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Abstract: Nonlinear model predictive control has been established as a powerful methodology to
provide feedback for dynamic processes over the last decades. In practice it is usually combined with
parameter and state estimation techniques, which allows to cope with uncertainty on many levels.
To reduce the uncertainty it has also been suggested to include optimal experimental design into the
sequential process of estimation and control calculation. Most of the focus so far was on dual control
approaches, i.e., on using the controls to simultaneously excite the system dynamics (learning) as
well as minimizing a given objective (performing). We propose a new algorithm, which sequentially
solves robust optimal control, optimal experimental design, state and parameter estimation problems.
Thus, we decouple the control and the experimental design problems. This has the advantages
that we can analyze the impact of measurement timing (sampling) independently, and is practically
relevant for applications with either an ethical limitation on system excitation (e.g., chemotherapy
treatment) or the need for fast feedback. The algorithm shows promising results with a 36% reduction
of parameter uncertainties for the Lotka-Volterra fishing benchmark example.

Keywords: feedback optimal control algorithm; optimal experimental design; sampling time points;
Pontryagin’s Maximum Principle

1. Introduction

We start by surveying recent progress of feedback via nonlinear optimal control under uncertainty,
before we come to the main contribution of this paper, an investigation of the role of the measurement
time grid. This can be seen as complementary and can be combined with almost all other aspects of
efficient nonlinear model predictive control.

We are interested in controlling a dynamic process in an optimal way, under the assumption that
model parameters are unknown. We assume that there are no systematic uncertainties, i.e., that the
mathematical model represents the dynamics of the process sufficiently well and all measurement
errors are normally distributed. One possible control task is controlling a dynamic system from an
undesired cyclic steady state to a desired one in an optimal way. Such tasks arise in a large variety of
applications in biology, chemistry, mechanics and medicine.

The dynamic system is described as a system of differential equations that involves a priori
unknown model parameters. To cope with the uncertainty, optimization problems are solved on
short time horizons, and new measurements are used to update the model parameters and thus
the mathematical model as such. The feedback is calculated via model predictive control (MPC),
an established method applicable for linear [1] as well as nonlinear models (NMPC) [2]. MPC is
based on the assumption that new measurements arrive continuously, thus allowing an optimal
feedback control that can be applied online. NMPC is in practice often combined with moving horizon
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estimation (MHE), or estimation on an expanding time horizon, which allow an update of state and
parameter estimates based on new measurements [3].

NMPC and MHE are based on the calculation of optimal trajectories. As a fast feedback of the
controller is important in many applications, clever approaches doing most of the necessary calculations
before a new measurement arrives have been proposed in the literature. The most important numerical
concepts comprise real-time iterations [4,5], multi-level iterations [6], parallel multi-level iterations [7],
an exploitation of the KKT structures [8,9], adaptive control [10], automatic code export [11,12],
and usage of parametric QPs [13,14]. For a benchmark problem, the continuously stirred tank reactor
of [15], a speedup of approximately 150,000 has been achieved comparing the 60 seconds per iteration
reported in 1997 [16] and the 400 microseconds per iteration reported in 2011 by [17]. This speedup
is mainly due to the faster algorithms and only partially due to the hardware speedup. Surveys on
efficient numerical approaches to NMPC and MHE can be found in, e.g., [7,18–20].

The state and parameter solutions of the maximum likelihood estimation problems are random
variables, and are hence endowed with confidence regions. How the process is controlled and when
and what is being measured have an important impact on the size of these confidence regions.
Optimal experimental design (OED) is concerned with calculating controls and sampling decisions
that minimize the size of the confidence regions of the state and parameter estimates. This special
control problem is analyzed from a statistical and numerical point of view in several textbooks [21–24]
and became a state of the art method in designing experiments in many fields of application. Also a lot
of research has been done in sequential optimal experimental design (re-design of experiments) where
iteratively optimal experimental designs are performed and parameters are estimated [25,26]. In the
last decade, sequential OED has been extended by online OED in which the experiment is directly
re-designed when a new measurement is taken [27–31].

Our algorithm is related in the spirit of dual control [32–34], as we want to learn model parameters
at the same time as we are using them for NMPC. Note that for medical applications the situation is
completely different than from industrial chemical engineering. In the latter mathematical modeling,
experimental design, model calibration and analysis are typically performed beforehand with pilot
plants, and the results are then transferred in a second stage such that NMPC can be applied over and
over again to continuous or batch processes. For biological and medical applications a repetition is not
possible, e.g., a chemotherapy treatment can only be performed once under identical conditions.

Recently, different economic objective functions have been proposed that incorporate the nested
goals of excitation and exploration [35–37]. Also scenario trees [38,39] and set-based approaches [40]
have been successfully applied.

In all mentioned publications the focus is on the control function, with an implicit assumption
that measurements are available on a given sampling time grid. While this assumption is true for many
applications in which sensors are routinely used, the situation is different in biological and medical
applications, where measurements are often invasive and imply logistical, ethical, and financial
overhead. In [41] we showed the large impact of optimal sampling on uncertainty reduction for
patients suffering from acute myeloid leukemia. Uncertainty could be reduced by more than 50% by
choosing the time points different from the standard daily routine, in an a posteriori analysis.

This motivates us to concentrate on the question of the optimal timing of measurements in
a real-time algorithm. We propose a new feedback optimal control algorithm with sampling time
points for the parameter and state estimation from the solution of an optimal experimental design
problem. In our setting the control is assumed to be fixed for the experimental design problem, i.e.,
we do not excite the dynamics for the sake of information gain. Instead, we focus on determining
the optimal measuring (sampling) times. The motivation considering the control u(·) as fixed for the
experimental design problem is practically motivated by applications such as fishing or chemotherapy
dosage in which there is an ethical, logistical, or financial reluctance to profit only indirectly from
a system excitation. This decoupling may also be interesting for a different kind of applications
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for which fast feedback is necessary, as it results in a very efficient way to calculate the optimal
sampling points.

Note that the question of optimal sampling of measurements is to a large extent independent
from most of the aforementioned approaches to NMPC. Our approach is complementary in the sense
that, e.g., the numerical structure exploitation, the treatment of systematic disturbances, the treatment
of robustness, the formulation of dual control objective functions, the use of scenario trees or set-based
approaches can all be combined with an adaptive measurement grid. This also applies to the nature of
the underlying control task, where many extensions are possible, e.g., multi-stage processes, mixed
path- and control constraints, complicated boundary conditions and so on. In the interest of a clear
focus on our main results we choose a simple setting that allows to highlight the additional value
of measurement grid adaptivity, and only show exemplarily the impact of one possible extension of
our algorithm. We take the uncertainty with respect to model parameters into account on the level of
optimal control and of the experimental design by calculating robust optimal controls and samplings,
compare [42,43], and compare our new algorithm based on nominal solutions with the new algorithm
with robust solutions.

Numerical results demonstrating the performance of the algorithm and underlying the theoretical
finding are presented for the benchmark example called Lotka-Volterra fishing problem. This example
is particularly suited for several reasons. First, it is prototypical for many biological, chemical, and
medical processes as it captures the most basic dynamic behavior of oscillatory systems. Second, for
fishing systems our basic assumption of a slow process with expensive measurements applies and
processes related to sustainable fishing have been receiving increasing attention lately, e.g., [44,45].
Third, it has a prototypical objective for many medical applications, as we want to control from an
undesired cyclic steady state to a desired steady state. Fourth, it is simple and small enough to visualize
the impact of our approach in terms of uncertainty quantification and reduction. A transfer to larger
and more complex processes is straightforward.

The paper is organized as follows: In Section 2 we give an overview over the different optimization
subproblems that play a role. In Section 3 we present and discuss our novel feedback optimal control
algorithm with sampling decisions from sequential optimal experimental designs, and we elaborate
on the role of finite support designs. In Section 4 the theoretical findings are illustrated via numerical
results for the mentioned Lotka-Volterra fishing example, followed by a discussion and conclusions.

2. On the Estimation, Control, and Design Problems

In this section, the mathematical formulation of the underlying dynamical system and of the three
different types of optimization problems, i.e., parameter and state estimation, optimal control, and
optimal experimental design are introduced. They are solved sequentially in our feedback optimal
control algorithm with adaptive measurement grid that will be presented in Section 3. We explain
the advantages of our decoupled dual control approach with respect to an efficient solution of the
experimental design problem.

2.1. Nonlinear Dynamic Systems

We assume that dynamic processes can be described as an initial value problem (IVP), consisting
of a system of nonlinear ordinary differential equations (ODEs) and initial values x0(p) that may also
depend on the model parameters p,

ẋ(t) = f (x(t), u(t), p), x(t0) = x0(p), (1)

on a time interval t ∈ [t0, tf] = T with x : T 7→ Rnx the differential state vector, u : T 7→ U a control
function with U ∈ Rnu a bounded set, and unknown model parameters p ∈ Rnp . The function f is
assumed to be Lipschitz, such that (1) has a unique solution on T for all u and p. We calculate x(·) and
its derivatives numerically by appropriate methods as described, e.g., in [46].
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To formulate design problems and robust versions of control problems, we will need sensitivities
G = dx

dp : T 7→ Rnx×np . They can be calculated as the solution of the variational differential equations

Ġ(t) = fx(x̂(t), u(t), p)G(t) + fp(x̂(t), u(t), p), G(t0) =
dx0(p)

dp
(2)

with x̂(t) the solution of (1) and the partial derivatives hx(·), fx(·), fp(·) written in short form.
Note that here and in the following matrix equations are to be understood component-wise. Again,
we assume unique solutions for (2).

2.2. State and Parameter Estimation Problems

The relation between the model (1) and the measured data ηω
i for different measurement functions

ω ∈ {1, . . . , nω} and time points ti for i ∈ {1, . . . , N} can be described by the nonlinear regression

ηω
i = hω(x∗(ti)) + εω

i . (3)

The state x∗(·) depends as the solution trajectory of (1) implicitly on the model parameters p
(possibly also via the initial values x0(p)). The measurements are described by the nonlinear model
responses hω : Rnx 7→ Rnω

η of the true, but unknown state trajectory x∗(·) plus some normally
distributed measurement error εω

i ∼ N (0, σ2
ω,i) with zero mean and variances σ2

ω,i. Note that the
measurement, the model response, and the measurement error are vectors of dimension nω

η . Following
a maximum-likelihood approach we estimate initial values and model parameters by solving the state
and parameter estimation (SPE) problem in the form of a nonlinear weighted least squares problem

min
x(t),p

1
2

nω

∑
ω=1

N

∑
i=1

wω
i

(ηω
i − hω(x(ti)))

2

σ2
ω,i

s.t. (1) (4)

for given and fixed controls u : T 7→ U and weights wω
i ∈ W . As the measurement times ti may be a

priori unknown, we will in our analysis in Section 3.1 also look at the continuous analogue to (4). This
is given by

min
x(t),p

1
2

nω

∑
ω=1

∫ tf

t0

wω(t)
(ηω(t)− hω(x(t)))2

σ2
ω(t)

dt s.t. (1)

By choosing the function space for wω : T 7→ W such that we allow Borel measures ξω(T ) on
T = [t0, tf] as solutions, we can define designs ξω via dξω = wω(t)dt and work with

min
x(t),p

1
2

nω

∑
ω=1

∫ tf

t0

(ηω(t)− hω(x(t)))2

σ2
ω(t)

dξω s.t. (1) (5)

There is a large variety of algorithms to solve (4), and of alternative formulations, compare [47]
for a recent survey.

2.3. Optimal Control Problems

We consider an optimal control (OC) problem of the following form

min
x(t),u:T 7→U

M(x(tf)) s.t. (1) (6)

with a Mayer term as an objective function. Note that we omit mixed path and control constraints and
other possible and practically relevant extensions in the interest of a clearer presentation. The objective
function M(·) comprises the main goal of the control task under uncertainty, such as minimizing
the deviation from a target state or minimizing the number of cancer cells, and may of course also
contain a Lagrange term by adding an additional state variable. Again, there is a large variety of
algorithms to solve such control problems, comprehending dynamic programming, Pontryagin’s
maximum principle, or direct methods, compare, e.g., [48,49].
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2.4. Optimal Experimental Design Problems

We see the optimal experimental design (OED) problem as an optimal control problem with
a particular structure, as suggested in [50]. The degrees of freedom in experimental design are the
control functions u and the sampling decisions (or weights) w, which have been assumed to be fixed in
Section 2.2. The control can be used to excite the system dynamics, and hence also the sensitivities.
The sampling chooses time points or intervals with much information on the sensitivity of the model
response with respect to the model parameters. We assume u to be fixed on the level of the experimental
design problem for reasons to be discussed later, therefore we concentrate from now on on w as the
only degree of freedom. The objective of experimental design is maximizing information gain. With the
sensitivities (2), we can define the Fisher Information Matrix (FIM) as

Fd(tf) =
nω

∑
ω=1

N

∑
i=1

wω
i (h

ω
x (x(ti))G(ti))

T(hω
x (x(ti))G(ti)) ∈ Rnp×np (7)

for the discrete setting of (4) and as F(ξ) via the Borel measure

F(ξ) =
nω

∑
ω=1

∫ tf

t0

(hω
x (x(t))G(t))T(hω

x (x(t))G(t)) dξω ∈ Rnp×np (8)

for the continuous measurement setting of (5).
Minimizing the uncertainty of state and parameter estimates, or maximizing information gain,

can now be quantified via a scalar function φ(·) of the FIM or its inverse, the variance-covariance matrix.
A list of different objective functions (criteria), such as trace, determinant or maximum eigenvalue can
be found, e.g., in [24]. To limit the amount of measurement, either an economic penalty in the objective
as suggested in [50] can be used, or a normalization via constraints, e.g.,

1 =
N

∑
i=1

wω
i (9)

for all ω and the discrete setting of (4) and as

1 =
∫ tf

t0

dξω (10)

for all ω and the continuous measurement setting of (5). Based on our assumptions and considerations,
we define the OED problem with fixed u as

min
x(t),G(t),Fd(tf),w∈Wnω N

φ(Fd(tf)) s.t. (1,2,7,9) (11)

for the case of a discrete measurement grid and as

min
x(t),G(t),F(ξ),ξ

φ(F(ξ)) s.t. (1,2,8,10) (12)

for the continuous measurement flow. Problems (11) and (12) can be solved numerically with the same
methods as general optimal control problems, and with specialized ones that take the structure of the
derivatives and sensitivities into account, [51]. Our assumption of a fixed u and the specific way w
enters the right hand side allow an even more efficient approach, in which the expensive calculation of
the states x and G is decoupled from the optimization over x and Fd, see Algorithm 1.
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Algorithm 1 OED

Input: Fixed p and u, initial values x(t0), G(t0), possible measurement times {t1, . . . , tN} ⊂ [t0, tf]

1: Solve IVP ((1) and (2)) to obtain x(·) and G(·)
2: Solve min

Fd(t),w∈Wnω N
φ(Fd(tf)) s.t. (7,9)

This decoupling is not the main motivation for our approach to optimize sequentially over u and
w, but it should be exploited and might be an argument for time-critical processes.

Algorithm 1 operates with a (fine) time grid of possible time points that can be chosen to take
a measurement. If one wants to leave the exact timings ti ∈ R as degrees of freedom, one can apply
a time transformation (switching time optimization), as suggested and discussed in the context of
mixed-integer optimal control, e.g., in [52–54] with stage lengths Ti := ti+1 − ti. The variables Ti
become additional optimization variables, integration of x and G is performed on the interval [0, 1]
and the dynamics ((1) and (2)) are scaled according to

ẋ(t) = Ti f (x(t), u(t), p), x(t0) = x0(p), (13)

Ġ(t) = Ti ( fx(x̂(t), u(t), p)G(t) + fp(x̂(t), u(t), p)), G(t0) =
dx0(p)

dp
. (14)

Also continuity conditions at times ti need to be included, and a constraint like ∑N
i=0 Ti = tf for

fixed tf. The advantage of using ((13) and (14)) is the independence of an a priori grid. However, this
comes at the price of not being able to decouple the calculation of x and G from w and F any more,
of higher computational costs due to the extra variables, an increased nonconvexity of the dynamics,
and possibly not practically realizable (e.g., irrational) measurement times ti ∈ R. Therefore we prefer
to use Algorithm 1 with a fine grid of possible measurement times.

3. A Feedback Optimal Control Algorithm With Optimal Measurement Times

We start by formulating the main algorithm, before we have a closer look at the role of optimal
measurement times and one possible extension, the consideration of robustness.

As an alternative to a dual control approach which incorporates the system excitement,
an optimizing control with respect to the control objective, and possibly also the choice of optimal
measurement times into one single optimization problem, we propose a decoupled dual control
approach. We formulate it for a shrinking horizon [τ, tf] with respect to the control and experimental
design tasks, and an expanding horizon [t0, τ] with respect to state and parameter estimation, which can
be easily adapted to a moving horizon setting if appropriate.

The algorithm iterates over time with a “current time” τi. It solves three subproblems that have
been introduced in Section 2. The solution of the optimal control problem (6) provides a control u∗(·)
which optimizes with respect to the main control objective. This control is applied until the next
update at time τi+1. This time point τi+1 is calculated by means of an optimal experimental design
problem (11) as the first time point from a given fine grid of possible measurement points on which the
calculated measurement weight w∗knew is strictly positive. At this time a new measurement is performed,
with a subsequent estimation of states and parameters. Based on the modified parameters, a new
optimal control is calculated, based on the modified parameters and control, new measurement weights
are calculated and so forth. Naturally, previous solutions can and should be used as initialization
to speed up the calculations. Depending on the time scales of the process and the calculation times,
there usually is a small time gap in which the old controls need to be applied. See, e.g., [17], for details
on how to deal with this situation.

Figure 1 visualizes the start of one loop to the start of the next loop of Algorithm 2 applied
to the Lotka-Volterra fishing example which is described and discussed in detail in Section 4.
In Figure 1a an optimal control problem is solved with the initial values x̂(15) and p̂ on the interval
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[15, 30]. The initial values are obtained from a state and parameter estimation performed on the
interval [0,15] with measurement time points derived from a optimal experimental design problem.
The uncertainty tubes around the two trajectories are created by 100 simulations with parameter
values randomly chosen from a normal distribution with the estimated parameters and corresponding
uncertainties as mean and variance. Next, an optimal experimental design problem is solved for the
optimal control strategy u∗(t) and the associated solution x̂∗(t) obtaining optimal measurement time
points on the interval [15, 30] (see Figure 1b). From the optimal design w∗ the time point τ1 is chosen
for which the corresponding entry w∗j > 0 is the first strictly positive one. In Figure 1c the optimal
control u∗ is applied to the real system until time point τ1 at which a measurement is performed and
the parameters and the initial states are re-estimated with the additional measurements. With the
updated values we are back at the start of the algorithm’s loop and a new optimal control problem
is solved with the updated values on the receding time horizon [τ1, 30] shown in Figure 1d. For the
uncertainty tubes again 100 simulations with parameter values sampled from a normal distribution
with updated values for the mean and the variance were used.

0 5 10 15 20 25 30
−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

x1(t)

x2(t)

u(t)

(a) Step 1 in first loop.
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(b) Step 2 in first loop.
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(c) Step 3 - 5 in first loop.
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x2(t)

u(t)

(d) Step 1 in second loop.

Figure 1. Visualization of Algorithm 2 performing one loop applied to the Lotka-Volterra fishing
example. In Figure 1a the first step, solving an optimal control problem, of Algorithm 2 is performed
on the time interval [15, 30] with initial values from a parameter and state estimation on the interval
[0,15] with measurements from an optimal experimental design problem. The uncertainty tubes are
computed from 100 simulations with parameter samples from a normal distribution with the estimated
parameters and uncertainties as mean and variance. In Figure 1b an optimal experimental design is
computed on t ∈ [15, 30] with the optimal control strategy. The strictly positive optimal sampling
weights are visualized as vertical lines. Next, the optimal control strategy is performed until time point
ti at which the first sampling weight is strictly positive and a measurement is taken. Afterwards a state
and parameter estimation is performed (Figure 1c). The loop starts again with solving a OCP on [ti,30]
with the estimated values. The new optimal control strategy is shown in Figure 1d with uncertainty
tubes computed from 100 simulations with updated mean and variance.
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Algorithm 2 FOCoed

Input: Initial guess p̂, initial values x(t0), G(t0), possible measurement times {t1, . . . , tN} ⊂ [t0, tf]

Initialize sampling counter i = 0, measurement grid counter k = 0 and “current time” τ0 = t0

while stopping criterion not fulfilled do

1: Solve OC problem (6) on the horizon [τi, tf], obtain u∗(·), x̂∗(·)
2: Solve OED problem (11) on the horizon [τi, tf] (hence wω

j fixed for j ≤ k), obtain w∗ ∈ Wnω N

3: Set i = i + 1, knew such that wω,∗
knew > 0 and wω,∗

j = 0 ∀ k < j < knew. Set k = knew and τi = tk

4: Apply u∗ on [τi−1, τi], measure function ω at τi

5: Solve SPE problem (4) on the horizon [t0, τi], obtain p̂, x̂(t)

end while

6: Solve OC problem (6) on the horizon [τi, tf]

The stopping criterion is formulated in a general way as it usually depends on the experimenter’s
choice. Possible criteria are a minimum amount of uncertainty reduction, a fixed number of
measurements, or an economic penalization term as proposed in [50].

3.1. Finite Support Designs

We look at the role of finite support for optimal experimental designs in more detail, as this will
allow us to choose measurement points (and hence the sampling grid) in an optimal way. It is an
interesting question how optimal solutions of the discrete OED problem (11) and of the continuous
analogue (12) relate to one another. The answer is given by the following theorem, which states that
to every optimal design there is a discrete design with finitely many measurement points resulting
in the same Fisher information matrix. This is obviously a justification for our iterative approach
in Algorithm 2, using a finite number of measurements. Theorem 1 presents a property of optimal
designs for the Fisher information matrix.

Theorem 1. Let nω = 1. For any optimal design ξ of the OED problem (12) resulting in a nonsingular
Fisher information matrix of the SPE problem (5) there exist a finite number N of measurement time points
{t1, t2, . . . , tN} ⊂ T and positive real numbers w1, w2, . . . , wN with ∑N

i=1 wi = 1 such that

F(ξ) = Fd(tf) =
N

∑
i=1

wi (hx(x(ti))G(ti))
T hx(x(ti))G(ti)

with the bounds ⌊
np

nη

⌋
≤ N ≤

np(np + 1)
2

. (15)

np is the number of parameters and nη is the dimension of the model response h(x).

A proof can be found in [55,56]. It is based on the set of all matrices of the form (8) being a compact,
convex set. The upper bound results from the Theorem of Carathéodory [21,24] and the solution of
the dual problem which is located at the boundary of the convex set [57]. The lower bound is based
on the assumption of Fd(tf) having full rank np, and every update wi (hx(x(ti))G(ti))

T hx(x(ti))G(ti)

having rank nη . Our setting is slightly more general, as we allow nω different measurement functions.
However, the result carries over.

Corollary 1. For any nω ≥ 1 Theorem 1 applies with nη = ∑nω
ω=1 nω

η .
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Proof. The Minkowski sum of convex, compact sets is again a convex, compact set, and hence the
argument for the representability due to the Theorem of Carathéodory and the upper bound are still
valid. The maximum rank of the matrix update ∑nω

ω=1 wω
i (hω

x (x(ti))G(ti))
T hω

x (x(ti))G(ti) at time ti is
∑nω

ω=1 nω
η . The lower bound on N is the quotient of the assumed full rank np and this sum.

This corollary directly implies that to every optimal solution of the continuous OED problem (12)
there is an equivalent solution of the discrete OED problem (11).

We are further interested in (a posteriori) characterizing the optimal measurement times ti with
corresponding wω

i > 0. We make the following assumptions. Let an optimal solution (x∗, G∗, w∗, µ∗)

of the optimization problem (12) withW = [wmin, wmax] be given. Here µω,∗ is the Lagrange multiplier
of the constraint (9). Let F∗−1(tf) exist. We call

Πω(t) := F∗−1(tf) (hω
x (x(t))G(t))Thω

x (x(t))G(t) F∗−1(tf) ∈ Rnp×np (16)

the global information gain matrix. Let φ(F(tf)
−1) = trace(F−1(tf)) be the objective function of the OED

problem (12) (for other objectives similar expressions can be found in [50]).
Under the above assumptions in [50] it is shown that

wω,∗(t) =

{
wmin if trace (Πω(t)) < µω,∗,

wmax if trace (Πω(t)) > µω,∗.
(17)

The proof is based on an application of Pontryagin’s maximum principle, exploiting constant
adjoint variables, and matrix calculus.

We want to join Theorem 1 with this insight, and look at the special case of wmin = 0, wmax = 1.
One particular case may arise when the lower bound on the number of support points in Theorem 1,
i.e.,

⌊
np
nη

⌋
is equal to one. For one single measurement it can happen that wω

i = 1 for one index, while
otherwise the normalization constraint (9) ensures that all wω

i ∈ [0, 1). For this particular case we
define νω,∗ to be the maximum of µω,∗ (the Lagrange multiplier of the normalization constraint) and of
the upper bound constraint wω

i ≤ 1. In most cases, however, ν∗ = µω,∗.

Lemma 1. For any optimal design ξ of the OED problem (12) resulting in a nonsingular Fisher information
matrix of the SPE problem (5) there exist a finite number N of measurement time points {t1, t2, . . . , tN} ⊂ T
and positive real numbers wω

1 , wω
2 , . . . , wω

N with ∑N
i=1 wω

i = 1 for all ω ∈ 1, . . . , nω such that

trace(Πω(t)) ≤ νω,∗ ∀ t ∈ [t0, tf]. (18)

Proof. Corollary 1 states the existence and optimality of such a design. Assuming there exists ti ∈ T
with trace(Πω(ti)) > νω,∗, it directly follows wω

i = wmax = 1 and with the normalization (9)
that wω

j = 0 ∀j 6= i. The local impact on the optimal objective value is given by trace(Πω(ti)),
the assumption of this value being strictly larger than both multipliers is hence a contradiction
to optimization theory which states that the Lagrange multiplier of the active constraints give a local
estimate for the change in the optimal objective function value.

3.2. Robustification

As mentioned in the Introduction, there are many possible extensions to Algorithm 2. Highlighting
its flexibility, we exemplarily look at a possible robustification of the optimal control and of the optimal
experimental design problem.

The optimization problems (6) and (12) depend on given values of the model parameters and
the computed control and measurement strategies are only optimal for the specific parameter values.
If the true parameter values are known or the estimated parameter values are equal to the true values
the optimal strategies can be applied to the real process without loss of optimality. However, in most
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cases the true parameter values are not exactly known. Then, the uncertainty of parameters in the
spirit of confidence regions should be included into the optimization formulations to robustify the
computed optimal control and measurement strategies. We apply a robustification approach suggested
in [42,43,58]. The idea is to formulate a min-max optimization problem in which the maximal value of
the objective function over the parameters’ confidence region is minimized. Applying Taylor expansion
with respect to the parameters, a computationally feasible approximation based on first derivatives is
used. It aims at preferring solutions with a “flat objective function”, i.e., which is not too sensitive with
respect to the parameter value p.

Again, we assume that the parameters are normally distributed random variables with mean p̂
and variance Σ p̂. The confidence region of p̂ with confidence quantile γ is defined as the set

{p : ‖p− p̂‖2,Σ−1 ≤ γ} (19)

where the positive definite matrix Σ−1 induces the norm ‖p‖2,Σ−1 := (pTΣ−1 p)
1
2 . Now, the OED

objective function in (12) is augmented to

φ(F(ξ; p̂)) + γ

∥∥∥∥ d
dp

φ(F(ξ; p̂))
∥∥∥∥

2,Σ
(20)

and similarly the robust OC objective function is defined as

M(x(tf); p̂) + γ

∥∥∥∥ d
dp

M(x(tf); p̂)
∥∥∥∥

2,Σ
. (21)

No further modifications to Algorithm 2 are necessary. Note that the norms are evaluated
pointwise, as Mayer term and the FIM in Problems (6) and (12) are evaluated at time tf. However,
the analysis of Section 3.1 can not be applied in a straightforward way due to the derivative term in the
objective function (20), as the weights may jump as p̂ changes locally. Intuition and numerical results
hint into the direction that also for the robust case discrete designs are optimal, probably with the same
bounds on the number of support points. But we only conjecture this and do not have a proof.

4. Numerical Examples

In this section we apply Algoritm 2 to the Lotka-Volterra fishing benchmark problem demonstrating
the performance of the algorithm and separately analyze optimal finite support designs.

4.1. Lotka-Volterra Fishing Benchmark Problem

The Lotka-Volterra example is chosen as a well studied dynamic system representing the relation
between two competing populations. The model can be modified analyzing disease spreading
in an epidemiological context [59] or technological forecasting of stock markets [60] such that the
model combines medical, biological and economical interests. The optimal control (OC) and optimal
experimental design problem (OED) problem of the Lotka-Volterra fishing example are introduced
and described in the following.
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The goal of the OC problem is an optimal fishing strategy u∗(t) that brings the prey x1(t) and
predator x2(t) populations into a steady state (22d), by penalizing deviations from the steady state
over the whole time horizon [t0, tf]. The optimal control problem of type (6) is

min
x(t),u(t)

x3(tf) (22a)

s.t. ẋ1(t) = p1 x1(t)− p2 x1(t) x2(t)− c0 x1(t) u(t), (22b)

ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t)− c1 x2(t) u(t), (22c)

ẋ3(t) = (x1(t)− 1)2 + (x2(t)− 1)2, (22d)

x(t0) = x0, (22e)

u(t) ∈ [0, 1]. (22f)

The Lotka-Volterra OED problem is of type (11) and defined as

min
x(t),G(t),Fd(tf),w1,w2

trace(F−1
d (tf)) (23a)

s.t. ẋ1(t) = p1 x1(t)− p2 x1(t) x2(t), (23b)

ẋ2(t) = −p3 x2(t) + p4 x1(t) x2(t), (23c)

Ġ11(t) = fx11 G11(t) + fx12 G21(t) + fp11, (23d)

Ġ12(t) = fx11 G12(t) + fx12 G22(t) + fp12, (23e)

Ġ13(t) = fx11 G13(t) + fx12 G23(t), (23f)

Ġ14(t) = fx11 G14(t) + fx12 G24(t), (23g)

Ġ21(t) = fx21 G11(t) + fx22 G21(t), (23h)

Ġ22(t) = fx21 G12(t) + fx22 G22(t), (23i)

Ġ23(t) = fx21 G13(t) + fx22 G23(t) + fp23, (23j)

Ġ24(t) = fx21 G14(t) + fx22 G24(t) + fp24, (23k)

F11(ti) = F11(ti−1) + w1
i G2

11(ti) + w2
i G2

21(ti), (23l)

F12(ti) = F12(ti−1) + w1
i G11(ti) G12(ti) + w2

i G21(ti) G22(ti), (23m)

F13(ti) = F13(ti−1) + w1
i G11(ti) G13(ti) + w2

i G21(ti) G23(ti), (23n)

F14(ti) = F14(ti−1) + w1
i G11(ti) G14(ti) + w2

i G21(ti) G24(ti), (23o)

F22(ti) = F22(ti−1) + w1
i G2

12(ti) + w2
i G2

22(ti), (23p)

F23(ti) = F23(ti−1) + w1
i G12(ti) G13(ti) + w2

i G22(ti) G23(ti), (23q)

F24(ti) = F24(ti−1) + w1
i G12(ti) G14(ti) + w2

i G22(ti) G24(ti), (23r)

F33(ti) = F33(ti−1) + w1
i G2

13(ti) + w2
i G2

23(ti), (23s)

F34(ti) = F34(ti−1) + w1
i G13(ti) G14(ti) + w2

i G23(ti) G24(ti), (23t)

F44(ti) = F44(ti−1) + w1
i G2

14(ti) + w2
i G2

24(ti), (23u)

x(t0) = x0, (23v)

Fij(t0) = 0 i, j ∈ {1, 2, 3, 4} and i ≤ j, (23w)

Gij(t0) = 0 i ∈ {1, 2}, j ∈ {1, 2, 3, 4}, (23x)
N

∑
i=0

wω
i ≤ 1 ω ∈ {1, 2}, (23y)

wω
i ∈ [0, 1] (23z)
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On the time grid t ∈ [t0, tf] with

fx11 = ∂ f1(t)/∂x1 = p1 − p2 x2, (24a)

fx12 = −p2 x1, (24b)

fx21 = p4 x2, (24c)

fx22 = p4 x1 − p3, (24d)

fp11 = ∂ f1(t)/∂p1 = x1, (24e)

fp12 = −x1 x2, (24f)

fp23 = −x2, (24g)

fp24 = x1 x2. (24h)

The solution of problem (23) provides an optimal sampling design minimizing the uncertainties
of the parameters p1, p2, p3 and p4. The right upper entries of the Fisher information matrix (FIM)
are considered as differential states in the optimization problem instead of all matrix entries due to
symmetry properties of the FIM. Explicit values of the time horizon, the initial states, the parameters
and the constants chosen for the numerical computations are given in the next subsection.

4.2. Software and Experimental Settings

Algorithm 2 is implemented as a prototype in the open-source software tool CasADi [61]. We used
the version 3.1.0 together with Python 2.7.6. The finite dimensional nonlinear programs resulting from
discretizing the optimal control problem (6) and optimal experimental design problem (11) are solved
with IPOPT [62]. The parameter estimation problems are solved by a Gauss-Newton algorithm using
IPOPT. The derivatives needed for the optimization problems and their robustifications are efficiently
generated within CasADi using automatic differentiation [61]. In Subsection 4.3 the system of ODEs is
solved using the in-house fixed-step explicit Runge-Kutta integrator and a single shooting method
with a stepsize of 0.15. For the first state and parameter estimation problem on the time interval
[0,15] the initial guess is p = (p1, p2, p3, p4, x1(0), x2(0))T = (1.5, 1.5, 1.5, 1.5, 0.0, 0.0). We assume that
both states h1(ti) = x1(ti) and h2(ti) = x2(ti) can be measured and that no fishing is permitted on
t ∈ [0, 15]. The pseudo-measurements are derived from a simulation with the true parameters plus a
measurement error εi ∼ N (

(
0
0
)
,
(

0.032 0
0 0.032

)
) according to Equation (3). For the OED problems only

the uncertainty of the parameters is considered.
For the analysis of finite support designs in Subsection 4.4 the ODE system is solved with

CVodes from the SUNDIALS suite [63] and a multiple shooting method with stepsize h(= 12/500).
The continuous version of the OED problem (23) is computed on the time grid [0,12] with
p = (p1, p2, p3, p4) = (1, 1, 1, 1). In both examples the discretization of the optimization variable
u(t) coincides with the time grid of the ODE problem.

4.3. Three Versions of Algorithm FOCoed applied to the Lotka-Volterra fishing problem

We apply three versions of Algorithm 2 to the control problem (22a) to stress the relevance of
optimal measurement time points and the influence of parameter uncertainty during optimization.

• with_OED. This is Algorithm 2, i.e., using measurement time points from non-robust OED.
• without_OED. The OED problem in Step 2 of Algorithm 2 is omitted, and an equidistant time grid

is used for measurements.
• with_r_OED. The OC problem in Step 1 and the OED problem in Step 2 of Algorithm 2 are replaced

with their robust counterparts as described in Section 3.2.

In the following the experimental setting is described independently of the chosen version of
Algorithm 2. The experiment is performed on the time interval [0,30]. From 0 to 15 a first state and
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parameter estimation with seven measurements, initial guesses pini = (1.5, 1.5, 1.5, 1.5, 0.0., 0.0)T is
performed. From time point t = 15, Algorithm 2 is performed with the estimated parameter values
p̂, the state values x̂(15) = (x̂1(15), x̂2(15))T and the objective function φ(·) = trace(F−1(tf)) of the
optimization problem (11).

For a quantitative statement the three versions of Algorithm 2 are repeated 50 times with
the normally distributed measurement error εi used for the generation of pseudo-measurements.
The averaged estimated parameter values and the corresponding uncertainties after t = 15 and
t = 30 are presented in Table 1 for the three different algorithm versions with_r_OED , with_OED
and without_OED. The first column shows the objective function value of the optimal control
problem (22) solved on t ∈ [15, 30] with the true parameter values and the initial state values
x(15) = (1.25847, 0.473369, 0)T as the reference solution. The last row additionally presents the
averaged objective function values of the three algorithm versions and the last three columns
contain the relative uncertainty and objective function value improvements between the three
algorithm versions.

First of all, Table 1 indicates that the three versions of Algorithm 2 provide estimated parameters
next to the true parameter values but the results qualitatively differ by means of the resulting parameter
uncertainties and the optimal control objective function values. The use of measurement time points
from optimal experimental designs (with_OED) compared to equidistant time points (without_OED)
improves the parameter uncertainty by 15% after t = 15 and by 34% after t = 30 on average.
The robustification of the OC and OED problems (with_r_OED) results in an improvement of the
parameter uncertainties compared to version without_OED of 15% after t = 15 and of 36% after
t = 30 on average and compared to the non-robust version with_OED of 0.26% after t = 15 and of
2.52% after t = 30 on average. The objective function of the optimal control problem is reduced by
approximately 8%, respectively 10%, using version with_r_OED or version with_OED compared to
version without_OED. The robustification of Algorithm 2 has a minor averaged improvement of 0.41%.

Table 1. Averaged estimated parameter values with their uncertainties and the objective function
value (MLV = x3(30)) after 50 runs of the optimal control problem (22) solved with three versions of
Algorithm 2 ( with_r_OED (A) , with_OED (B) , without_OED (C)). Iij(%) is the relative uncertainty and
objective value improvement after t = 15 and t = 30 of column i compared to column j. Column OC
contains the true parameter values with which the optimal control problem (22) is solved on t ∈ [15, 30]
and the resulting objective function value.

At t = 15

OC with_r_OED (A) with_OED (B) without_OED (C)

value value σ2 value σ2 value σ2 IAC IBC IAB

p1 1.000 1.0074 0.0003377 0.9925 0.0003300 1.0293 0.0005090 33.65 35.17 -2.33

p2 1.000 1.0085 0.0005540 0.9954 0.0005404 1.0267 0.0005313 -4.27 -1.71 -2.52

p3 1.000 0.9935 0.0005861 1.0073 0.0006063 0.9758 0.0006139 4.53 1.24 3.33

p4 1.000 0.9959 0.0006466 1.0053 0.0006635 0.9762 0.0008780 26.36 24.43 2.55

At t = 30

with_r_OED (A) with_OED (B) without_OED (C)

value value σ2 value σ2 value σ2 IAC IBC IAB

p1 1.000 1.0066 0.0002414 0.9974 0.0002418 1.0082 0.0004214 42.71 42.62 0.17

p2 1.000 1.0065 0.0003639 1.0004 0.0003706 1.0069 0.0004624 21.30 19.85 1.81

p3 1.000 0.9936 0.0003472 1.0029 0.0003582 0.9924 0.0005068 31.49 29.32 3.07

p4 1.000 0.9958 0.0003575 1.0014 0.0003764 0.9937 0.0006837 47.71 44.95 5.02

MLV 0.714 0.724 0.727 0.790 9.62 7.97 0.41
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Figure 2 shows exemplary the solution of the Lotka-Volterra fishing problem computed with the
three versions with_r_OED, with_OED and without_OED of Algorithm 2.
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(a) with_r_OED
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(b) with_OED
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Figure 2. Visualization of three versions (with_r_OED, with_OED and without_OED) of the feedback
optimal control Algorithm 2 applied to the Lotka-Volterra fishing example. The algorithm is performed
on the time interval [15,30]. On the time interval [0,15] seven measurements are taken for a state and
parameter estimation. The estimated parameters with the corresponding uncertainties and initial
states serve as input for the algorithm. In Figure 2a the robust version and in Figure 2b the non-robust
version of Algorithm 2 is used with measurement time points from optimal experimental designs.
Figure 2c presents the solution of algorithm 2 with measurements taken on an equidistant time
grid. After the last measurement time point uncertainty tubes are computed by 100 simulations
with parameter values sampled from a normal distribution with the estimated parameters as mean
p̂ = [0.982, 0.990, 1.015, 1.023] and variance Σ p̂ = diag(0.000214, 0.000321, 0.000347, 0.000351) in
Figure 2a, p̂ = [1.014, 0.998, 0.981, 0.977] and variance Σ p̂ = diag(0.000231, 0.000325, 0.000319, 0.000334)
in Figure 2b and p̂ = [1.031, 1.047, 0.977, 0.978] and Σ p̂ = diag(0.000413, 0.000470, 0.000463, 0.000636) in
Figure 2c.

4.4. Analyzing Finite Support Designs of Optimal Experimental Design Problems

In this section we demonstrate the theoretical result of Lemma 1 on the Lotka-Volterra optimal
experimental design problem.

The optimal solution w1∗(t) and w2∗(t) of the OED problem are plotted in Figure 3 together with
the information gain matrices

Π1(t) = F−1(t)


G2

11 G11 G12 G11 G13 G11 G14

G11 G12 G2
12 G12 G13 G12 G14

G11 G13 G12 G13 G2
13 G13 G14

G11 G14 G12 G14 G13 G14 G2
14

 F−1(t)

and

Π2(t) = F−1(t)


G2

21 G21 G22 G21 G23 G21 G24

G21 G22 G2
22 G22 G23 G22 G24

G21 G23 G22 G23 G2
23 G23 G24

G21 G24 G22 G24 G23 G24 G2
24

 F−1(t).

The Lagrange multipliers are also shown as horizontal lines in Figure 3a,b. Both Figures visualize
the result of Lemma 1 such that the touching of the information gains’ maxima is equivalent to a
singular arc of the sampling decisions w1(t) and w2(t).
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Figure 3. Visual relation between the trace of the information gain matrices Π1(t), Π2(t), the Lagrange
multipliers µ∗1 , µ∗2 and the optimized sampling decisions w1∗(t), w1∗(t) of the Lotka-Volterra optimal
experimental design problem. (a) Information gain Π1(t) and sampling w1(t); (b) Information gain
Π2(t) and sampling w2(t).

4.5. Discussion

The measurement time points have a large impact on the uncertainty of the model parameters
and consequently an impact on the optimal control solution, even if the optimizing control does not
excite the system dynamics. The quantitative study of Subsection 4.3, which is summarized in Table 1,
significantly shows that the optimal measurement time points taken from non-robust and robust
optimal experimental designs lead to an averaged uncertainty improvement of 34%, respectively 36%,
compared to equidistantly taken measurements. The qualitatively different measuring positions are
visualized in Figure 2. The measurement time points of the optimal experimental designs are placed at
the beginning and at the end of the time interval [0,15] in which a first state and parameter estimation
is performed. During the optimal control phase starting from t = 15 the non-robust and robust optimal
experimental designs suggest measuring once, respectively twice, at the steep descent/ascent of the
populations on the interval [15,20] where a larger information content is expected compared to the
equidistant time points next to the trajectories’ steady state. The heterogeneity in the improvement
of the parameters’ uncertainties results in the used objective function trace(F−1(t f )) with which the
averaged parameter uncertainty is minimized and not each uncertainty separately. This leads to
slightly increased uncertainties of parameter p2 after t = 15 by the use of optimal experimental design.
A different scalar function φ(·) such as the determinant or the largest eigenvalue of the information
matrix might prevent this problem but this analysis is not part of the work. Besides this minor
increase, the estimated parameter values are closer to the true values using optimal experimental
designs in comparison to equidistant measurement time points. The uncertainty tubes in Figure 2
give an indication that the reduced uncertainty of the parameters from Algorithm 2 has an indirect
positive influence on the state uncertainty leading to tighter uncertainty tubes. The visual indication is
strengthened by the last row of Table 1 presenting the optimal control objective function value of the
reference solution and the averaged values resulting from the three different versions (with_r_OED,
with_OED and without_OED) of Algorithm 2. The reduced parameter uncertainties obtained from
non-robust and robust optimal experimental designs lead to a 8%, respectively 10%, objective function
value compared to the version without_OED with measurements taken on equidistant time points.

Lemma 1 is visualized for the Lotka-Volterra optimal experimental design benchmark problem in
Figure 3a,b. Whenever the Lagrange multiplier µ∗ is equal to the value of the information gain matrix,
the sampling decision variable w∗(t) is between 0 and 1.
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5. Conclusions

The paper presents a novel algorithm for feedback optimal control with measurement time points
for parameter estimations computed from optimal experimental design problems. It is based on
a decoupled approach to dual control. The performance of the algorithm is shown by 50 runs of the
Lotka-Volterra fishing benchmark example. The algorithm provides a 34% averaged reduction of
parameter uncertainties while applying an optimal control strategy when measurement time points are
used from optimal experimental designs compared to heuristically chosen equidistant measurement
time points for parameter estimations. A robustified version of the algorithm moreover reveals a 36%
averaged uncertainty reduction. Furthermore, a theoretical insight about the solution of the optimal
experimental design problem is given. Therefore Pontryagin’s Maximum Principle is applied to the
OED problem when the sum of optimization variables is constrained by one and a connection is
drawn between the trace of the information gain matrix and the Lagrange multipliers for a discrete
optimal design. The algorithmic and theoretical results are demonstrated on the Lotka-Volterra fishing
benchmark problem.
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