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Abstract: In this present work, a study of the modelling and simulation for a top-sprayed fluidized
bed granulator (SFBG) is presented, which is substantially used by the pharmaceutical industry
to prepare granules. The idea is to build a number-based mathematical model using the notion of
population balances by dividing a top SFBG into two different zones, namely the wet zone and dry
zone. To solve a two-compartment model, an existing accurate and efficient finite volume scheme is
implemented. In order to validate the compartmental model, a new class of analytical moments is
derived corresponding to various combinations of aggregation and breakage kernels. To verify the
accuracy of a modified finite volume scheme, the zeroth and first order moments computed using the
finite volume scheme are compared with the newly-derived analytical results. Moreover, the stability
of the compartmental model and the numerical scheme is tested by varying the size of the wet zone.
It is also shown that the relative errors in both order moments increase with the increase in the size of
the wet zone.

Keywords: agglomeration; breakage; compartmental modelling; sprayed fluidized bed granulation;
population balance equation; finite volume scheme

1. Introduction

Agglomeration and fragmentation (or breakage) processes are used to accommodate a change in
the particle properties of the granules in the pharmaceutical and food industries. Other applications
that involve these processes are crystallization, flocculation, the formation of water droplets, sprayed
fluidized bed granulation (SFBG) and twin screw granulation (TSG) [1–3]. Among sprayed fluidized
bed granulation and twin screw granulation, SFBG is adopted for the production of granular materials
due to its potential to conduct granulation or agglomeration at low costs [4]. SFBG has applications
in the food industry, as it is used for size enlargement of food ingredients. Moreover, it has major
applications in the pharmaceutical industry because of its ability to produce identical granules, less
dust content, superior wetting, etc. [5]. In the literature, many authors have attempted to model SFBG
by considering the system to be well mixed [6], but in reality, it is a non-homogeneous system. The issue
of inhomogeneity may be handled partially by introducing the compartmental modelling [7,8].

For our study, a top SFBG is divided into two compartments, as shown in Figure 1.
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Figure 1. Top-sprayed fluidized bed granulator.

In the wet zone, the particles are sprayed in and wetted with the binder, which leads to the
formation of bridges between the particles or layering on the surface of the particles. In contrast, in the
dry zone, breakage leads to the formation of the new particles due to the breaking of drying bridges,
which were already formed due to solidification of the particles. During the compartmentalization
of SFBG, the particle residence time in both zones plays a very important role. The residence time of
particles in the wet zone and dry zone are of equal importance because the particle sizes are actually
growing in the spray zone due to the aggregation process, whereas in the other zone, the particles will
have a greater chance to be in contact with the hot air, which leads to the fragmentation of the particles
into smaller classes. In this work, various sizes of wet zones are considered, ranging from 14% to 30%,
and in the dry zone from 70–86% of the total size [9]. In addition to this, the mass flow rate at which
particles are exchanged between the two zones is also a major issue.

The dynamics of the particle size distribution inside the compartments of the compartmental
model evolves due to the aggregation and breakage mechanisms and can be tracked by a population
balance model. The aggregation and breakage population balance equations (PBEs) corresponding to
wet and dry zones can be written as follows:

∂ f (t, r)
∂t

=
1
2

∫ r

0
β(s, r− s) f (t, r− s) f (t, s)ds−

∫ ∞

0
β(r, s) f (t, r) f (t, s)ds, (1)

and:

∂ f (t, r)
∂t

=
∫ ∞

r
S(s)b(r, s) f (t, s)ds− S(r) f (t, r), (2)

with respect to the initial condition f (0, r) = f0(r).
The integrals present on the right-hand side of Equation (1) represent the birth and death of

particles in the system. Moreover, the aggregation kernel β denotes the rate at which the large-sized
particles are formed from the smaller-sized particles due to aggregation. Additionally, the aggregation
kernel is a non-negative function (β > 0) and symmetric with respect to the internal coordinates,
that is β(s, r) = β(r, s). For the breakage Equation (2), S(r) is the selection function, and it expresses
the rate at which particles of size r are selected to break into smaller fragments. The fragmentation
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function b(r, s) is the probability density function denoting the formation of daughter particles of size
r due to the breakage of the parent particles of size s. The fragmentation function must satisfy the
following conditions:

∫ s

0
b(r, s)dr = v̄, (3)

and: ∫ s

0
rb(r, s)dr = s. (4)

Equation (4) represents the mass conservation between the parent particle and the smaller-sized
fragments. For a practical scenario, v̄ must be greater than or equal to two. The integral properties
such as the moments of the distribution corresponding to Equations (1) and (2) are also important to
calculate. Moreover, the i-th moment can be defined as:

µi(t) =
∫ ∞

0
ri f (t, r)dr. (5)

Here, µ0 represents the total number of particles, whereas µ1 signifies the total mass of particles
in the system.

In this study, our main objective is to propose a mathematical model and develop a new
numerical approximation for solving the proposed compartmental model. Various earlier numerical
methods were developed to solve these kinds of complex models. Among them, the cell average
technique [7,10] and Hounslow’s discretization [8,11] are well-established methods known for their
accuracy. However, the major disadvantage of these methods is that they have a very complex
mathematical formulation and, hence, are computationally very expensive. This leads to the choice of
finite volume schemes [12–14]. In order to verify the accuracy of the mathematical model, the numerical
results are validated by deriving the new analytical solutions by choosing various combinations of
aggregation kernels and the binary fragmentation function with the linear selection function.

The rest of paper is structured as follows: In Section 2, we briefly describe the two-compartment
model and the assumptions considered for simulating a top SFBG. The next section is devoted
to providing the formulation of the proposed numerical scheme for solving the set of equations.
In Section 4, the accuracy and efficiency of the proposed method are tested by comparing the results
with the newly-developed analytical results for moments. Finally, Section 5 summarizes the conclusions
of this study.

2. Two-Compartment Model for Sprayed Fluidized Bed Granulation

In this section, a top-sprayed fluidized bed granulator and its compartmentalization are discussed
in detail. At the top of the granulator, a nozzle is fixed by which the liquid binder is sprayed over
the particles in the granulator. The particles are considered to be spherical, placed at the bottom of
the granulator as shown in Figure 1. When the hot air enters into the granulator from the bottom,
the particles placed at the bottom put into a random motion, and collisions take place between the
particles. At the same time, the particles become wet because of the liquid binder, which leads to the
aggregation and breakage processes inside the SFBG.

For the compartmental modelling, the granulator is divided into zones based on the dominating
mechanism occurring in a particular part of the granulator. The top of the granulator is the first
compartment, named the Wet Zone (WZ), as in this area, the particles are becoming wet; whereas,
the bottom of the granulator is called the Drying Zone (DZ), as the liquid binder on the particles is
becoming dry because of the hot air. The schematic diagram of the compartment modelling of the
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system is shown in Figure 2. The assumptions that were made for the development of the model are
given below:

1. The system is divided into two compartments:

(a) the first compartment, that is the wet zone, is represented by fraction η, and the volume is
V1 = ηV,

(b) the second compartment, that is the dry zone, is represented by the fraction 1− η, and the
volume is V2 = (1− η)V, where V is the total volume of the reactor.

2. Each compartment (WZ, as well as DZ) is considered to be a well-mixed system.
3. The size of both compartments remains constant during the process.
4. The mass in each compartment should be constant at each time step.
5. The rate of exchange of volume flux between the compartments is constant during the process.
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Figure 2. Schematic representation of the two-compartment model.

The residence time in the wet zone and in the dry zone is taken to be η and 1− η, respectively.
Moreover, the total time taken by the particle to complete one cycle of the system is τc = τη + τ1−η .
Assume fη and f1−η are the number density functions in WZ and DZ respectively. The volume flux
from WZ to DZ is:

fWZ→DZ =
fη

τη
,

and volume flux from DZ to WZ is

fDZ→WZ =
f1−η

τ1−η
.

Based on aforementioned notations and formulating population balances for both compartments,
the mathematical model for the wet zone can be written as:
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∂ fη(t, r)
∂t

=
1

2V1

∫ r

0
βWZ(s, r− s) fη(t, r− s) fη(t, s)ds

−
∫ ∞

0
βWZ(r, s) fη(t, r) fη(t, s)ds− fWZ→DZ + fDZ→WZ, (6)

and for the dry zone, the mathematical model is given by:

∂ f1−η(t, r)
∂t

=
∫ ∞

r
SDZ(t, s)bDZ(r, s) f1−η(t, s)ds− SDZ(t, r) f1−η(t, r) + fWZ→DZ − fDZ→WZ, (7)

corresponding to initial conditions fη(0, r) = η f (0, r) and f1−η(0, r) = (1− η) f (0, r).
In Equation (6), βWZ(r, s) is the aggregation kernel, which defines the rate at which the particles

having properties r and s aggregate. In Equation (7), SDZ(t, s) exhibits the selection function, which
defines the selection of a particle property s to break into smaller particles. Moreover, bDZ(r, s) is the
probability density function, which defines the formation of particle size r due to the breakage of
particle property s.

Finite Volume Scheme

In this section, the modification of the Finite Volume Schemes (FVS) developed by [15,16] is done
to approximate the coupled system of Equations (6) and (7). The basic notion of the scheme is to convert
the integro-partial differential equation into the system of ordinary differential equations. To solve the
given system of equations using FVS, firstly, the particle size domain should be discretized into small
bins. The lower and upper boundaries of the i-th bin are ∆i :=]ri−1/2, ri+1/2] for i = 1, 2, . . . , I with
r1−1/2 = 0. Assume that the representative of the i-th bin is denoted by ri, which defines the average
of the lower and upper boundaries of the i-th bin, that is, ri =

ri+1/2+ri−1/2
2 .

Let us define the set χi as:

χi = {(r, s) ∈ I × I : ri−1/2 < (rj + rk) ≤ ri+1/2}, (8)

which consists of all those pairs of the indices of the bins j and k such that the aggregate of particle
properties of bins j and k, that is rj + rk, will fall in the bin having indices i. Moreover, the average value
of fη,i and f1−η,i in the i-th bin, which are approximations of the number density function fη(tp, r) and
f1−η(tp, r) corresponding to wet and dry zones, respectively, are given by:

fη,i =
1

∆ri

∫ ri+1/2

ri−1/2

fη(t, r)dr, and f1−η,i =
1

∆ri

∫ ri+1/2

ri−1/2

f1−η(t, r)dr. (9)

Here, ∆ri = ri+1/2 − ri−1/2 denotes the step size of the domain.
Now, on integrating Equations (6) and (7) from ri−1/2 to ri+1/2 and implementing the idea of FVS

on the aggregation and breakage birth and death terms, we get:

∂ fη,i

∂t
=

1
V1

∑
(j,k)∈χi

βWZ(rj, rk) fη(t, rj) fη(t, rk)
∆rj∆rk

∆ri
Ωj,k

−
I

∑
j=1

βWZ(ri, rj) fη(t, ri) fη(t, rj)∆rj −
fη(t, ri)

τη
+

f1−η(t, ri)

τ1−η
, (10)

and:

∂ f1−η,i

∂t
=

1
∆ri

I

∑
k=i

SDZ,k f1−η,k∆rk

∫ δi
k

ri−1/2

bDZ(r, rk)dr− ξiSDZ,i f1−η,i +
fη(t, ri)

τη
− f1−η(t, ri)

τ1−η
, (11)
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with ξ1 = 0. These factors Ωj,k, ξi are defined as:

Ωj,k =

{ rj+rk
ri

, if rj + rk ≤ I

0, otherwise,
(12)

and ξi =
1
ri

i

∑
k=1

rk

∫ δi
k

ri−1/2

bDZ(m, mi)dm, i = 1, 2, . . . , I, where δi
k =

{
ri, if k = i

ri+1/2, if k 6= i.
The detailed explanation of the formulations of both numerical schemes corresponding to

aggregation and breakage processes can be found in [15,16], respectively. Moreover, it can be noticed
from Equations (10) and (11) that the correction factors added to both equations are only responsible
for conserving the total mass of the system (first order moment) in each zone. However, it does not
give any account of the preservation of the total number of particles (zeroth order moment) in each
zone. Therefore, it will be interesting to see how accurately the zeroth order moment of both zones
is calculated by the modified finite volume schemes. Further, for the verification of the proposed
methods, the analytical (or exact) solutions of the different order moments are found for different
combinations of aggregation kernel (β) and breakage function (b). In particular, simple structured
aggregation kernels, that is sum and product kernels for the wet zone and binary breakage function
with the linear selection function for the dry zone, are considered. In the next section, the detailed
derivation of the analytical results to verify the numerical approximations is provided.

3. Derivation of the Analytical Solutions for Moments

To verify the discretization of the system of ordinary differential Equations (10) and (11),
we validate it against the analytical results that will be derived in this section. Due to the pairing and
complex nature of the system of Equations (6) and (7), the number density function cannot be easily
obtained. Therefore, the exact solutions of the zeroth order moment and first order moment for specific
combinations of kernels are derived. Let us define the zeroth moment in each compartment as:

µ0,η :=
∫ ∞

0
fη(t, r)dr, and µ0,1−η :=

∫ ∞

0
f1−η(t, r)dr, (13)

and the first moment in each compartment as:

µ1,η :=
∫ ∞

0
r fη(t, r)dr, and µ1,1−η :=

∫ ∞

0
r f1−η(t, r)dr. (14)

Now, the expressions for the zeroth moment of the number density model given in
Equations (6) and (7) will be derived. Integrating both sides of Equations (6) and (7) with respect
to r from zero to ∞, applying the change of order of integration to (6) and using Equations (13) and
(14), the following equations are obtained:

dµ0,η

dt
= − 1

2V1

∫ ∞

0

∫ ∞

0
βWZ(t, r, s) fη(t, r) fη(t, s)drds− µ0,η

τη
+

µ0,1−η

τ1−η
, (15)

and:

dµ0,1−η

dt
=
∫ ∞

0

∫ ∞

r
SDZ(t, s)bDZ(r, s) f1−η(t, s)ds−

∫ ∞

0
SDZ(t, r) f1−η(t, r)dr +

µ0,η

τη
− µ0,1−η

τ1−η
. (16)

The analytical solutions of (15) and (16) are derived for the following combinations of kernels:

• Case 1: additive aggregation kernel, linear selection function with binary breakage kernel, that is
βWZ(t, r, s) = β0(r + s), SDZ(t, r) = r, bDZ(r, s) = 2/s.
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• Case 2: product aggregation kernel, linear selection function with binary breakage kernel, that is
βWZ(t, r, s) = β0(rs), SDZ(t, r) = r, bDZ(r, s) = 2/s.

3.1. Case 1

Firstly, we choose additive aggregation kernel (βWZ(t, r, s) = β0(r + s)) corresponding to the wet
zone and binary breakage function (bDZ(r, s) = 2/s) with linear selection function (SDZ(t, r) = r) for
the dry zone. For the binary breakage function, only two objects are produced per fragmentation event.

On substituting the aggregation kernel βWZ(t, r, s) in Equation (15), the following is obtained:

dµ0,η

dt
= − 1

2V1

∫ ∞

0

∫ ∞

0
β0(r + s) fη(t, r) fη(t, s)drds− µ0,η

τη
+

µ0,1−η

τ1−η
,

dµ0,η

dt
= − 1

2V1
β0[µ0,ηµ1,η + µ0,ηµ1,η ]−

µ0,η

τη
+

µ0,1−η

τ1−η

dµ0,η

dt
= −

[
β0µ1,η

V1
+

1
τη

]
µ0,η +

µ0,1−η

τ1−η
.

Similarly for the DZ, on putting the values of SDZ(r) = r and bDZ(r, s) = 2/s in Equation (16),
this gives:

dµ0,1−η

dt
=
∫ ∞

0
2s f1−η(t, s)ds−

∫ ∞

0
r f1−η(t, r)dr− µ0,1−η

τ1−η
+

µ0,η

τη
,

as
∫ r

0 b(r, s)ds = k is the average number of fragments in which a particle of size s has broken, and for
the case of binary breakage, the value of k is two.

dµ0,1−η

dt
=
∫ ∞

0
s f1−η(t, s)ds− µ0,1−η

τ1−η
+

µ0,η

τη
,

⇒ dµ0,1−η

dt
= µ1,1−η −

µ0,1−η

τ1−η
+

µ0,η

τη
.

Finally, the following set of equations is formed:

dµ0,η

dt
= −

[
β0µ1,η

V1
+

1
τη

]
µ0,η +

µ0,1−η

τ1−η
,

dµ0,1−η

dt
= µ1,1−η −

µ0,1−η

τ1−η
+

µ0,η

τη
.

As we know, V1 = ηV, where V is the total volume of the system, and for the simplicity, let us

consider V = 1. Let a = −( β0µ1,η
V1

+ c), b = 1
τ1−η

, c = 1
τη

, A = b − a and D =
√
(a + b)2 + 4bc.

The expression for the zeroth moment, i.e., total number of particles in the wet zone and dry zone for
this particular case, is:

µ0,η = (Υ + Φ + Ψ)
e−t( 3A+D

2 )

2ηβ0Dτητ1−η
, and µ0,1−η = (ρ + φ + ψ)

e−t( 3A+D
2 )

2ηβ0Dτ2
η τ1−η

, (17)
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where:

Υ =− eAt(−1 + eDt)τητ1−ηη2β2
0µ0µ1,

Φ =eAtηβ0[(1− eDt)((−2τη + ητη + ητ1−η)µ0 − τητ1−η(−1 + η)µ1) + ηµ0Dτητ1−η+

eDtηµ0Dτητ1−η ],

Ψ =(−1 + η)[−2
et( 3A+D

2 )

D
τητ1−η + eAt(−τη − τ1−η + Dτητ1−η) + e(A+D)t(τη + τ1−η

+ Dτητ1−η)],

ρ =(e(A+D)t − eAt)τ2
η τ1−η(−1 + η)η2β2

0µ1(−µ0 + τ1−ηµ1),

φ =τ1−η(−1 + η)[−2
et( 3A+D

2 )

D
τητ1−η + eAt(−τη − τ1−η + Dτητ1−η) + e(A+D)t(τη + τ1−η

+ Dτητ1−η)],

ψ =eAtτηηβ0[τ1−η(−1 + η)µ1(τη − eDtτη + 2(−1 + eDt)τ1−η + (1 + eDt − 2et( 3A+D
2 ))Dτητ1−η)

+ µ0((−1 + eDt)τη(−1 + η) + (−1 + eDt)τ1−η(1 + η)− (1 + eDt)(−1 + η)Dτητ1−η)].

3.2. Case 2

Analogous to the previous case, analytical moments of the wet and dry zones are also derived for
the combination of product kernel (βWZ(t, r, s) = β0 × rs) corresponding to the wet zone and binary
breakage function (bDZ(r, s) = 2/s) with linear selection function (SDZ(t, r) = r).

On putting the aggregation kernel βWZ(t, r, s) in Equation (15), it gives:

dµ0,η

dt
= − 1

2V1

∫ ∞

0

∫ ∞

0
β0(rs) fη(t, r) fη(t, s)drds− µ0,η

τη
+

µ0,1−η

τ1−η
,

dµ0,η

dt
= − 1

2V1
β0µ2

1,η −
µ0,η

τη
+

µ0,1−η

τ1−η
.

For DZ, the simplified equation is the same as derived in the previous case,

dµ0,1−η

dt
= µ1,1−η +

µ0,η

τη
.

Therefore, for this case, the system of equations comes out as:

dµ0,η

dt
=− 1

2V1
β0µ2

1,η −
µ0,η

τη
+

µ0,1−η

τ1−η
,

dµ0,1−η

dt
=µ1,1−η +

µ0,η

τη
.

The analytical solution for the above-defined system of equations is:

µ0,η = (Υ + Φ + Ψ)
e−t( 3A+D

2 )

2ηβ0Dτητ1−η
and µ0,1−η = (ρ + φ + ψ)

e−t( 3A+D
2 )

2ηβ0Dτ2
η τ1−η

, (18)
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where:

Υ =2(τη + τ1−η)µ0[ητ1−η + τη(−1 + et(1/τη+1/τ1−η)+η)],

Φ =τητ1−ηµ1[−2τη(−1 + η) + τ1−ηη2β0µ1],

Ψ =e−t(1/τη+1/τ1−η)τηµ1[2(−τητ1−η + t(τη + τ1−η))(−1 + η) + (τ2
1−η + t(τη + τ1−η)η

2β0µ1)],

ρ =2(τη + τ1−η)µ0[τη + et(1/τη+1/τ1−η)+ητ1−η − (τη + τ1−η)η],

φ =2τ1−ηµ1(1− η)[−τ2
η + et(1/τη+1/τ1−η)(tτ1−η + τη(t + τη))],

ψ =− τ1−ηµ2
1η2β0[τητ1−η + et(1/τη+1/τ1−η)(−τητ1−η + t(τη + τ1−η))].

However, the analytical solution of the total mass in each compartment for both combinations of
kernels is:

µ1,η = ηµ1(0), and µ1,1−η = (1− η)µ1(0),

as the total mass of particles in each zone remains constant. Here, µ1(0) is the initial total mass of the
particles in the system.

4. Results and Discussion

In this section, the compartmental model of the sprayed fluidised bed granulator solved
numerically is tested with various combinations of aggregation and breakage kernels. To check
the accuracy of the numerical methodologies, the numerical results are compared with analytical
solutions derived for combinations of additive and product aggregations kernels and the binary
breakage kernel with the linear selection function in Section 4. In addition, the quantitative relative
errors in the zeroth and first order moments obtained for sum and product kernels are also computed
using the following expression:

Θi =
∑I

j=1 |Nana
j (t)− Nnum

j (t)|ri

∑I
j=1 |Nana

j (t)|ri
, (19)

where Nana
j and Nnum

j denote the analytical and numerical number of particles predicted in the j-th
cell, respectively. Moreover, the values Θ0 and Θ1 denote the relative errors in the zeroth and first
order moments, respectively. All the numerical simulations were carried out using MATLAB 2015a on
a i5 CPU with 2.67 GHz and 8 GB RAM. The system of ODEs derived in Equations (10) and (11) were
solved using ode15 s solver in MATLAB.

To compute the numerical results using finite volume schemes, the size domain range from
rmin = 10−6 to rmax = 108 was divided into 151 cells. Moreover, the comparison is presented by
varying the size of the wet zone, in particular the value of η was taken to be 20% and 30%.

4.1. Additive Aggregation Kernel and Binary Breakage with the Linear Selection Function

In this section, the comparison in terms of various moments obtained using FVS is conducted
with analytical moments for the additive kernel (βWZ(r, s) = β0 × (r + s)). For the analytical solutions
corresponding to the additive kernel, the value of β0 was considered to be one. For calculating the
numerical results, the simulations were run till time t = 20 s.

Figure 3a,c reveals that the zeroth moments approximated numerically for wet and dry zones,
respectively, matched well with the analytical moments. Moreover, Figure 3b shows the comparison
of the total number of particles in the system (combining wet and dry zones), which reveals that the
modified FVS agreed well with the analytical total moment. It is important to note that no account for
the preservation of the total number of particles in the system has been taken, but still, the modified
finite volume scheme was highly accurate in computing the zeroth order moment. Moreover, it can
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also be observed that as the size of the wet zone increased from 20% to 30%, the total system acquired
the steady state at time t = 18 s (for 30% wet zone), whereas for 20% wet zone, the system acquired
the steady state at time t = 20 s. This is due to the fact that less particles were present in the wet zone
for aggregation, whereas more particles in the dry zone were available that underwent the formation
of smaller sized particles due to fragmentation process, which delayed the steady state. Additionally,
when the size of the wet zone was increased, more particles were contributing towards the aggregation
mechanism, and the number of particles in the dry zone decreased. Consequently, this further helped
the system to achieve the steady state earlier.

In addition, the first order moments computed corresponding to both zones (wet and dry) showed
consistent numerical results, that is they agreed well with the analytical first moments. This affirms
that the total mass in both zones remained conserved. Moreover, Figure 3d exhibits the comparison of
the total mass in the system (combining wet and dry zones), which coincides well with the analytical
total first moment. Furthermore, the quantitative relative errors of the zeroth and first order moments
calculated using (19) are listed in Table 1. One can observe that the relative errors in the moments of
both zones, as well as in the total system increased as the size of the wet zone was incremented from
η = 20% to η = 30%.
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Table 1: Qunatitative relative errors in zeroth and first order moments for sum kernel

Moments WZ DZ Total WZ DZ Total
(η = 20%) (η = 20%) (η = 20%) (η = 30%) (η = 30%) (η = 30%)

µ0 0.0037 0.0037 0.0037 0.0033 0.0034 0.0034
µ1 3.48×10−10 3.32×10−10 3.35×10−10 1.60×10−09 1.55×10−09 1.57×10−09
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Figure 3. Different order moments and number density for the additive kernel. FVS, Finite
Volume Scheme.

Table 1. Quantitative relative errors in the zeroth and first order moments for the additive kernel.

WZ DZ Total WZ DZ Total
Moments η = 20% η = 20% η = 20% η = 30% η = 30% η = 30%

µ0 0.0037 0.0037 0.0037 0.0033 0.0034 0.0034
µ1 3.48× 10−10 3.32× 10−10 3.35× 10−10 1.60× 10−10 1.55× 10−9 1.57× 10−9
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4.2. Product Kernel and Binary Breakage with Linear Selection Function

Similar to the sum kernel, for η = 20% and η = 30%, the numerical moments computed using
finite volume scheme are compared with the newly-derived analytical results for a product kernel,
that is βWZ(r, s) = β0 × rs. For the comparison, the value of β0 was considered similar to the previous
case. The simulations were run till time t = 7 s for calculating the numerical results.

The product kernel was a gelling kernel for any arbitrary particle size distribution [17].
Therefore, the simulation in this case was performed until the product kernel showed the gelling
behaviour. The kernel exhibited gelling behaviour when the newly-forming particles aggregated
at a greater frequency than their parents. The various order moments computed numerically were
compared with the analytical moments, as shown in Figure 4. The numerical results reveal that
the zeroth and first order moments corresponding to wet and dry zones showed very consistent
approximations and coincided well with the analytical moments (see Figure 4a,c). Moreover, the
numerical total zeroth and first order moments shown in Figure 4b,d corresponding to the whole
system matched well with the analytical results.

In contrast to the additive kernel, for the product kernel, no steady state was achieved by the
system corresponding to 20% and 30% wet zones (see Figure 4). This was due to the fact that a greater
number of particles was available in the dry zone and hence produced a greater number of smaller
particles. In contrast to the dry zone, a lesser number of particles was available for the formation
(or aggregation) process, hence producing much smaller particles. Analogous to the additive kernel,
the quantitative relative errors existing in zeroth and first order moments were also calculated for
a product kernel using Expression (19) (see Table 2). The trend of the relative errors in both order
moments was similar to the additive kernel, that is the relative errors in both order moments increased
as the value of η varied from 20% to 30%.

0 1 2 3 4 5 6 7

time (in secs)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
o

m
en

ts

Wet & Dry Zones

FVS-µ
0
-WZ

Exact-µ
0
-WZ

FVS-µ
1
-WZ

Exact-µ
1
-WZ

FVS-µ
0
-DZ

Exact-µ
0
-DZ

FVS-µ
1
-DZ

Exact-µ
1
-DZ

(a) Moments in Zones (for η = 20%)

0 1 2 3 4 5 6 7

time (in secs)

0

1

2

3

4

5

6

M
o

m
en

ts

Total System

FVS-µ
0

Exact-µ
0

FVS-µ
1

Exact-µ
1

(b) Total Moments (for η = 20%)

0 1 2 3 4 5 6 7

time (in secs)

0

0.5

1

1.5

2

2.5

3

3.5

M
o

m
en

ts

Wet & Dry Zones

FVS-µ
0
-WZ

Exact-µ
0
-WZ

FVS-µ
1
-WZ

Exact-µ
1
-WZ

FVS-µ
0
-DZ

Exact-µ
0
-DZ

FVS-µ
1
-DZ

Exact-µ
1
-DZ

(c) Moments in Zones (for η = 30%)

0 1 2 3 4 5 6 7

time (in secs)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
o

m
en

ts

Total System

FVS-µ
0

Exact-µ
0

FVS-µ
1

Exact-µ
1

(d) Total Moments (for η = 30%)

Figure 4: Different order moments for product kernel using various values of η.

20

Figure 4. Different order moments and number density for the product kernel.



Processes 2018, 6, 195 12 of 13

Table 2. Quantitative relative errors in the zeroth and first order moments for the product kernel.

WZ DZ Total WZ DZ Total
Moments η = 20% η = 20% η = 20% η = 30% η = 30% η = 30%

µ0 0.0046 0.0044 0.0044 0.0056 0.0053 0.0054
µ1 5.55× 10−8 2.05× 10−8 2.75× 10−8 1.62× 10−8 1.47× 10−8 1.52× 10−8

5. Conclusions

In this study, a two-compartment model for a top-sprayed fluidized bed granulator is proposed
using population balances. The model has been analysed by varying the size of the compartments.
Moreover, a modification of the existing finite volume scheme has been done to solve the proposed
compartmental model. For the verification of the modified finite volume scheme, new analytical
solutions for zeroth and first order moments are derived for various combinations of aggregation and
breakage kernels. It has been demonstrated that the modified finite volume scheme has the stability
to track the zeroth and first order moments accurately, even if different sizes of wet zone are chosen.
Moreover, the relative errors existing in both order moments increased as the size of the wet zone was
varied from 20% to 30%. Finally, we concluded that the proposed model, as well as the numerical
discretization behaved well for various kernels and sizes of compartments.
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