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Abstract: The modifier approach has been extensively explored and offers a theoretically-sound
and practically-useful method to deploy real-time optimization. The recent directional-modifier
adaptation algorithm offers a heuristic to tackle the modifier approach. The directional-modifier
adaptation algorithm, supported by strong theoretical properties and the ease of deployment in
practice, proposes a meaningful compromise between process optimality and quickly improving the
quality of the estimation of the gradient of the process cost function. This paper proposes a novel
view of the directional-modifier adaptation algorithm, as an approximation of the optimal trade-off
between the underlying experimental design problem and the process optimization problem.
It moreover suggests a minor modification in the tuning of the algorithm, so as to make it a more
genuine approximation.
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1. Introduction

Real-Time Optimization (RTO) aims at improving the performance and safety of industrial
processes by means of continually-adjusting their inputs, i.e., the degrees of freedom defining their
operating conditions, in response to disturbances and process variations. RTO makes use of both
model-based and model-free approaches. The model-free approaches have the clear advantage of
being less labor intensive, as a model of the process is not needed, but the increasing number of
inputs that can be adjusted when running the process has made them decreasingly attractive.

Model-based techniques have received an increasing interest as the capability of running a
large amount of computations online has become standard. Arguably, the most natural approach
to model-based RTO is the two-step approach, where model parameter estimation and model-based
optimization are alternated so as to refine the process model and adapt the operational parameters
accordingly [1,2]. Unfortunately, the two-step approach requires the process model to satisfy very
strict criteria in order for the scheme to reach optimality [3,4]. This issue is especially striking in the
case of structural mismatch between the model and the process and can make the two-step scheme
ineffective or even counterproductive [5–7].

The idea of not only adapting the model parameters, but also the gradient of the cost function
can be traced back to [8] and allows for guaranteeing that the resulting scheme reaches optimality
upon convergence [7,9,10]. Unlike the two-step approach, adapting the gradient of the cost function
allows one to tackle structural model-plant mismatches efficiently, which cannot be efficiently
addressed via the adaptation of the model parameters alone. The original idea has been further
improved; see, e.g., [7,9–13]. These contributions have converged to the modern Modifier Adaptation
(MA) approach, which has been successfully deployed on several industrial processes; see [14–17].
The MA approach has been recently further developed along a number of interesting directions;
see [16,18–21].
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In a run-to-run scenario where estimations of the uncertain parameters are carried out after
every run, the input for any run does not only maximize the process performance for the coming
run, but also influences the performance of the subsequent runs through the estimation of the process
parameters. This observation is generally valid when parameter estimation is performed between
runs and pertains to the MA approach. Taking this influence into account leads one to possibly depart
from applying to the process an input that is optimal according to the best available estimation of the
parameters at the time and adopt an input that strikes a compromise between process optimality and
gathering relevant information for the next parameter estimation. In that sense, the MA approach can
be construed as a mix of an optimization problem and an experimental design problem. The problem
of tailoring experimental design specifically for optimization in a computationally-tractable way
has been recently studied in [22], where the problem of designing inputs for a process so as to
gather relevant information for achieving process optimality is tackled via an approximate optimality
loss function.

The recently-proposed Directional-Modifier Adaptation (DMA) algorithm [23,24] and its earlier
variant the dual-modifier adaptation approach [25] offer a practical way for the MA approach
to deal with the compromise between process optimality and gaining information. Indeed,
at each process run, the DMA algorithm delivers an input that seeks a compromise between
maximizing the process performance and promoting the quality of the estimation of the process
gradients. The DMA approach handles this compromise by adopting inputs that depart from
the nominal ones in directions corresponding to the largest covariance in the estimated gradients
of the process Lagrange function. The DMA algorithm is easy to deploy and has strong
theoretical properties, e.g., it converges rapidly and with guarantees to the true process optimum.
The directional-modifier adaptation algorithm additionally makes use of iterative schemes to update
the modifiers used in the cost model, so as to reduce the computational burden of performing classical
gradient estimations.

In this paper, we propose to construct the DMA algorithm from a different angle, based on a
modification of the optimality loss function [22]. This construction delivers new theoretical insights
into the DMA algorithm and suggests minor modifications that make the DMA algorithm a more
genuine approximation of the optimal trade-off between process optimality and excitation. For the
sake of simplicity, we focus on the unconstrained case, though the developments can arguably be
naturally extended to constrained problems.

The paper is structured as follows. Section 2 proposes some preliminaries on the selection
of an optimality loss function for the considered experimental design problem and proposes a
computationally-tractable approximation, following similar lines as [22]. Section 3 investigates the
MA approach as a special case of the previous developments, proposes to tackle it within the
proposed theoretical framework and shows that the resulting algorithm has the same structure as
the DMA algorithm, but with some notable differences. Simple examples are presented throughout
the text to illustrate and support the concepts presented.

2. Optimal Experimental Design

In this paper, we consider the problem of optimizing a process in a run-to-run fashion.
The process is described via the cost function φ (u, p), where u gathers the set of inputs, or degrees
of freedom, available to steer the process, and p gathers the parameters available to adjust the cost
function using the measurements gathered on the plant. Function φ is assumed to be everywhere
defined and smooth. This assumption is arguably not required, but will make the subsequent analysis
less involved. The N-run optimization problem can then be formulated as:

min
u0,...,N−1

1
N

N−1

∑
k=0

φ (uk, p) , (1)
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where uk is the vector of decision variables applied at run k. Here, we seek the minimization of the
average process performance over the N runs. The cost function φ (u, p) associated with the process
is not available in practice, such that at any run k, the input uk is typically chosen according to the
best parameter estimation p̂k available at that time. It is important to observe here that the parametric
cost function (1) encompasses parametric mismatch between the plant and the model, but also any
structure adjusting the cost function according to the data, such as the MA approach; see Section 3.1.
Ideally, one ought to seek solving the optimization model:

min
u0,...,N−1

1
N

N−1

∑
k=0

Ep̂k [φ (uk, p̂k)] , (2)

where Ep̂k stands for the expected value over p̂k. For the sake of simplicity, we will focus in this paper
on the two-run problem, i.e., using N = 2 in Problem (2). In the following, we will assume that there
exists a vector of parameter preal for which φ (uk, preal) captures effectively the cost function of the
real process. This assumption is locally fulfilled, up to a constant term, by the MA approach.

When estimations of the parameters p̂k are conducted between the runs using the latest
measurements gathered on the process, a difficulty in using (2) stems from the fact that it can yield an
inadequate sequence of decisions u0,...,N−1. We motivate this statement next, via a simple example.

2.1. Failure of Problem (2): An Example

Consider the optimization model φ (u) = u2 + p2 yielding the the two-run problem:

min
u0,1

1
2

1

∑
k=0

Ep̂k

{
u2

k + p̂2
k

}
= min

u0,1

1
2

1

∑
k=0

u2
k + Σk+µ2

k , (3)

where Σk is the covariance of the estimation of parameter p̂k and µk its expected value. If the
distribution of the estimated parameter p̂1 is independent of the input u0, then Problem (3) takes
the trivial solution u0,1 = 0, which yields the best performance on the real cost function φ (u, preal),
regardless of the actual parameter value preal or of its estimated value p̂0 available for deciding the
input u0. However, since the estimated parameter p̂1 is obtained from the run based on u0, it is in fact
not independent of the decision variables. Indeed, let us assume that the estimation of p̂1 is provided
between the two runs via the least-square fitting problems:

p̂1 = arg min
p

1
2
‖p− p̂0‖2

Σ−1
0

+
1
2
‖y (u0, p)− ymeas

0 ‖2
Σ−1

meas
, (4)

where ymeas
0 ∈ Rm is the measurements taken on the process during or after the run based on

u0, y (u, p) is the corresponding measurement model, Σmeas is the covariance of the measurement
noise and Σ0 the covariance associated with the parameter estimation p̂0. Consider then the
measurement model:

y (u, p) = pu. (5)

The solution to (4) is then explicitly given by:

p̂1 =
(

Σ−1
0 + Σ−1

measu2
0

)−1 (
Σ−1

0 p̂0 + Σ−1
measu0ymeas

0

)
. (6)

Assuming that µ p̂0 = preal = 0 and E
{

ymeas
0

}
= 0, we then observe that if the measurement noise is

independent between the various runs, we have:

Σ1 =
(

Σ−1
0 + Σ−1

measu2
0

)−1
. (7)
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After removing the constant terms, Problem (3) becomes:

min
u0,u1

1
2

(
u2

0 + u2
1

)
+

1
2

(
Σ−1

0 + Σ−1
measu2

0

)−1
. (8)

An interesting situation occurs for Σmeas ≤ Σ2
0, i.e., when the covariance of the measurements is

sufficiently low; see Figure 1. The solution to (8) then reads as:

u0 = ±
(

Σ
1
2
meas −

Σmeas

Σ0

) 1
2

, u1 = 0, (9)

while the sequence u0 = u1 = 0 should clearly be used in order to minimize the cost of the
real two-run process, even in the sense of the expected value. This trivial example illustrates a
fundamental limitation of Problem (2) in successfully achieving the goal of minimizing the cost over
a two- or N-run process.

sm

0.2 0.4 0.6 0.8 1 1.2

u
0

-1

-0.5

0

0.5

1

Figure 1. Illustration for Problem (8). The level curves report the cost of (8) as a function of u0 and
Σmeas, with Σ0 = 1. The dashed lines report the optimal input u0 for various values of Σmeas. For
Σmeas low enough, the problem has two non-zero solutions.

2.2. Modified Optimality Loss Function

A sensible approach inspired from the work presented in [22] consists of selecting the input u0

according to:

u0 =arg min
u

Ee [φ (u, preal) + φ (u∗ ( p̂1) , preal)] =

arg min
u

Ee[ φ (u, preal) + φ (u∗ ( p̂1) , preal)− φ (u∗ (preal) , preal)︸ ︷︷ ︸
∆0

], (10)

where ∆0 is labeled the optimality loss function and e gathers the noise on the estimation of the
process parameters and the measurement noise, i.e.:

p̂0 = preal + e0, ymeas = y (u0, preal) + e1. (11)

Problem (10) seeks a compromise between the expected process performance at the coming run via
the first term in (10) and the expected process performance at the subsequent run via the second term.
The performance of the second term depends on the input selected in the first run via the parameter
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estimation performed between the two runs. We assume hereafter that e follows a normal, centered
distribution, and we use for the estimated parameter p̂1 the least-square fitting problem:

p̂1 = arg min
p

1
2
‖p− (preal + e0)‖2

Σ−1
0

+
1
2
‖y (u0, preal) + e1 − y (u0, p) ‖2

Σ−1
1

, (12)

where p̂1 is the parameter estimation following the first run. The optimality loss function ∆0

proposed in [22] was designed for the specific purpose of performing experimental design dedicated
to capturing the process parameters most relevant for process optimization. However, it was not
designed to be used within the two-run problem considered here. In this paper, we propose to use a
slightly modified version of (10), so as to avoid a potential difficulty it poses. For the sake of brevity
and in order to skip elaborate technical details, let us illustrate this difficulty via the following simple
example. Consider the cost function and measurement model:

φ (u, p) =
1
2
(u− p)2 , y (u, p) = up. (13)

The least-square problem (12) reads as:

p̂1 = arg min
p

1
2
‖p− (preal + e0)‖2

Σ−1
0

+
1
2
‖u0 preal + e1 − u0 p‖2

Σ−1
1

, (14)

which takes the explicit form:

p̂1 = preal +
e0Σ1 + e1Σ0u0

Σ0u2
0 + Σ1

. (15)

The optimality loss function ∆0 then reads as:

∆0 (u0) = φ (u∗ ( p̂1) , preal)− φ (u∗ (preal) , preal) =
1
2

(
e0Σ1 + e1Σ0u0

Σ0u2
0 + Σ1

)2

, (16)

and has the expected value:

Ee [∆0] =
1
2

Σ0Σ1

Σ0u2
0 + Σ1

. (17)

It is worth observing that a similar optimality loss function has also been used in [25] in order
to quantify the loss of optimality resulting from uncertain parameters. Problem (10) can then be
equivalently written as:

u0 = arg min
u

φ (u, preal) +Ee [∆0] . (18)

However, since in practice, preal is not available to solve Problem (18), a surrogate problem must be
solved, using preal ≈ p̂0. It reads as:

u0 = arg min
u

φ (u, p̂0) +Ee [∆0] = arg min
u

φ (u, preal + e0) +Ee [∆0] . (19)

An issue occurs here, which is illustrated in Figure 2. Because the expected value of the optimality
loss function computed in a stand-alone fashion in (17) misses the correlation between the control
input u0 and the initial estimation error e0 that arises via the optimization problem (19), using (19)
as a surrogate for (18) can be counterproductive in the sense that the performance of Problem (18) is
worse than the one of the nominal problem.
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In this paper, we address this issue by taking an approach to the optimality loss function that
departs slightly from (16).

p0hat
-0.5 0 0.5

C
o
s
t

0.1

0.15

0.2

based on preal

nominal
dual

p0hat
-0.5 0 0.5

C
o
s
t

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

based on p0

Figure 2. Comparison of the performance resulting from using the nominal input u0 = u∗ ( p̂0)

and the one resulting from (18) or (19) on the proposed example. The displayed cost is calculated

according to (10) and reads as Ee

[
1
2 u2

0 +
1
2 u∗1 ( p̂1)

2
]
. The left graph displays the cost resulting from

using (18), which delivers a better expected performance than using the nominal input. The right
graph displays the cost resulting from using (19), where preal ≈ p̂0 is used. In this example, this
approximation is detrimental to the performance of Problem (10), resulting in a worse performance
than the nominal one.

2.3. Problem Formulation

For a given initial estimation p̂0, initial estimation error e0 and measurement error e1 and using
preal = p̂0 − e0, the estimation problem solved after the first run can be formulated as:

p̂1 (u0, Σ, p̂0, e) = arg min
p

1
2
‖p− p̂0‖2

Σ−1
0

+
1
2
‖y (u0, p)− (y (u0, p̂0 − e0) + e1)‖2

Σ−1
1

, (20)

where we use the notation:

e =

[
e0

e1

]
, Σ =

[
Σ0 0
0 Σ1

]
, (21)

and consider e0, e1 to be uncorrelated. Defining:

û∗1 (u0, Σ, p̂0, e) = u∗ ( p̂1 (u0, Σ, p̂0, e)) , (22)

the modified optimality loss function can be formulated as:

∆ (u0, Σ, p̂0, e) = φ (û∗1 (u0, Σ, p̂0, e) , p̂0 − e0)− φ (u∗ ( p̂0 − e0) , p̂0 − e0) . (23)

This reformulation allows for construing the optimality loss function from the point of view of the
experimenter, by considering p̂0 as a fixed variable arising as a realization of the estimation of the
unknown parameter preal rather than a stochastic one. In (20) and (23), the actual parameter preal
is then, from the experimenter point of view, a stochastic variable, reflecting the uncertainty of the
experimenter concerning the real parameter. The resulting two-run problem reads as:

u0 = arg min
u

Ee [φ (u, p̂0 − e0) + ∆ (u, Σ, p̂0, e)] . (24)

We observe here that the cost function proposed in (24) is different from the original one in (19).
From the optimality principle, Problem (24) delivers an expected performance that is better or no
worse than the expected performance yielded by applying the nominal input u0 = u∗ ( p̂0). A simple



Processes 2017, 5, 1 7 of 18

example of the proposed optimality-loss approach is provided in Section 2.5. Unfortunately, solving
Problem (24) is in general difficult. In the next section, we consider a second-order approximation
instead, following a line also adopted in [22].

2.4. Second-Order Approximation of the Modified Optimality Loss Function

The optimality loss function (23) is difficult to use in practice. A second-order approximation
of (23) can be deployed as a tractable surrogate problem in (24). We develop this second-order
approximation next. We observe that the following equality trivially holds:

p̂1 (u0, Σ, p̂0, 0) = p̂0. (25)

The sensitivity of the parameter estimations p̂1 to the errors e can be obtained via the implicit function
theorem applied to the fitting problem (20); it reads as:

∂ p̂1 (u0, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

= F (u0, Σ, p̂0)
−1 M (u0, p̂0) , (26)

where:

F (u0, Σ, p̂0) =Σ−1
0 + yp (u0, p̂0)

> Σ−1
1 yp (u0, p̂0) (27)

is the Fisher information matrix of (20), and:

M (u0, p̂0) =
[
−yp (u0, p̂0)Σ−1

1 yp (u0, p̂0)
> yp (u0, p̂0)

> Σ−1
1

]
=
[

Σ−1
0 − F (u0, Σ, p̂0) yp (u0, p̂0)

> Σ−1
1

]
.

(28)

We note that from optimality that ∆ ≥ 0 always holds and:

∆ (u0, Σ, p̂0, 0) = 0,
∂∆ (u0, Σ, p̂0, e)

∂e

∣∣∣∣
e=0

= 0, (29)

which motivates a second-order approximation of ∆ at e = 0. The Taylor expansion of ∆ in e reads as:

∆ (u0, Σ, p̂0, e) =
1
2

e>
∂2∆ (u0, Σ, p̂0, 0)

∂e2 e + r3(u0, Σ, p̂0, e). (30)

We can then form the second-order approximation of the modified optimality loss function ∆.

Lemma 1. The following equality holds:

∂2∆ (u0, Σ, p̂0, 0)
∂e2 =

(
∂ p̂1

∂e
+

∂e0

∂e

)>
φ∗pu (φ

∗
uu)
−1 φ∗up

(
∂ p̂1

∂e
+

∂e0

∂e

)
, (31)

where we note φ∗xx = φxx (u∗ ( p̂0) , p̂0), and all partial derivatives are evaluated at e = 0.

Proof. We observe that:

∂2∆ (u0, Σ, p̂0, e)
∂e2 =

∂

∂e

(
φu (û∗1 , p̂0 − e0) u∗p ( p̂1)

∂ p̂1

∂e
− φp (û∗1 , p̂0 − e0)

∂e0

∂e
(32)

+φu (u∗ ( p̂0 − e0) , p̂0 − e0) u∗p ( p̂0 − e0)
∂e0

∂e
+ φp (u∗ ( p̂0 − e0) , p̂0 − e0)

∂e0

∂e

)
,
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where for the sake of clarity, the arguments are omitted when unambiguous. Using the fact that
φu (u∗ ( p̂0) , p̂0) = 0, it follows that:

∂2∆ (u0, Σ, p̂0, 0)
∂e2 =

∂ p̂1

∂e

> (
u∗p
)>

φ∗uuu∗p
∂ p̂1

∂e
− ∂e0

∂e

>
φ∗puu∗p

∂ p̂1

∂e
− ∂ p̂1

∂e

> (
u∗p
)>

φ∗up
∂e0

∂e
+

∂e0

∂e

>
φ∗pp

∂e0

∂e
(33)

− ∂e0

∂e

> (
u∗p
)>

φ∗uuu∗p
∂e0

∂e
− ∂e0

∂e

>
φ∗puu∗p

∂e0

∂e
− ∂e0

∂e

> (
u∗p
)>

φ∗up
∂e0

∂e
− ∂e0

∂e

>
φ∗pp

∂e0

∂e
,

where all functions are evaluated at e = 0. We use then the equality u∗p = − (φ∗uu)
−1 φ∗up to get (31).

In the following, it will be useful to write ∆ (u0, Σ, p̂0, e) as:

∆ (u0, Σ, p̂0, e) =
1
2

Tr
(

φ∗pu (φ
∗
uu)
−1 φ∗upV

)
+ r3 (u0, Σ, p̂0, e) , (34)

where we note:

V (u0, Σ, p̂0, e) =
(

∂ p̂1 (u0, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

+
∂e0

∂e

)
ee>

(
∂ p̂1 (u0, Σ, p̂0, e)

∂e

∣∣∣∣
e=0

+
∂e0

∂e

)>
.

Using (28), we observe that:

∂ p̂1 (u, Σ, p̂0, e)
∂e

∣∣∣∣
e=0

+
∂e0

∂e
= F (u0, Σ, p̂0)

−1
[

Σ−1
0 yp (u0, p̂0)

> Σ−1
1

]
, (35)

such that:

Ee [V (u0, Σ, p̂0, e)] = F (u0, Σ, p̂0)
−1
[

Σ−1
0 yp (u0, p̂0)

> Σ−1
1

]
Σ1 (?) = F (u0, Σ, p̂0)

−1 . (36)

It follows that the expected value of the optimality loss function reads as:

Ee [∆ (u, Σ, p̂0, e)] =
1
2

Tr
(

φ∗pu (φ
∗
uu)
−1 φ∗upF (u0, Σ, p̂0)

−1
)
+Ee [r3 (u0, Σ, p̂0, e)] . (37)

It is useful to observe that even though a modified optimality loss function has been selected here, its
approximation (37) is nonetheless very similar to the one proposed in [22]. Hence, the real difference
lies in its interpretation as an approximation of the modified function (23) rather than (16). Here, it is
useful to introduce the following lemma:

Lemma 2. If the following conditions hold:

1. the noise e has a multivariate normal and centered distribution
2. for all p ∈ P, u∗ (p) exists, is smooth, unique and satisfies the Second-Order Sufficient Condition (SOSC)

condition of optimality.
3. the parameter estimation problem (20) has a unique solution p̂1 (u0, Σ, p̂0, e) satisfying SOSC for any e

and is smooth and polynomially bounded in e
4. functions u∗ (p), p̂1 (u0, Σ, p̂0, e) and φup, φuu are all bounded by polynomials on their

respective domains.

Then, the inequality:

|Ee [r3 (u0, Σ, p̂0, e)]| ≤ c‖Σ‖2 (38)

holds locally for some constant c > 0, where ‖.‖ is the matrix two-norm.
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Proof. Because all functions are smooth and bounded by polynomials, the function ∆ is also smooth
and bounded by polynomials. It follows that:

r3 (u0, Σ, p̂0, e) = ∆ (u0, Σ, p̂0, e)− 1
2

Tr
(

φ∗pu (φ
∗
uu)
−1 φ∗upV

)
(39)

is also smooth and polynomially bounded. Additionally, the bound:

|r3 (u0, Σ, p̂0, e)| ≤ c ‖e‖3 (40)

holds locally for some c > 0 as a result of Taylor’s theorem. Then, Inequality (38) follows directly
from Lemma 3.

Lemma 2 appears to be a special case of the delta method [26]. We can now approximate (24) as:

min
u0

Ee [φ (u0, p̂0 − e0)] +
1
2

Tr
(

φ∗pu (φ
∗
uu)
−1 φ∗upF (u0, Σ, p̂0)

−1
)

, (41)

using φ∗uu = φuu (u∗ ( p̂0) , p̂0) and φ∗up = φup (u∗ ( p̂0) , p̂0).

Algorithm 1: 2-run nominal optimal experimental design.

Input : Current parameter estimation p̂0, covariance Σ.
1 Compute u∗ ( p̂0)

2 Evaluate φ∗pu (φ
∗
uu)
−1 φ∗up and F at u∗ ( p̂0), p̂0

3 Solve:

min
u0

Ee [φ (u0, p̂0 − e0)] +
1
2

Tr
(

φ∗pu (φ
∗
uu)
−1 φ∗upF (u0, Σ, p̂0)

−1
)

4 Apply u0 to the process, gather measurements, perform parameter estimation update
return updated p̂0 and Σ, repeat

For the sake of clarity, the deployment of Problem (41) in a run-to-run algorithm is detailed in
Algorithm 1.

2.5. Illustrative Example: Observability Problem

We consider again the example (13), i.e.:

φ (u, p) =
1
2
(u− p)2 , y (u, p) = up. (42)

where we consider p̂0 = preal + e0 as known a priori with E[e0] = 0, and p̂1 is provided by the
estimation problem:

p̂1 = arg min
p

1
2
‖p− p̂0‖2

Σ−1
0

+
1
2
‖ u0 ( p̂0 − e0) + e1︸ ︷︷ ︸

ymeas

−u0 p‖2
Σ−1

1
, (43)

and takes the explicit solution:

p̂1 = p̂0 +
e1Σ0u0 − e0Σ0u2

0
Σ0u2

0 + Σ1
. (44)
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The optimality loss for the second run then reads as:

∆ =
1
2
(u∗1 ( p̂1)− ( p̂0 − e0))

2 − φ∗︸︷︷︸
=0

=
1
2
(e0Σ1 + e1Σ0u0)

2

(Σ0u2
0 + Σ1)2

, (45)

and its expected value takes the form:

Ee [∆] =
1
2

Σ0Σ1

Σ0u2
0 + Σ1

=
1
2

F (u0, Σ)−1 . (46)

Ignoring the constant terms and since E[e0] = 0, the two-stage optimal experimental design then
picks the input u0 according to:

u0 = arg min
u

1
2
(u− p̂0)

2 +
1
2

F (u, Σ)−1 . (47)

We observe that in this simple case, the proposed approximation (41) is identical to the original
problem (24) and to Problem (19). This equivalence does not hold in general. The behavior of
Problem (41) in this simple case is reported in Figures 3 and 4. In particular, we observe that the
expected performance of Problem (41) on this example is consistently better than the one of the
nominal approach. It is important to understand here that in this specific example, the difference
between Figures 2 and 4 lies in the cost function that evaluates the performance of the nominal
and proposed approach. Indeed, because of the approximation preal = p̂0, the original approach
(19) appears potentially counterproductive under its targeted performance metric (10). Instead, the
proposed performance metric (24) is the one that can be minimized via exploiting measurements for
subsequent optimizations. In general, however, the inputs selected by (10) and (24) are different.

u0

-0.6 -0.4 -0.2 0 0.2 0.4

C
o
s
t

0.47

0.48

0.49

0.5

0.51

nominal

dual

Figure 3. Comparison of the nominal and optimal experimental design on the proposed example
for p̂0 = 0. The displayed cost is calculated according to the cost proposed in (24), which reads as

Ee

[
1
2 (u0 − ( p̂0 − e0))

2 + 1
2 (u
∗
1 ( p̂1)− ( p̂0 − e0))

2
]

in this example. It can be observed that the optimal
experimental design approach has two solutions, due to the non-convexity of the problem.
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Figure 4. The left graph illustrates the nominal and optimal experimental design performance on the
proposed example. The displayed cost is calculated according to the cost proposed in (24), which

reads as Ee

[
1
2 (u0 − ( p̂0 − e0))

2 + 1
2 (u
∗
1 ( p̂1)− ( p̂0 − e0))

2
]

in this example. The right graph displays
the corresponding inputs. Observe that the right-hand graph ought to be compared to the right-hand
graph of Figure 2.

3. Link to the Modifier Approach and the DMA Approximation

In this section, we draw a connection between the proposed developments and the well-proven
modifier approach tackled via the recent Directional-Modifier Adaptation (DMA) algorithm [23,24].
In particular, we show that the DMA approach can be construed as an approximation of Problem (41).

3.1. The Modifier Approach

In the context of RTO, instead of considering uncertain model parameters, the Modifier
Approach (MA) tackles the difficulty of working with uncertain process models by introducing a
modification of the gradient of the cost function in the optimization problem. The MA then considers
a model of the cost function in the form:

φ (u, p) = φ0 (u) + pTu, (48)

where p is a set of parameters that modifies the gradient of the process model. Hence, instead of
refining the process model, the MA focuses on adjusting the cost gradient at the solution in order to
reach optimality for the real process. At each run, measurements of the cost function can be used
to improve the estimation of the process gradients via numerical differences. The measurements
obtained at each run can be written as:

yreal =
φ (u0, preal)− φ (u−1, preal)

‖u0 − u−‖
, (49)

while the measurement model reads as:

y (u0, p) =
φ (u0, p)− φ (u−1, p)

‖u0 − u−‖
= p>

u0 − u−1

‖u0 − u−‖
+

φ0 (u0)− φ0 (u−1)

‖u0 − u−‖
. (50)

Here, we consider the inputs prior to u0 as fixed, since they are already realized, and we consider that
a parameter estimation p̂0 is available from these previous measurements, with associated covariance
Σ0. It can be verified that:

φ∗pu (φ
∗
uu)
−1 φ∗up = ∇2φ−1

0 , F (u0, Σ, p̂0) = Σ−1
p̂0

+ Σ−1
measS (u0) , (51)
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where Σmeas ∈ R is the covariance of the measurements of the numerical gradients of the process cost
function and where we have defined:

S (u0) =
(u0 − u−1) (u0 − u−1)

>

‖u0 − u−‖2 . (52)

Hence, Problem (41) deployed on the MA approach solves the problem:

min
u0

φ (u0, p̂0) +
1
2

Tr
[

Σ p̂0∇
2φ−1

0

(
I + Σ−1

measΣ p̂0 S (u0)
)−1

]
. (53)

3.2. DMA as an Approximation of (41)

We will consider next a 1st-order Neumann expansion to approximate Problem (53) for u0 ≈ u−1.
We observe that: (

I + Σ−1
measΣ p̂0 S (u0)

)−1
= I − Σ−1

measΣ p̂0 S (u0) + R, (54)

where:

R =
(

I + Σ−1
measΣ p̂0 S (u0)

)−1 (
Σ−1

measΣ p̂0 S (u0)
)2

. (55)

If the covariance Σφ associated with the measurements of the cost function is fixed, then
Σ−1

meas = 1
2 Σ−1

φ ‖u0 − u−1‖2. It follows that for ‖u0 − u−1‖ small, the following approximation is
asymptotically exact:

Tr
[

Σ p̂0∇
2φ−1

0

(
I + Σ−1

measΣ p̂0 S (u0)
)−1

]
≈ Tr

[
Σ p̂0∇

2φ−1
0 − Σ−1

measΣ p̂0∇
2φ−1

0 Σ p̂0 S (u0)
]

(56)

= Tr
[
∇2φ−1

0 Σ p̂0

]
− Σ−1

meas (u0 − u−1)
> Σ p̂0∇

2φ−1
0 Σ p̂0 (u0 − u−1) . (57)

One can then consider the following approximation of Problem (53):

u0 = arg min
u0

φ0 (u0) + p̂>0 u0 −
1
2

Σ−1
meas (u0 − u−1)

> Σ p̂0∇
2φ−1

0 Σ p̂0 (u0 − u−1) , (58)

which is valid for ‖u0 − u−1‖ small. The DMA approach computes a direction δu in the input space
according to:

max
δu

δuTΣ∇φδu (59a)

s.t. ‖δu‖ = 1, δu ∈ C (Ur) , (59b)

where Ur = I trivially holds in the unconstrained case and then solves the problem:

u0 = arg min
u0

φ0 (u) + p̂T
0 (u0 − u−1)−

c
2

(
δuT (u0 − u−1)

)2
, (60)

which is equivalent to:

u0 = arg min
u0

φ0 (u0) + p̂T
0 u0 −

c
2
(u0 − u−1)

T Q (u0 − u−1) (61)
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for the semi-positive, rank-one weighting matrix Q = cδuδuT . The close resemblance of the DMA
problem (61) to Problem (58) offers a deeper understanding of the procedure at play in the DMA
algorithm. More specifically, Problem (58) is identical to the DMA problem (61) if:

Σ−1
measΣ p̂0∇

2φ−1
0 Σ p̂0 = cQ. (62)

We observe here that ∇φ = ∇φ0 + p̂0, such that Σ∇φ ≡ Σ p̂0 mathematically holds. Since δu is the
dominant unitary eigenvector of Σ∇φ and is therefore also the dominant unitary eigenvector of Σ2

∇φ,
it follows that matrix Q is given by:

max
〈

Σ2
p̂0

, Q
〉

(63a)

s.t. ‖Q‖ = 1, rank (Q) = 1. (63b)

Observing (62) and (63), it follows that the classical DMA method picks an input using:

• the approximation ∇2φ0 ≈ γI for some γ > 0
• a rank-one approximation of Σ2

p̂0

According to these observations, a reasonable choice for the scaling constant c can be:

c = Σ−1
∇φ

∥∥∥Σ p̂0∇
2φ−1

0 Σ p̂0

∥∥∥ . (64)

It is useful to remark here that dismissing the information provided by ∇2φ0 may be advantageous
when φ0 does not reflect adequately the curvature of the cost function of the real process. In such a
case, the weighting provided by ∇2φ0 in (58) can arguably be misleading. Including estimations of
the 2nd-order sensitivities in the MA approach has been investigated in [19].

3.3. Illustrative Example

We illustrate here the developments proposed above via a simple quadratic example, which
nonetheless captures a number of observations that ought to be made. Consider the cost model:

φ0 =
1
2

u>0 Ru0 + f>u0, (65)

such that the nominal optimal input is trivially given by:

u0 = −R−1 f . (66)

Problem (53) then reads as:

min
u0

1
2

u>0 Ru0 + f>u0 +
1
2

Tr
[

Σ p̂0 R−1
(

I + Σ−1
∇φΣ p̂0 S (u0)

)−1
]

, (67)

while the approximate problem (58) reads as:

u0 = arg min
u0

1
2

u>0
(

R− Σ−1
∇φΣ p̂0 R−1Σ p̂0

)
u0 +

(
p̂0 + f − u>−1Σ−1

∇φΣ p̂0 R−1Σ p̂0

)>
u0. (68)

Note that Problem (68) is unbounded for Σ∇φ I <
(

R−1Σ p̂0

)2, while (67) can have a well-defined
solution; see Figures 5 and 6 for an illustration. This situation occurs here when the measurement
noise is small while the current parameter estimation is highly uncertain and is discontinued
when the parameter estimation becomes reliable, such that Σ p̂0 becomes small. Note that this can
be addressed in practice via an ad hoc regularization or by, e.g., bounding the input correction
‖u0 − u∗ ( p̂0)‖ in Problem (58).
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Figure 5. Example of the problem where the quadratic approximation (58) is unbounded, while (53)
has a solution. The black lines report the level curves of the cost of Problem (67); the grey lines report
the level curves of the cost of Problem (68); and the light grey lines report the level curves of the
cost of Problem (69) with Q given by (63). In this example, ignoring the contribution of ∇2φ0 in the
Directional-Modifier Adaptation (DMA) algorithm leads it to privilege directions (light grey dashed
line) that are significantly different from the ones privileged by (67) (grey dashed line). The latter point
to the solution of the original Problem (53).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4
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Figure 6. Example of problem where the quadratic approximation (58) is unbounded, while (53) has
a solution. The black lines report the level curves of the cost of Problem (67); the grey lines report
the level curves of the cost of Problem (68); and the light grey lines report the level curves of the

cost of Problem (69) where Q =
∥∥Σ p̂0

∥∥−2 Σ2
p̂0

and c = Σ−1
∇φ

∥∥∥Σ p̂0∇2φ−1
0 Σ p̂0

∥∥∥. Adopting a matrix Q

delivering a full-rank approximation of Σ2
p̂0

does not help the DMA algorithm adopting directions

(see the light-grey dashed line) that point to the direction of the solution to (67); hence, ignoring∇2φ0

is problematic here.

The DMA-based problem (60) reads as:

u0 = arg min
u0

1
2

u>0 (R− cQ) u0 +
(

p̂0 + f − c
2

uT
−1Q

)>
u0. (69)
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The behaviors of the DMA problem (69) and its proposed counterpart (68) are reported in
Figures 5–8. In Figures 5 and 6, the two problems are compared for the setup:

Q =

[
0.5060 0

0 1.2358

]
, f = 0, u− = 0,

p̂0 =

[
5 · 10−3

0

]
, Σ p̂0

[
0.0990 0

0 0.1638

]
, Σ∇φ = 0.0202,

(70)

resulting in an unbounded problem for both problems. In this case, the DMA approach (69) with
a reduced choice of c would ensure a bounded problem, while a regularization or trust-region
technique for Problem (68) would deliver a solution. We observe in Figures 5 and 6 that ignoring the
term ∇2φ0 in the DMA problem can lead the algorithm to favor a solution that departs significantly
from the ones proposed by (53).

In Figure 7, the two problems are compared for the setup:

Q = I, f = 0, u− =

[
0

−0.0444

]
, p̂0 =

[
0.04

0

]
, Σ p̂0 =

[
1 0
0 0.95

]
, Σ∇φ = 1.5. (71)

In this case, ignoring the term ∇2φ0 = Q = I does not yield any difficulty. However, because all
parameters p̂0 have a very similar covariance, the rank-one approximation of Σ p̂0 misleads the DMA
algorithm into selecting a solution that departs significantly from the one of (53). Finally, in Figure 8,
the two problems are compared for the setup:

Q =

[
1 0
0 0.8

]
, f = 0, u− =

[
0
−0.05

]
,

p̂0 =

[
0.04

0

]
, Σ p̂0 =

[
1 0
0 0.2

]
, Σ∇φ = 1.5.

(72)

In this last case, both the DMA problem (69) and (68) deliver solutions that are very close to the one
of Problem (53), i.e., in this scenario, ignoring the term ∇2φ0 and forming a rank-one approximation
do not affect the solution significantly.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1
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0
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0.08

0.1

uNomxxxxx
uGenxxxxx
uAppxxxxx
uDMAxxxxx
uprevxxxxx

Figure 7. Illustration for Section 3.3, setup (71). The black lines report the level curves of the cost of
Problem (67); the grey lines report the level curves of the cost of Problem (68); and the light grey lines
report the level curves of the cost of Problem (69) with Q given by (63). In this example, the rank-one
approximation for Q leads the DMA algorithm to propose a solution that is far from the one of (67).
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Figure 8. Illustration for Section 3.3, setup (72). The black lines report the level curves of the cost of
Problem (67); the grey lines report the level curves of the cost of Problem (68); and the light grey lines
report the level curves of the cost of Problem (69) with Q given by (63). In this example, all problems
deliver very similar solutions.

4. Conclusions

In this paper, we have proposed a novel view of real-time optimization and of the
modifier approach from an experimental design perspective. While some methods are available
to handle the trade-off between process optimality and the gathering of information for the
performance of future runs, this paper proposes a formal framework to construe this trade-off
as an optimization problem and develops a tractable approximation of this problem. The paper
then shows that the recent directional-modifier adaptation algorithm is a special formulation
of this approximation. This observation allows one to further justify the directional-modifier
adaptation algorithm from a theoretical standpoint and to consider a refined tuning of the algorithm.
The theory presented in the paper is illustrated via simple examples.
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Appendix

We provide here the lemma used in Proposition 2.

Lemma 3. If x ∈ Rm is a normally distributed, centered variable of covariance Σ ∈ Rm×m and f (x) : Rm →
R a smooth function polynomially bounded as:

| f (x)| ≤ Pm,n (x) (A1)

for some n-th-order polynomial of the form Pm,n (x) = ∑n
k=m αk ‖x‖k, then the following inequality holds

locally:

|Ex [ f (x)]| ≤ c ‖Σ‖ceil(m
2 ) . (A2)

Proof. We first observe that:

Ex [Pm,n (x)] ≤
n

∑
k=m

βk ‖Σ‖
k
2
∞ (A3)
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holds for some suite βk ≥ 0, with βk = 0 for k odd. This is a direct consequence of the
generalized Isserlis theorem [27,28], which states that the expected value of any even-order moment of
a multivariate normal centered distribution is a sum of products between k/2 entries of the covariance
matrix Σ, while odd-order moments are null. It then also holds that:

|Ex [ f (x)]| ≤
n

∑
k=m

βk ‖Σ‖
k
2
∞ , (A4)

and the inequality:

|Ex [ f (x)]| ≤ c ‖Σ‖ceil(m
2 ) (A5)

holds locally.

We observe that this Lemma appears to be a simple special case of the Theorem proposed by [26]
on the delta method, restricted to the normal distribution.
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