in human primary hepatocytes under the exposure to IL-6 of various 

concentrations, was used to further validate the extended model. Accordingly, different concentrations 

of IL-6 were used in this work as the inputs for the developed model, and the steady state values of the 

secretion rates of fibrinogen, albumin and haptoglobin were recorded, normalized by the secretion 

rates of these three proteins for the control condition, and plotted in Figure 5. Figure 5A showed that 

the steady state value of the secretion rate of fibrinogen increased with increasing IL-6 concentrations 

and leveled off afterwards, following a sigmoidal profile with a transition width corresponding to two 

orders of magnitude variation in the IL-6 concentration. In addition, the maximum steady-state 

secretion rate was approximately four-fold higher than for the control condition. Both of these 

predictions (magnitude and width of profile) were consistent with the corresponding characteristics of 

the dose-dependence profile reported by [1] for fibrinogen secretion. Figure 5B showed that the 
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predicted steady-state albumin secretion rate decreased approximately two-fold as the IL-6 

concentration increased. The experimental dose response data, measured by [1] for albumin secretion, 

exhibited an inhibition of similar magnitude (~2.5-fold). However, the width of the transition in the 

predicted dose response for albumin was narrower than the transition width reported by [1] for this 

negative acute phase protein. As seen in Figure 5C, the steady-state haptoglobin secretion rates for 

various IL-6 concentrations followed a similar trend as shown in Figure 5A for steady-state fibrinogen 

secretion rates, but with a narrower transition width and a higher enhancement in the maximum  

steady-state secretion rate (around 5 times of the secretion rate for the control condition). Although 

Heinrich et al. [1] did not report the steady-state secretion rates of haptoglobin as a function of IL-6 

concentration, the result shown in Figure 5C was generally consistent with the response expected for a 

positive acute phase. One interesting observation that was made in Figure 5 was that the ED50 value for 

the fibrinogen dose-dependence profile (ED50 = 0.74 nM) was approximately double the corresponding 

value for the albumin dose response curve (ED50 = 0.32 nM). This result was consistent with the 

relationship between the ED50 values that was observed by [1] for fibrinogen and albumin secretion. 

Given that measurements by [1] represent an independent data set that was not used for parameter 

estimation, the agreement between model predictions and the published dose response curves provided 

additional validation of the model. 

 
(A) (B) 

(C) 

Figure 5. Predicted steady state values of secretion rates of fibrinogen, albumin, and 

haptoglobin under various stimulation doses of Interleukin-6 (IL-6): (A) Steady state 

values of secretion rates of fibrinogen; (B) Steady state values of secretion rates of albumin; 

(C) Steady state values of secretion rates of haptoglobin. 
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3. Investigation of Influence from the Reactions in IL-6 Signaling on the Expression Dynamics of 

Haptoglobin, Fibrinogen, and Albumin 

In this section, sensitivity analysis was conducted to identify the reactions in the IL-6 signaling 

pathways that play an important role in the regulation of the expression dynamics of haptoglobin, 

fibrinogen, and albumin. Molecular components involved in these reactions were regarded as potential 

drug targets that will be further screened in Section 4. 

The sensitivity analysis followed the approach of [22], in which parameters were varied by one 

order of magnitude above and below their nominal values. A sensitivity metric, si,j, was then quantified 

by Equation (11), in which the partial derivative of the output yj with respect to parameter pi (i.e.,  
a reaction rate constant) was normalized by the nominal values of pi and yj (i.e., 0

ip and 0
jy  respectively); 

0
|

0

0

, P
ij

ji
ji py

yp
s

∂
∂

=  (11)

where the vector P0 is a vector of nominal values of all parameters in the model. In this work, the 

output of the system, i.e., yj in Equation (11), was set to the seven-day mean value of the secretion rate 

of haptoglobin, fibrinogen, and albumin, respectively for j equal to 1, 2, and 3. 

To identify the most important parameters for modeling the expression dynamics of each acute 

phase protein, the absolute value of si,j was ranked in a decreasing order (listed in Table 1, only the top 

20 parameters are listed). 

As shown in Table 1, the parameters with the highest sensitivity measure values were primarily 

associated with those newly added reaction equations given by Equations (2) through (9) that 

described transcription, translation and secretion of haptoglobin, fibrinogen, and albumin, which was 

expected. The purpose for conducting sensitivity analysis, however, was to determine the effect of 

reactions from the original IL-6 signaling pathway on regulation of the expression of acute phase 

proteins. This information might reveal new mechanisms that can be used to manipulate the expression 

dynamics of acute phase proteins. In order to identify the reactions in IL-6 signal transduction that play 

an important role in regulation of the secretion rates of haptoglobin, fibrinogen, and albumin, the 

parameters shown in Table 1 were overlaid onto IL-6 signaling reaction networks in Figure 6. As seen 

from Table 1, most parameters that had an important impact on the secretion rate of haptoglobin also 

played an important role in regulating the secretion rate of albumin. This can be explained by the fact 

that the expression of both haptoglobin and albumin was regulated by MAPK-C/EBPβ signaling 

pathway. Reactions that were essential for the regulation of the expression of both haptoglobin and 

albumin constituted one group in Figure 6 (marked in blue pentagons), while the key reactions for 

regulating the expression of fibrinogen were associated with JAK-STAT pathway (marked in red 

ellipses in Figure 6). In addition, three reactions were identified from Table 1 for their important role 

in the regulation of expression dynamics of all three acute phase proteins. They were associated with 

the binding of IL-6 to its receptor and the formation of the receptor complex. These reactions initiated 

both the JAK-STAT and MAPK-C/EBPβ pathways. They were marked in purple squares in Figure 6. 
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Table 1. Sensitivity analysis results. 

Rank, i 
Impact on the Secretion Rate of 

Haptoglobin (j = 1) 

Impact on the Secretion Rate of 

Fibrinogen (j = 2) 

Impact on the Secretion Rate of 

Albumin (j = 3) 

Parameter, pi Sensitivity, |si,j| Parameter, pi Sensitivity, |si,j| Parameter, pi Sensitivity, |si,j| 

1 Vm_h 7.8168 Vm_f 7.0475 Vm_a 3.7746 

2 kt-h 4.0417 Km-f 3.7901 ki_a 1.0222 

3 Km_h 3.0482 kf7 2.0167 Km_a 1.0222 

4 kf51 0.5061 Vm_24 1.8237 kd_a 1.0221 

5 kf55 0.3774 k26 1.8237 kt_a 0.5915 

6 k58 0.3091 kd31 1.8100 kf51 0.1788 

7 kf71 0.0075 kf27 1.8055 kf55 0.1070 

8 kr71 0.0075 kd30 1.8046 k58 0.0764 

9 Km69 0.0045 Km_24 1.7836 kr71 0.0114 

10 Vm69 0.0044 kt-f 1.7688 kf71 0.0114 

11 k70 0.0043 kr27 1.7573 Km69 0.0068 

12 kf1 0.0019 k8 0.9580 Vm69 0.0068 

13 k54 0.0011 kr7 0.9403 k70 0.0066 

14 kf46 0.0011 k6 0.8621 kf1 0.0015 

15 k6 0.0010 kf28 0.7990 k54 0.0011 

16 kf3 0.0008 kf1 0.7675 kf66 0.0010 

17 kr1 0.0008 kf3 0.7628 kf46 0.0009 

18 kr3 0.0007 kr1 0.7621 kr1 0.0009 

19 kr5 0.0006 kr3 0.7619 kr3 0.0009 

20 kf5 0.0006 k21 0.7480 kf63 0.0008 

Figure 6 showed that reactions which influenced the regulation of fibrinogen secretion rate were 

mainly involved in the binding of extracellular IL-6 to its receptor on the cell membrane, the activation 

of STAT3C, and the expression of SOCS3. On the other hand, reactions that were related to the 

activation and deactivation regulation of Raf*, the activation of MEK, ERK-PP, and nuclear C/EBPβ 

were important to the expression of both haptoglobin and albumin. 

The information in Figure 6 was used to select putative drug targets for further evaluation. In this 

work, good drug targets were regarded as those participating in reactions that affect the regulation of 

all three acute phase proteins. In addition, they should be in monomer form, as the monomer was the 

basic unit to form a complex [23]. Components with non-zero initial concentrations were also given 

priority, as they represented existing targets that the drug can bind to. Based upon these criteria, seven 

drug targets were selected from those important reactions as shown in Figure 6 (specifically; gp80, 

JAK, gp130, STAT3C, Raf, MEK, and C/EBPβi). Components gp80, JAK, gp130 were selected as they 

construct the receptor complex (IL6 − gp80 − 	gp130 − JAK)ଶ∗  which was involved in several 

important reactions. The other four drug targets were either directly involved or phosphorylated in those 

important reactions. These seven drug targets were further evaluated in Section 4 based upon the efficacy 

of the interaction with their drug counterparts on regulating the dynamics of acute phase proteins. 
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Figure 6. Identification of the reactions from the Interleukin-6 (IL-6) signal transduction 

pathway that have the largest impact on acute phase protein expression, based on results of 

sensitivity analysis (Table 1). The figure is adapted from [10], and the numerical labels 

correspond to the reaction numbering used in the model by [10]. Adapted with permission 

from [10]. Copyright 2011, IET. 

4. Virtual Screening of Drug Targets and Drugs for Acute Phase Response 

A good drug target should have high feasibility of binding a drug, that is, it should require low 

binding energy. On the other hand, the binding of a drug to a good target should cause a large 

influence on the dynamics of acute phase proteins. A model-based platform was developed in this 

section to incorporate the drug and target interaction in the extended IL-6 model to screen the seven 

drug targets selected in Section 3. The influence from drug binding kinetics was then investigated on 

the basis of the developed platform, which was followed by evaluating the treatment strategy of 

multiple drugs against multiple targets. 
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4.1. A Model-Based Platform to Study the Influence from the Drug (Imidazo-Pyrrolopyridine) on Acute 

Phase Protein Secretion 

In this work, Equation (12) was used to describe the interaction of drug and its corresponding 

receptor. The competitive inhibition kinetics instead of more complicated inhibition kinetics (e.g.,  

non-competitive binding) was preferred here to elucidate the developed approach, which can be 

revised and extended for other inhibition kinetics. 

ComplexDrugTarget
if

f

/Kk

k⎯→←+  (12)

In Equation (12) Ki was the equilibrium constant, kf was the forward rate constant, and kf/Ki was the 

backward rate constant. The value of Ki for a drug-target pair can be obtained from experiment or 

computational interpretation [24]. In order to quantify the influence from the drug on the signaling 

pathway and thus the system output, differential equations for the drug and the drug-target complex 

were added into the ODE model. The differential equation for the receptor was modified accordingly. 

Among the seven drug targets identified from Section 3, JAK had been extensively studied for its 

interaction with existing drugs. Therefore, JAK and its drug counterpart imidazo-pyrrolopyridine were 

used as the example to illustrate our approach in this section. The corresponding value of Ki was 

determined to be 2.5 nM−1 from experiment [18]. Since no information was found for kf in the 

literature, a value of 0.01 nM−1·s−1 was assigned to kf to study the dynamics of the three acute phase 

proteins upon the treatment with various doses of imidazo-pyrrolopyridine in Figure 7. The value of 

0.01 nM−1·s−M was selected for kf here because a larger value didn’t further change the expression 

dynamics of the three acute phase proteins in the simulation. 

Since the EC50 of imidazo-pyrrolopyridine was 180 nM [18], the concentration of  

imidazo-pyrrolopyridine was increased from 0 to 240 nM in intervals of 60 nM, as shown in Figure 7. 

It can be seen that imidazo-pyrrolopyridine was predicted to greatly inhibit the secretion of fibrinogen, 

slightly inhibited the production of haptoglobin, and slightly promoted the secretion of albumin.  

The overall effect of this drug was to attenuate acute phase response, which was characterized by  

the decrease in the concentration of positive acute phase proteins (i.e., fibrinogen and haptoglobin)  

but increase in the level of negative acute phase proteins (i.e., albumin). In addition, the dose of 

imidazo-pyrrolopyridine had a significant influence on the production of fibrinogen especially, as a 

low dose (even lower than 60 nM) was able to repress most of the fibrinogen secretion. On the other 

hand, the production of hatoglobin and albumin did not change as much upon increasing the dose of 

imidazo-pyrrolopyridine, until a relatively high drug dose was applied. 

The parameter kf reflected the speed of the drug binding reaction. Figure 8 showed the kinetics of 

fibrinogen expression for four values of kf, as no experimental data were found for the kf value. Since 

imidazo-pyrrolopyridine had a large influence on the secretion of fibrinogen, only the result for 

fibrinogen was shown here to save space. It seems that a small increase in kf value from zero was able 

to suppress the secretion of fibrinogen significantly. When kf increased to 0.01 nM−1·s−1, the binding of 

imidazo-pyrrolopyridine to JAK reached its saturated speed.  
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(A) (B) 

(C) 

Figure 7. Dose effect of imidazo-pyrrolopyridine targeting at JAK on the production of 

three acute phase proteins: (A) haptoglobin; (B) fibrinogen; (C) albumin. 

 

Figure 8. Fibrinogen expression kinetics predicted from the model with different kf values. 

4.2. Ranking Drug Targets Based upon the Influence from Their Interaction with the Drug on the 

Dynamics of Acute Phase Proteins 

In this section, we further ranked the seven potential drug targets identified from Section 3 on the 

basis of the interaction between each drug and its target. For the same drug dose, the best drug & target 

0 1 2 3 4 5 6
2

4

6

8

10

12

14

16
x 10

-3

A
cc

um
ul

at
io

n 
ra

te
 o

f 
H

ap
to

gl
ob

in
 (

nM
/s

)

Time (day)

 

 

Drug concentration = 0 nM

Drug concentration = 60 nM

Drug concentration = 120 nM
Drug concentration = 180 nM

Drug concentration = 240 nM

0 1 2 3 4 5 6
0.02

0.04

0.06

0.08

0.1

0.12

0.14

A
cc

um
ul

at
io

n 
ra

te
 o

f 
F

ib
rin

og
en

 (
nM

/s
)

Time (day)

 

 

Drug concentration = 0 nM

Drug concentration = 60 nM

Drug concentration = 120 nM
Drug concentration = 180 nM

Drug concentration = 240 nM

0 1 2 3 4 5 6

0.2

0.25

0.3

0.35

0.4

0.45

0.5

A
cc

um
ul

at
io

n 
ra

te
 o

f 
A

lb
um

in
 (

nM
/s

)

Time (day)

 

 

Drug concentration = 0 nM

Drug concentration = 60 nM

Drug concentration = 120 nM
Drug concentration = 180 nM

Drug concentration = 240 nM



Processes 2015, 3 64 

 

pair should return the highest effectiveness in regulating the dynamics of acute phase proteins. It was 

fortunate that the binding kinetics for the pair of imidazo-pyrrolopyridine and JAK was found in the 

literature (i.e., the Ki value shown in Section 4.1). However, no binding kinetic data were found for the 

other six drug targets identified in Section 3, although data might exist in commercial database from 

pharmaceutical companies (which was not accessible by public). Since the value of Ki for the other six 

drug targets was not available in literature, it was assumed in this section that these targets were bound 

by the drug with the same kinetics as the one for imidazo-pyrrolopyridine and JAK. Based upon this, 

simulations were performed to evaluate the effectiveness of each drug-target pair on regulating the 

secretion rates of the three acute phase proteins. The effectiveness was quantified by the maximum 

percentage change in the secretion rate of each acute phase protein upon the binding of the drug to 

each target (Figure 9). The values of Ki and kf were kept the same as those used in Section 4.1. The 

drug dose was set to 60 nM because the simulation result in Figure 7 implies that was a high enough 

concentration to suppress the fibrinogen secretion. The binding of the drug to each of gp80, JAK, and 

gp130 reduced the secretion rates of fibrinogen (by 74.4%, 71.0%, and 71.8%) and haptoglobin  

(by 44.5%, 4.2%, and 5.3%) but enhanced the production rate of albumin (by 22.9%, 1.7%, and 2.2%). 

The interaction from these drug-target pairs generally inhibited the acute phase response, especially in 

suppressing the secretion of fibrinogen. This can be explained by the fact that these three receptors played 

an important role in initiating both JAK-STAT and MAPK-C/EBPβ pathways. The binding of a drug to 

STATC inhibited the expression of fibrinogen (by 2.6%), slightly enhanced the section of haptoglobin  

(by 0.01%), and barely reduced the expression of albumin (by 0.006%). This made sense, as inhibition of 

STAT3C prevented the activation of nuclear STAT3 dimer and thus down-regulated the expression of 

fibrinogen. The deactivation of JAK-STAT pathway released some (IL6 − gp80 − 	gp130 − JAK)ଶ∗  

complex to MAPK-C/EBPβ pathway for enhancing the production of haptoglobin. Therefore, the  

drug-STAT3C interaction only partially suppressed the acute phase response. The binding of the drug 

to Raf and C/EBPβi enhanced the secretion rate of albumin (by 0.08% and 54.2%), but reduced the 

secretion rate of haptoglobin (by 0.5% and 72.6%). Since Raf and C/EBPβi were the upstream 

components for the activation of nuclear C/EBPβ, inhibition of these two components by drugs  

down-regulated haptoglobin expression and restored albumin activation. The drugs binding to either 

Raf or C/EBPβi only partially inhibited the acute phase response, as the secretion of fibrinogen was 

enhanced by 0.2% and 0.001% upon the drug binding. The drug-MEK pair showed similar effect on 

acute phase response as the drug-Raf or drug-C/EBPβi pair, however, the effect from the drug-MEK 

pair was very limited (less than 0.001%). One potential reason for this was that the initial 

concentration of MEK (i.e., 41,667 nM) overwhelmed the drug dose (i.e., 60 nM) in this simulation. 

Based upon the simulation result shown in Figure 9, components gp80, gp130, and JAK were 

ranked as the top three drug targets because: (1) they had a noticeable effect on the secretion rates of 

all three acute phase proteins; and (2) they counteracted the acute phase response, while the others only 

partially do so. While it was assumed that the same Ki was used for all the drugs in this study for 

screening drug targets, this assumption can be relaxed if kinetic data are available in the future. 
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Figure 9. Maximum change of the secretion rates of the three acute phase proteins upon the 

binding of a drug with the concentration of 60 nM to each of the selected seven drug targets. 

4.3. Influence of Multiple Drug Treatment on Acute Phase Protein Secretion 

Only single drug-target pair was studied in Sections 4.1 and 4.2. We further applied the developed 

platform to quantify the effectiveness of a cocktail of drugs in regulating the dynamics of acute phase 

proteins. Since gp80, JAK, and gp130 were identified as good drug targets for regulating acute phase 

proteins, they constructed the drug target pool in this study. Similar to Section 4.2, a drug with similar 

binding kinetics was assumed for each of these three targets, and the corresponding drug and target 

binding reactions (e.g., Equation (12)) were added into the extended IL-6 ODE model. The production 

rate of fibrinogen for the cell treated with single drug that binds to gp80, JAK, and gp130 respectively 

was compared to the fibrinogen production rate in the cell treated with the three drugs that aim at gp80, 

JAK, and gp130 respectively in Figure 10. A low dose (i.e., 10 nM), was used here for each drug in all 

these scenarios to prove that the same effectiveness could be obtained using low doses of drugs if 

multiple drugs were applied to multiple drug targets. As shown in Figure 10, treating the cell with 

multiple drugs against multiple targets was able to enhance the inhibition of fibrinogen accumulation 

(see the black curve in Figure 10). Compared to the effectiveness shown in Figure 7B where 60 nM 

imidazo-pyrrolopyridine was applied to its target (i.e., JAK), the cocktail with three drugs returned a 

better performance in suppressing the secretion of fibrinogen even with a lower dose (i.e., 10 nM).  

In case that 60 nM imidazo-pyrrolopyridine might cause side effect, it was possible to get the same 

inhibition effectiveness by reducing its dose by adding the drugs aimed at gp80 and gp130.  

The developed platform can thus be used as a tool to optimize the drug cocktail if the kinetic data and 

side effect information are available for drug candidates, and to provide a new strategy in future drug 

design for acute phase response. 
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Figure 10. The accumulation rates of fibrinogen in the cell with only one of gp80, JAK, 

and gp130 bound by a single drug (10 nM) and in the cell with all gp80, JAK, gp130 bound 

by their drugs (each drug is of a 10 nM dose). 

5. Discussion 

This work presents the first comprehensive mathematical model for quantifying the kinetics of acute 

phase protein expression in the acute phase response mediated by IL-6. In addition to IL-6, it is 

possible for acute phase protein expression to be regulated by other cytokines, such as IL-1, TNF-α, 

IL-11, and OSM (oncostatin M) [25]. Although adding the signaling pathways associated with these 

cytokines can provide a more comprehensive model of the acute phase response, it would be a 

challenging task currently due to the following two reasons: (1) not all the reactions and pathways that 

connect these cytokines to acute phase proteins are known; (2) limited quantitative data are available 

for acute phase protein expression in cells stimulated by these cytokines. Therefore, we have focused 

on the IL-6 signaling pathway in this work. The extended IL-6 model will serve as a good starting 

point for incorporating other signaling pathways in the future, if quantitative data become available for 

acute phase protein expression following stimulation by other cytokines. 

The presented IL-6 model was validated by two independent datasets that included measurements of 

three representative acute phase proteins for various stimulation patterns of IL-6. In addition, the 

dynamics of these three acute phase proteins were predicted for hepatic cells treated by single or 

multiple drugs. Although extensive literature review has been conducted, limited quantitative data 

were found to validate the predicted effects of drug treatment. Experimental research is therefore 

needed to further quantify the dynamics of acute phase proteins in hepatocyte cells treated with drugs 

targeting gp80, gp130, and JAK. Despite of this, the model is able to provide a general direction for 

drug target selection. For example, the model can rank potential drug targets based upon the predicted 

effect of the binding of a drug to each of these targets (as shown in Figure 9). With the same binding 

kinetics assumed for all target-drug pairs, the simulation result could reveal which drug targets, upon 

the competitive inhibition, have a relatively large influence on the kinetics of acute phase proteins. 

Since no binding affinity information is available and thus incorporated in the model, the ranking of 

drug targets may not completely accurate. However, the model dose provides a platform to 

qualitatively compare those potential drug targets. In addition, the model can be used to predict the 

dose response for each drug target (as shown in Figure 7 for JAK), which provides information on the 
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sensitivity of a drug target to the drug dose. This provides additional information for drug target 

screening and drug dosage selection. Furthermore, the model is able to predict the effect of the drug on 

the kinetics of the molecules other than the three acute phase proteins. This may be helpful to quantify 

the side effect of the drug. 

JAK, gp80, gp130 were predicted to be the three optimal drug targets for regulating the dynamics of 

the acute phase proteins (i.e., fibrinogen, haptoglobin, and albumin) investigated in this work. Since 

these three macromolecules have distinct binding sites, they can be considered as separate drug targets. 

Seven potential drug targets were ranked according to the influence of their interaction with drugs on 

the dynamics of all three acute phase proteins. In the extended IL-6 model, fibrinogen is mainly 

regulated by the JAK-STAT pathway while albumin and haptoglobin are associated with the MAPK 

pathway. Because JAK, gp80, and gp130 are involved in reactions for activating both the JAK-STAT 

and MAPK pathways, they were found to be better intervention points than the other four drug targets. 

If we aim to regulate only one or two acute phase proteins, other drug target may be better than JAK, 

gp80, and gp130. For example, C/EBPβi is a better drug target than JAK, gp80, and gp130 for 

regulating the dynamics of albumin (see Figure 9). 

6. Conclusions 

This work developed the first comprehensive IL-6 model that can predict the expression dynamics 

of haptoglobin, fibrinogen, and albumin in HepG2 cultures stimulated by IL-6. The developed model 

was validated by two different sets of experimental data, and the relative errors of the model 

predictions for most cases were at, or below, 15%. Based on the developed model, sensitivity analysis 

was conducted to identify potential drug targets for regulating acute phase protein dynamics, which 

included gp80, JAK, gp130, STAT3C, Raf, MEK, and C/EBPβi. Imidazo-pyrrolopyridine targeted at 

JAK was used as an example drug to illustrate an approach in which the drug-target interaction is 

integrated with kinetic models to study the drug dose response. The simulation result showed that 

imidazo-pyrrolopyridine inhibited the acute phase response, especially the secretion of fibrinogen. The 

developed approach was used to further rank seven drug targets, with the assumption that each of them 

was targeted by a drug with similar binding kinetics. This assumption can be removed in the future 

when drug binding kinetic data are available for all drug targets. Upon binding to the drug, the targets 

gp80, JAK, and gp130 were found to have the largest effect on regulating the secretion of fibrinogen 

and on attenuating acute phase response. The developed platform was then applied to investigate the 

effectiveness of the drugs that bind to these three most effective targets on the regulation of fibrinogen. 

The simulation results show that the multiple-drug treatment approach can reduce the drug dosage to 

obtain the same treatment effectiveness when compared to single drug treatment approaches.  
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Appendix 

Equations added to IL-6 signal transduction for predicting dynamics of extracellular haptoglobin, 

fibrinogen, and albumin are shown in Equations (A1)–(A7).  
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where all variables are deviation variables that represent the concentration deviations from their 

nominal values once HepG2 cells are stimulated by IL-6. The initial values of all these variables are 

thus 0 nM. Constants rh0, rf0, and ra0 are the initial secretion rates of haptoglobin, fibrinogen, and 

albumin, respectively. Their values are determined to be 0.0027, 0.0341, and 0.4463 nM/s, from the 

experimental data for non-stimulated HepG2 cells. These reactions are integrated into the IL-6 

signaling model presented in Moya et al. [10], to predict the expression dynamics of haptoglobin, 

fibrinogen, and albumin. The values of parameters from Equations (A1) to (A7) are listed in the 

following table.  
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Table A1. Values of the parameters from Equations (A1) to (A7).  

Name Value Unit 

Vm_h 0.06457 nM/s 
Km_h 99.7421 nM 
kt_h 2.5389 × 10−5 1/s 
Vm_f 1.1841 nM/s 
Km_f 58.1310 nM 
kt_f 7.8158 × 10−6 1/s 
ki_a 1.0861 × 10−3 1/s 
kd_a 0.06866 1/s 
Vm_a 0.1470 nM/s 
Km_a 0.5118 nM 
kt_a 4.2195 × 10−6 1/s 
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